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Abstract
In the frame of classical sentential logic we introduce an operator C to be read as 
it changes that ... and  as its counterpart to be understood as unchangeability. 
The considered notion of change is motivated by Aristotelian and Leibnizian 
philosophy of time and change. Typical axioms of our system are e.g. “CA implies 
Cnot-A”, “A implies not-C A”, as basic rules we have e.g. “from A derive 
not-CA” (theorems don’t change) and a version of an -rule connecting C with . 
We prove the completeness of this calculus in respect to a semantics where we 
introduce “stages”. We compare it with some other systems of temporal logic and 
show certain advantages of our calculus.
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1.  Introduction

The occurrence of changes of different kinds is usually linked with a flow 
of time and is therefore often described using just temporal modalities. This 
common way of speaking about change in terms of temporal logics has 
been realized in the frame of known temporal calculi like that of A. Prior, 
H. von Wright and J. Clifford (a detailed discussion of these logics extended 
by a notion of change has been presented by J. Wajszczyk, 1995). In our 
present considerations we follow the converse idea and treat the notion of 
change as a primitive one, which in particular may also be used to define 
some temporal operators. This intention is already expressed in the logic of 
change LC originally presented by K. Świętorzecka (2008) and extracted 
by Świętorzecka and J. Czermak (2012). This sets the frame of the logical 
basis of our work now.1 LC was actually inspired by the metaphysics of 
Aristotle and was considered as a logic of the Aristotelian theory of 
substantial changes. But there is also another philosophical background for 

1  The idea of considering change as a primitive notion was also taken up by Kiczuk 
(1991) and formally worked out by Trypuz (2010). However Kiczuk’s formalization is 
designed to describe so called empirical changes and this approach does not correspond to 
our motivations, it assumes different characteristics of the considered notion of change.
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LC – some fragments of Leibnizian philosophy of time and change. Our 
attention now is focused on enriching LC by considering next to change 
also some kind of necessity which may be regarded as constancy, as a 
counterpart of change. These two modalities, the first one expressed by a 
one place operator C read as it changes that ... and the second one by , 
are not defined explicitly by each other but are connected via axioms and 
rules, especially by some kind of -rule. Within the framework of our 
formalization we show that  has S4 properties and therefore we name our 
calculus LCS4. To interpret LCS4 we extend the original LC semantics and 
show that LCS4 is complete in relation to it. By this occasion we analyze 
the relation of LCS4 semantics to appropriate fragments of Aristotelian 
and Leibnizian methaphysics. At  the end we notice a close connection of 
LCS4 with linear temporal logic and show some advantages of using our 
axiomatization.

2.  The system LC

Logic LC was originally intended to be a formal basis of the theory of 
substantial changes formulated by Aristotle. Another philosophical back-
ground is found in the Leibnizian conception of time and change. These 
inspirations are sketched in (2.1). The formal system and its semantics is 
described in (2.2).

2.1.  Philosophical background

According to Aristotle substantial changes consist in transitions from exist-
ence to non-existence (or conversely) of individual substances and these are

[…] first in every sense: (1) in definition, (2) in order of knowledge, (3) in time. 
For none of other categories none can exist independently, but only substance. 
(Met, VII, 1, 1028a 30-40)

The considered changes are dichotomic i.e. they occur between contradictory 
states. As Aristotle explains:

One kind of change, then, being change in a relation of contradiction, where 
a thing has changed from not-being to being it has left not-being. Therefore it 
will be in being: for everything must either be or not be (Phys, VI, 5, 235b 13-16)

And so they are also immediate in a sense that there is no middle term 
between contradictories:

