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Actuality, Quantifiers,  
and Actuality Quantifiers

David R. Gilbert*�

Abstract

This paper extends Hazen’s [11] work on actuality quantifiers. We present a sound 
and complete Hilbert-style axiomatization of the logic of actuality quantifiers. This 
logic is based on a quantified modal logic with actuality that allows for worlds to 
have completely empty domains.

1.  Introduction

It is well-known that the language of quantified modal logic is insufficient 
to express certain natural language sentences pertaining to the actual. To use 
an often called-upon example, consider the English sentence

(A)  It might have been that everyone who is in fact rich was poor.

Straightforward arguments utilizing the standard semantic readings of the 
quantifiers and modal operators demonstrate that the apparent translations 
of (A) into the language of quantified modal logic are inadequate to capture 
its intended meaning.1 Furthermore, one can prove that such difficulties are 
genuine, and (A) cannot be captured, either through apparent or obscure 
translations, in the formal language.2

The problem with such sentences is that they involve a particular inter-
mingling of quantifiers and modal operators, the demands of which outrun the 
technical apparatus standardly available to us. Specifically, the objects over 
which we would like to quantify (the actually rich), may no longer be avail-
able to us once we make the migration to another possible world (as required 
by “It might have been …”). To put it another way, we would like to be 
able to “remember” at what world we started, and to be able to refer back 

*  I am grateful to Ed Mares, Rob Goldblatt, Max Cresswell, and two anonymous referees 
for incredibly helpful comments and conversations.

1 See [7] for a clear discussion. For a wide-ranging, and incredibly clear, discussion of 
the types of expressivity issues we will be concerned with, one should consult Bricker [2].

2 For the details, consult [13].
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to individuals in that original world once we have made a departure in order 
to investigate other possible ways things might be. This suggests the solu-
tion that is commonly adopted in such circumstances: incorporate into our 
formal language an actuality operator that allows us to reference our starting 
world, regardless of where we might currently be located in modal space. By 
making use of such an operator, we can formally represent (A) as

(B)  x(@Rx  Px).

The @ operator allows us to refer back to the original, actual, world, facil-
itating the requisite comparison between the set of rich people there, and 
the poor people at the possible world under consideration.

What gets discussed slightly less, however (though still discussed: see, 
for example, [11], [12], or [7]) is the extent to which the addition of the 
actuality operator really solves our problems. Briefly (the next section con-
tains a more detailed discussion of these issues), the problem stems from 
the fact that the quantifier in (B) ranges over the objects that exist at some 
possible world (since it is inside the scope of the ) and not the actual 
world. On the other hand, on most intuitive readings of (A), the quantifier 
is understood as ranging over the actual individuals (in order to identify the 
actually rich). If one assumes a constant domain semantics, then these two 
domains will be the same. But with varying domains, situations exploiting 
this discrepancy can arise in which (B) diverges from our intuitive under-
standing of what (A) is supposed to mean.

As such, one possible remedy is to restrict oneself to constant-domain 
models. Another, as mentioned by Fara and Williamson, is to adopt Hazen’s 
[11] “actuality quantifiers”. This paper is devoted to a more thorough explo-
ration of the formal aspects of the second option. In particular, its main 
contribution will be to extend, and slightly generalize, Hazen’s treatment, 
which concerns a natural deduction system for actuality logics based on S5. 
We will provide a Hilbert-style axiomatization of actuality quantifiers that 
can be based on normal modal logics weaker than S5. This will be built 
upon a quantified modal logic that allows for worlds to have entirely empty 
domains.

Before presenting the logics and formal results, the next section conducts 
a slightly more detailed examination of the translational difficulties. We 
then begin by introducing a freely quantified modal logic with an actuality 
operator. This logic will be proved sound and complete in sections 6 and 7. 
The proofs and techniques introduced in those sections can then be easily 
extended to encompass the actuality quantifiers, which will be introduced 
in section 8. Lastly, in section 10, we will briefly consider other approaches 
that accomplish the same task as the actuality quantifiers, and identify some 
issues that remain unresolved by the logics put forward in this paper.
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2.  Is the Actuality Operator Enough?

Fara and Williamson diagnose the failure of (B) to adequately translate (A) 
in the following manner:

It is not often noted, however, that the question of whether [(B)] is the correct 
formalization of [(A)] is a delicate one. On a standard variable-domained 
Kripke semantics for quantified modal logic (Kripke 1963), on which the 
modal operators are interpreted as quantifiers ranging over possible worlds and 
different objects may exist at different worlds, [(B)] can be true in virtue of 
the existence of a world none of whose inhabitants exists at the actual world. 
But the existence of such a world seems insufficient for the truth of [(A)], at 
least on one of its natural readings. 
So much the worse, perhaps, for variable-domained Kripke semantics. [7, p. 5]

The idea here is that the conditional in (B) might be vacuously satised at 
the kind of world described, one with a domain disjoint from that of the 
actual world. It also seems correct that the existence of such a world seems 
to be an odd truthmaker for (A). However, we think it is helpful to look at 
the problem from a slightly different perspective, one which, perhaps, com-
pounds the problem somewhat. 