Since all change is between opposites, and these are either contraries or con-
tradictories, and there is no middle term for contradictories, clearly that which 
is between is between contraries. (Met, XI, 12, 1069a 2-5).
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One of the crucial properties of substantial changes is that they are onto-
logically prior to time. Aristotle claims that time is only an aspect of a 
movement and is not independent on change (Phys, IV, 219a). The other 
thing is that substantial changes are of a relational nature, they should be 
considered in reference to some more basic ontological relation. Following 
suggestions from Metaphysics a candidate for this may be the relation of 
the active to the passive which becomes to be a change when it holds 
between substances (Met V, 15, 1020b28-30, 1021a15-19). To explain our 
intuition let us accept that substances are meant as existing individual 
essences (cf. Met, VII, 4, 1030 b 5-6). The mentioned relation holds between 
two individual essences a1 and a2 just when the existence of essence a1 
enables the existence of essence a2 and a2 comes to be a substance thanks 
to the fact that a1 loses its existence so a1 is not a substance any more:

[…] in substances the coming-to-be of one thing is always a passing of 
another, and the passing-away of one thing is always another’s coming to be 
(GC, I, 3, 319a 20-22)

To describe such a transition which takes place in a chain of individual 
essences a1, a2, a3, … which successively enable their existence, let us 
use a sentential -language with constants 1, 2, 3, …. which describe 
situational counterparts of the mentioned existent essences (so called ele-
mentary situations). The history of substantial transformations consisting in 
passing-away a1 to enable existence of a2 and next passing-away a2 to enable 
existence of essence a3 (and so on) could be expressed by the sequence of 
the following conjunctions:

 :      1,       1  2,       1   2  3,      ....

This sequence  is one of many possible sequences that code possible 
changes consisting in occurring new elementary situations or their negations 
and transitions from A to not-A or from not-A to A. The set of all such 
sequences called histories of changes will be considered as a semantics of 
LC and then extended to LCS4 semantics. 

The second philosophically interesting inspiration for LC comes from 
the Leibnizian conception of time and change. Although Aristotelian and 
Leibnizian ontologies are different in many respects, in the case of philosophy 
of time and change Leibniz adopted some essential Aristotelian ideas.

Thanks to the extensive discussion presented by M. Futch (2008) we 
may notice several similarities between the Aristotelian concept of substan-
tial change and the idea of change by Leibniz. In (NE) Teofil quotes several 
times the Aristotelian description of change as transition from potential to 
actual existence (NE II, 169; III 297). Leibniz follows Aristotle in temporal 
reductionism, according to which, time is only a measure of change (NE II, 
152 ff) and change is not dependent on time, since:
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It is obvious that [temporal] priority and posteriority do not enter into the 
definition of change (VE, 168)

Leibnizian changes are also dichotomic and immediate in the same sense 
as it was taken by Aristotle. Let us quote following Futch2: 

A change is made if ... two contradictory propositions are true (AK 6.4.167)
If A is B, and A is not B, A is said to have changes (AK 6.4.629)
Change (Mutatio) is an aggregate of two contradictory states. It is necessary, 
however, that these states be understood as immediate, since between contra-
dictory things a third is not given (Grua, 323)

Leibniz follows Aristotle also in that he chooses as carriers of changes 
individual substances. Although primary he understood individual sub-
stances in Aristotelian style, finally they came out to be monads which were 
eternal, imperishable and independent one from another in their existence 
(cf. Mates, 1986, 191). In this way they cannot be considered as becoming 
and disappearing. However Leibniz links the phenomenon of change rather 
with states of monads (Mates, 1986, 228). Every state of a monad is deter-
mined by a collection of attributes possessed by this monad and so every 
change is actually the transition from possessing to non-possessing (or con-
versely) of these attributes. Although any two different monad states of 
the same monad are incompatible (because the difference between two 
states consists in the fact that some attribute possessed by a monad in the 
first state is lost in the second one or conversely), some states of different 
monads are simultaneous. Just the simultaneousness together with the rela-
tion of being before/after occurring between different states of the same 
monad, bring out the flow of time. This relational structure of time is a 
starting point of Futch’s attempt to justify the Leibnizian temporal reduc-
tionism. Futch links one of two mentioned relations: the relation of being 
before/after with notion of causality. Changes (transitions) of states of any 
monad from possessing to non possessing (or conversely) its attributes are 
of course caused by something but they themselves do not form causal 
chains. For this reason we would propose to model the analyzed change by 
considering the relation of simultaneousness and to link it with a specific 
Leibnizian concept of compossibility. Leibniz does not describe criteria of 
being simultaneous but it seems to be unquestionable that compossibility is 
at least a necessary condition for this because:

Compossible is what, with another thing, implies no contradiction (Grua, 325)
Compossible things [are] those, one of which being given, it does not follow 
that the other is negated; or those of which one is possible, the other being 
assumed (AK 6.2.498)

2  We use Futch’s English translations of the original Latin texts.
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Although every two simultaneous states are compossible, it happens that 
two compossible states are not simultaneous, even they can be considered 
to be consistent.

To realize our proposed idealization we start with any state of monad m1 
and successively consider compossible states of monads m2, m3, .... By this 
way we pass from one to the next more complex collection of states which 
also may change in dichotomic way. So we simulate a flow of occuring 
changes.

To describe these intentions let us use again the -language. This time, 
constants 1, 2, 3, … are interpreted as descriptions of some compossible 
states of monads m1, m2, m3, …. (called elementary states). Depending on 
the fact that the state described by 1 is actual or not it holds 1 or 1. 
This gives us the first stage of some history. In the next step we are refer-
ring to a compossible state of monad m2 described by 2 that also may 
be actual or not. In this way we can reconsider the value of 1 but this is 
a new stage in which 1 or 1 is compossible with 2 or 2. If the value 
of 1 is now different from the initial stage we speak about change. 
In general if each of the propositional constants 1, …, n is true or false 
on stage n, we consider them in relation to n+1 to come to the next stage 
n + 1 on which now each of 1, …, n+1 is true or false. In effect we obtain 
all possible histories of changes and one of them is just described by the 
mentioned sequence . In this way our interpretation of the Leibnizian 
concept of change leads us to LC semantics.

Let us now make the above intuitions precise.

2.2.  Formal system

In our approach we use the notion of a language of level n to be the set of 
formulae of sentential logic built up from propositional constants out of the 
set {1, ..., n} by classical connectives: , , , ,  and a one place 
operator C to be read as it changes, that ….3 

To obtain the system LC we take as axioms all tautologies of classical 
propositional logic and all formulae of the following schemata:

(Ax1)  CA  C A
(Ax2)  C(A  B)  CA  CB
(Ax3)  A  CA  CB  C(A  B)
(Ax4)  A  B  CA  CB  C(A  B)

3  The language of level n is the result of passing all previous stages up to stage n. To 
describe an existential transformation between essence an and an+1 respectively to consider 
the next elementary state of monad mn+1 compossible with state of mn we extend the 
language of level n to level n + 1. In effect we get successively growing languages.

98789_LogiqueAnalyse_232_03.indd   513 8/04/16   09:17



514	 kordula Świętorzecka & johannes czermak

and as primitive rules:

 (MP)	 A, A  B  B
(C-rule)	 A  CA
(Rep)	 A[B], B  B    A[B ]

We replaced the original axiom A3 by the stronger Ax3, but this does not 
strengthen the system (cf. Świetorzecka, Czermak 2012).

The semantics for LC we describe as follows:
Let  be a function from the set of natural numbers to subsets of the 

set of propositional constants. Let the expression :n A be read as the 
formula A is true at stage n in some history .

The minimal level of a formula A (lv(A)) is the smallest number n such 
that A belongs to a language of level n. It is the highest index of the 
propositional constants occurring in A.

We give a standard definition of the relation :n A for n  lv(A):

Definition (:)

For any constant k (where 1  k  n):

	 (i)	 :n k  iff  k  (n)

Let A, B be formulae of level n, then:

	 (ii)	 :n  A  iff  Fn A
	 (iii)	 :n  A  B  iff  :n A and :n B
	(iv)-(vi)	 for A  B, A  B, A  B as usual
	 (vii)	 :n CA  iff  (:n A and Fn+1 A) or (Fn A and :n+1 A)

Please note: If n < lv(A) then :n A is not defined.

An example of such a history  is the function a corresponding to our 
sequence :  a(n) = {n}.4

Definition (Validity)	 A is valid  iff      klv(A) :k A

Completeness Theorem.	 A is valid  iff  A is derivable in LC

This is shown by Świetorzecka (2008).

4 T here may be considered histories with different special rhythms of changes of truth 
values. Some of them may correspond to the Parmenidenian theory of impossibility of change, 
others to e.g. theory of permanent changes of elementary situations (let us note that there are 
no histories which code global changes i.e. there are no histories that every contingent formula 
changes at every stage its truth value (as shown by Świetorzecka, 2009)).
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3.  The system LCS4

To introduce the usual symbol  we define one place operators (uC)n:

Def. (uCn)	 (uC)0A  A
	 (uC)n+1A  (uC)nA  C(uC)nA

(uC)nA expresses that formula A will not change during the next n 
stages; to see this consider the first two steps:
(uC)1A  A  CA
(uC)2A  A  CA  C(A  CA)
(uC)k fulfills the corresponding semantic condition:

(viii)  :n (uC)k A  iff  m (if n  m   n +  k then :m A)
(Proof by straightforward induction on k.)

We define the meaning of the symbol  as follows:

  (ix)  :n A  iff   kn :k A5

We will also use  as an abbreviation for .
By the above conditions it may be seen that:

Fact 1. T he following formulae are valid:
(Ax5)  A  (uC )nA  for all n  0
(Ax6)  A  C A

Fact 2. T he validity of formulae is preserved by the following -rule:

(Cr)  B(uC  )nA  n0
BA

(Proof indirect.)

When we add formulae Ax5 and Ax6 to the set of LC axioms and Cr to 
the set of primitive rules of LC we obtain a calculus which we call LCS4:

Axioms:

(Ax0)  all tautologies of classical sentential logic
(Ax1)  CA  CA
(Ax2)  C(A  B)  CA  CB
(Ax3)  A  CA  CB  C(A  B)

5 C ondition (ix) expresses constancy and not Aristotelian or Leibnizian necessities analyzed 
by e.g. Bocheński (1956, 94ff) and Mates (1986, 105ff).
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(Ax4)  A  B  CA  CB  C(A  B)
(Ax5)  A  (uC)nA  for all n  0
(Ax6)  A  C A

Rules:

(MP)	 A, A  B  B
(C  -rule)	 A  CA
(Rep)	 A[B], B  B  A[B]

(Cr)	 B(uC)nA  n0
BA

It is rather obvious that
A  B  CA  CB  and  A  B  CB  CA

are not admissible rules in LCS4. However:

Fact 3. T he following rules are admissible in LCS4:
(a)	 A  B  A  CA  B  CB
(b)	 A  B  (uC)nA  (uC)nB
(c)	 A  B  A  B

(d)	 A  (uC)nA and
(e)	 A  A

Proof:
A  B

C(A  B)  (by C -rule)
(by Ax3)Ad (a): A  B A  CA  CB 

A  CA  B  A  CA  CB 

A  CA  B  CB

Ad (b):  Induction on n, using (a).
Ad (c):

A  B
(uC)nA  (uC)n B       (by (b))
A  (uC)nB     (by Ax5)

A  B  (by Cr)

Ad (d):  Induction on n.
Ad (e):  Use (d) and Cr.
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Fact 4.   has in LCS4 the standard S4 properties, i.e.
(T )	 A  A
(K )	 (A  B)  A  B

( 4 )	 A  A

Proof:

(T ) is a special case of Ax5.

For (K ): (A  B)  A  B follows from A  B  A by Fact 3(c). 
To get the converse we prove A  B  (uC)n (A  B) by induction 
on n.

If n = 0, it follows from (T ).

1.  A  B  (uC  )n(A  B)� (ind. hyp.)
2.  C(A  B  (uC  )n(A  B))� (C-rule, 1)
3.  (A  B)  C(A  B)  C((uC  )n(A  B))� (Ax3, 2)
4.  A  B  C A  C B  C((uC  )n(A  B))� (Ax2, 3)
5.  A  C A� (Ax6)
6.  B  C B� (Ax6)
7.  A  B  C((uC  )n(A  B))� (prop. logic, 4, 5, 6)
8.  A  B  (uC  )n(A  B)  C((uC  )n(A  B))� (1, 7)
9.  A  B  (uC  )n+1(A  B)� (Def.(uCn))

To get A  B  (A  B) we use Cr.
As usual we get also:  (K)  (A  B)  (A  B)
For ( 4 ): We prove A  (uC)nA again by induction on n and use the Cr.

4.  Completeness of LCS4

The soundness of LCS4 follows from the soundness of LC together with 
Fact 1 and Fact 2.

We give a Henkin-proof for the completeness of LCS4.

Theorem (LCS4-Completeness)

If  LCS4 E A  then   klv(A) :k A

As usual we define: A set M of formulae is LCS4 -consistent (or simply 
consistent)   iff   there is no finite set {B1,..., Bm}  M such that LCS4  
(B1  ...  Bm).
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A consistent set M of formulae is maximal LCS4-consistent iff there is no 
formula B g M such that M  {B} is LCS4-consistent.

It is known that maximal consistent sets X have the following properties:

		I  f LCS4  B  then  B  X
	 (ii)*	  B  X  iff  B g X

	 (iii)*	 B  D  X  iff  B  X and D  X
	(iv)*-(vi)*	 for B  D, B  D, B  D as usual

We are looking for a sequence {Lk} of maximal consistent sets such 
that the following additional conditions corresponding to (vii), (viii), 
(ix) hold:

	 (vii)*	 CB  Lk  iff  (B  Lk and B g Lk+1) or (B g Lk and B  Lk+1)
	 (viii)*	 (uC)n B  Lk  iff  m(if n  m  k + n then B  Lm)
	 (ix)*	 B  Lk  iff  mk B  Lm

Now let us assume that LCS4 EA. Then {A} is LCS4-consistent. We 
consider an enumeration F0, F1, F2, … of all formulae of the lv(A)-lan-
guage. Take the sequence

F0, F0, F1, F1, F2, F2, …

We extend the set {A} in accordance with the following definition:

Definition (Lk)

L0 = {A}

L2k+1  = 


L2k  {Fk}	 if this is consistent
L2k  {Fk}	 else

L2k+2  = 


L2k+1  {Fk}	 if this is consistent
L2k+1  {Fk}  {(uC)mFk}	 for a certain m

The last line here is well defined in view of the following

Fact 5. I f M is finite, consistent, and F  M, then there is m  N such 
that M  {(uC)m F }is consistent.

Proof indirect.  Let m  N : M  {(uC)mF } be inconsistent.
It means that for every m  N there is a finite set {Bm1

,  …,  Bmn
}  M 

such that
LCS4  (Bm1

  …  Bmn
  (uC)mF)
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Since M is finite, let B be the conjunction of all formulae of M. Then
LCS4  B  (uC)mF  m  N

and now
LCS4  B  F  by Cr.

Since F  M, LCS4  B  F,  therefore LCS4  B which means 
that M is inconsistent.

From Definition (Lk) it follows that for every k  0 the set Lk is consistent.
Corresponding to Lindenbaum’s Lemma we conclude that L = 


k=0  Lk 

is maximal consistent.
Now we take the following sequence {Lk} of sets:

Definition (Lk)

For k   lv(A) :	 Llv(A) = L
		  Lk+1 = {B : (B CB)  Lk}        {B : (B  CB)  Lk}
We observe

Fact 6. F or every k   lv(A): Lk is maximal consistent.
Proof by induction on k. Let k = lv(A), Lk = L and L (which is maximal 
consistent) and let us assume that Lk is maximal consistent.

(a)  Lk+1 is consistent.

If it is not, then there is a finite set
{B1, …, Bm, D1, …, Dn}  Lk+1

such that
{B1, …, Bm, CB1, …, CBm, D1, …, Dn, CD1, …, CDn}  Lk

and
LCS4  (B1  …  Bm  D1  …  Dn)

Let B be B1  …  Bm and D be D1  …  Dn.
From LCS4  B  D it follows by C-rule
LCS4  C(B  D)

and from that by Ax3, Ax2 and Ax1
LCS4  B  CB1  …  CBm  CD

Since {B, CB1, …, CBm}  Lk we get CD  Lk using also Ax1.
Now we have the following trivial generalization of Ax4:
LCS4  D1  …  Dn  CD1  …  CDn  CD
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and since {D1, … ,Dn, CD1, …, CDn}  Lk we get CD  Lk, which 
contradicts CD  Lk (we assumed that Lk is consistent).

(b)  Let Lk+1 be not maximal consistent. Then there is a formula B such 
that B g Lk+1 and B g Lk+1. It means that

    B  CB g Lk, B  CB g Lk,
B  CB g Lk, B  CB g Lk

But then, since Lk is maximal consistent,
(B  CB)  Lk, (B  CB)  Lk,
(B  CB)  Lk, (B  CB)  Lk,

which entails the inconsistency of Lk.

In view of Fact 6 the conditions (vii)*, (viii)* and (ix)* may be proved 
easily:
(vii)* � by definition of Lk+1, (viii)* by induction on n and (ix)* with the 

help of Ax5 and referring to (viii)*.

Now we define:
(n) = {i : i  Ln}

We get by induction on formulae:
:n B  iff  B  Ln

and, since A  L = Llv(A), at the end we get

:lv(A)A

which proves
klv(A) :k A

5.  LCS4 and systems of linear temporal logic

The semantics for LCS4 shows a direct connection of LCS4 with systems of 
linear temporal logic. Indeed, we can define the next-operator N as follows:

Def. (N  )  N A  (A  CA)

with the corresponding semantical condition
(x)  :n NA  iff  :n+1A

Now it can be proved in LCS4 that N has the usual characteristic proper-
ties:
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Fact 7. T he following formulae are derivable in LCS4:
(N1)  NA  NA
(N2)  N(A  B)  (NA  NB)  for   {, , , }

and the (N-rule) A  NA is admissible in LCS4.
(Proofs are given by Świetorzecka, Czermak, 2012).
Furthermore we observe:

Fact 8. T he following formulae are derivable in LCS4

(N3)  A  N A

(N4)  A  NkA	 for every k  0

and also an N-version of the -rule:

(Nr)  BNnA  n0
BA

 is admissible in LCS4.

Proofs. T o show the admissibility of Nr it is convenient to introduce the 
definition:

N  0A  A,  N n+1A  N n A  N N nA 

for proving

(*) N nA  (uC)n A.

N3 follows directly from Ax6 and N4 from Ax5 and (*).
If we now conversely define C by N

Def. (C)  CA  (A  NA)

and take N1 through N4 as axioms and as basic rules the N-rule and Nr 
we get a system definitionally equivalent to LCS4 and also equivalent 
to the -fragment of propositional linear temporal logic called PTL (cf. 
Gabbay et al., 2006, 46ff).

Let us take the axiomatization of this fragment – we call it Θ – given 
by L. Goldblatt (1992, 87) (we use instead of  our symbol N  ):

Axioms:

	 all tautologies of classical sentential logic
(K)	 (A  B)  (A  B)
(KN)	 N(A  B)  (NA  NB)
(Fun)	 NA  NA

(Mix)	 A  A  N A
(Ind)	 (A  NA)  (A  A)
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Rules:  (MP), (Rep), N-rule, Necessitation rule: A  A

Now we observe

Fact 9.  Θ is deductively equivalent to LCS4.
Proof. K  we noticed already in connection with Fact 4.
KN is a special case of N2, Fun is N1, Mix follows immediately from N3 
and N4. To derive Ind show at first by induction that

	 (A  NA)  (A  NkA) k0	 (5.1)

and apply Nr.
To prove the converse direction notice that N4 follows by induction from 

Mix, KN and the N-rule. To see the admissibility of the Nr in Θ, we have 
to use the finite model property of Θ (as shown by Goldblatt, 1992, 98).

In this way the philosophical motivations of our LCS4 stemming from 
the classical metaphysics of Aristotle and Leibniz also encounters epistemic 
issues modeled in particular by modern dynamic logics (described by e.g. 
Goldblatt, 1992; Harel et. al. 2000).

Besides philosophical reasons to base our logic on the primitive concept 
of change, LCS4 is a system that may be of interest in view of some formal 
properties.

The proposed calculus is, like the basic system LC, not regular in the 
sense that deleting C in derivable formulae sometimes leads to contradictions 
(in contrast to Θ where deleting  and N in derivable formulae will yield 
tautologies).

Some advantages of using its basic -rule may also be noticed. The 
usefulness of Nr can be seen e.g. in the derivations of Dummets formula
	 (Dum)    ((A  A)  A)  (A  A)

and of the characteristic axiom of S4.3
	 (L1)    (A  B)  (B  A).

To derive Dum we prove at first
	 N A  N A	 (5.2)

starting with N4, applying the N-rule to get
	 N A  NkNA    k      0

in connection with N3 and Nr we have
	 A  NA

Put now A for A and use S4 to get the (5.2).
Next we derive

	 N A  (A  A)	 (5.3)
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We start with proving N A  (A  NkA) by induction on k, using N3, 
N4 and the N-rule. Now use Nr to get N A  (A  A), the neces-
sitation rule yields N A  (A  A). By (5.2) we get (5.3).

To derive Dum we start like Goldblatt (1992, 88) with an instance of K
	 ((A  A)  A)  (  (A  A)  A)

and use S4 with (5.3) to get
	 ((A  A)  A)  (N    A  A),

By propositional logic and the necessitation rule we have
	 ((A  A)  A)   ( A  N  A)

With help of (5.1) and Nr to obtain Dum.
To derive (L) we start with the following instance of A  B  

(A  B) (which is an easily derivable formula of K):
	 (A   B)  B  (A   B  B)

to get by classical logic
	 (A   B)  B  A	 (5.4)

Then we show by induction
	 (A   B)  Nk(B  A)  k  0	 (5.5)

For k = 0 it is (5.4). For the induction step use the N-rule to get
	 N(A   B)  Nk+1(B  A)

In view of
	 (A   B)  (A   B)  N(A   B)

which is an instance of  A  A  NA and can be derived from T, N3 
and (5.3), we have only to show that
	 A   B  Nk+1(B  A)  k  0

which follows from N4.
Now apply Nr to (5.5) to obtain L1.6
The operator C can be also used to code, as already mentioned, rhythms 

of changes of truth values in a transparent and lucid manner. Take e.g. the 
formula C A which expresses that the truth value of A alternates; CCA 
means that we have rhythms like t,   t,    f,    f,    t,    t,    f,    f.

The formula
	 C  3A  ((A  NNA)  (NA  N  3A))

6  Compare these derivations with these given by Goldblatt (1992, 87-89).
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shows that C may be sometimes used to simplify formulae with N. Let us 
take as an example the formula (vii) considered by Harel (et al., 2000, 405):
	 A  (A  N(A  N(A  N(A  NA))))

which is actually equivalent to:
	 A  (A  NA  N N A   N  3A  N   4A) 

and which is true at each multiple of 4 but false elsewhere. This can now 
be shortened to:

	 A  (A  CA  C  2A  C  3A).

Conclusion. T he starting point of our considerations was a modal sentential 
logic LC originally motivated by Aristotelian and Leibnizian philosophy of 
change and time. The special feature of this formalism is that it’s basic 
operator C expresses changeability considered as prior to time. We enriched 
LC by a  operator identifying necessity with unchangeability (and relating 
C with  by some kind of -rule). We proved its soundness and complete-
ness relative to some semantics in a temporal framework. It turned out that 
 has S4.3 properties. We showed some formal advantages of our calculus 
and that it can be translated in well-known systems of linear temporal logic. 
By this way our approach brings together concepts of classical ontology 
with modern developments in formal logic and computer science.

We thank the referees for valuable comments and proposals for improving 
our paper.
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Education (NN10116240).
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