From a more formal perspective, the problem with (B) seems to be not 
only about which individuals exist at the two worlds, but also about the 
predication of properties for those individuals. In the setting of natural 
language, it may well be that being rich implies existing, but this is not 
necessarily the case in the formal setting. In the usual formal treatment of 
quantified modal logic (following Kripke [15]), these two notions come 
apart by allowing individuals to lie in the extension of a predicate at a par-
ticular world even if they don’t exist at that world (i.e. are not present in 
the domain of quantification of that world).3 Thus, the conditional in (B) 
will not be vacuously satisfied solely by virtue of a world with a domain 
that is disjoint from the actual domain – more is needed. 

More formally, letting W represent the set of all worlds, w the domain 
of individuals existing at world w, and V (P, w) the extension of the pred-
icate P at world w, treatments following Kripke usually allow V (P, w)  
( 


 w)n, for an n-place predicate P. Note that this does not preclude an
  w W

individual d, non-existent at w, falling under the extension of P at w. Thus, 
strictly speaking, given this kind of formal semantic backdrop, it is not only 
the non-existence of possible individuals at the actual world that renders the 
proposed formal translation of (A) true (since even at a world completely 
inhabited by individuals not existing at the actual world, x(@Rx  Px) 

3 T his allows one to maintain the rule of uniform substitution, which would otherwise 
have to be jettisoned.
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might still be false by virtue of some individual d, existing at the possible 
world in question but not the actual world, lying in the extension of R at 
the actual world but not in that of P at the possible world), but rather it is 
the non-actual-richness of any of the possibly-existing individuals that 
forces the sentence to be true. While this new situation does not bring us 
closer to a more natural truth condition for (A), it does highlight two, subtly 
different, aspects to the problem.

It might be reasonable, however, to think that there is an implicit con-
dition present in (A) that makes this analysis somewhat redundant.4 As 
noted above, it could be argued that “Richness” (at least in the context of 
(A)) is an existence-entailing predicate, and so one cannot be rich at a world 
unless one is in the domain of existence of that world. This would imply 
that a more perspicuous translation of (A) would be something like5 

(C)  x (@(Ex  Rx)     (Ex  Px))

(where Ex is the existence predicate) which, given the usual definition for 
Ex and semantic clause for the quantifier, is equivalent to

(D)  x (@(Ex  Rx)    Px).

These more transparently reflect the intuition that (A) is unconcerned with 
the fiscal status of non-existing entities. On this reading, a possible 
domain disjoint from the actual domain (the problematic situation diag-
nosed by Fara and Williamson) would indeed result in (D) being true, and, 
therefore, an undesirable translation of (A). However, importantly, so 
would a host of other circumstances, including, for example, the situation 
already mentioned where the people in the domain of the quantifiers at the 
possible world also exist at the actual world, but are not rich at the actual 
world.

In fact, (D) brings forth potentially more implausible truth-making sce-
narios. To consider just one, (D) and (B) will both be true when there exists 
a possible world at which not all (but perhaps some or most) of the actually 
rich people exist. All of the actually rich who do exist are poor, but not all 
of the actually rich people are present in any form. This seems like a more 
egregious, and explicit violation of what we intend by “all the actually rich 
are …” (given that completely vacuous satisfaction of universals is, for better 
or worse, somewhat familiar, but such partial fulfillments seem stranger), 
and stems from the inability of the quantifier at play in the actual world to 

4  I would like to thank Max Cresswell for interesting comments on this issue, and for 
pointing out aspects of this analysis I was overlooking or neglecting.

5 I f it is assumed that being rich logically entails existing, then (B) and (C) are logically 
equivalent.
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tightly bind, during transition, the individuals falling under its domain. 
Instead, as we move from world to world, the individuals once held firmly 
by an actual quantifier are allowed to slowly leak out, sometimes ceasing to 
exist at all.

It is in this setting that Hazen’s [11] “actuality quantifiers” arise, provid-
ing a type of quantifier able to shepherd its subjects safely from one world 
to another. Briefly (the full details are explicated below), the proposal is to 
supplement our quantified modal logic with a special quantifier, @, which 
allows us to quantify over the actually extant individuals regardless of what 
worlds we migrate to via the analyses of modal operators. This addition 
extends the expressivity of the language sufficiently in order to clearly ren-
der a formal version of (A) (and sentences like (A)) that is faithful to the 
originally intended meaning.6 

3.  A Brief Note on the Logics

It is worth very briefly highlighting precisely where the formal treatment 
presented in this paper differs from Hazen’s logic, as well as other treat-
ments of quantifiers and varying-domains found in the literature. The logics 
of this paper will be based on K, and can be easily extended to incorporate 
many other normal modal logics. Also, whereas Hazen presents a natural 
deduction system, this paper offers a Hilbert-style axiomatization which 
accords more with contemporary approaches to these types of systems.

Lastly, the basic logic of quantification in this paper is one that is free of 
the existential suppositions implicit in many other treatments of varying 
domains (such as those, for example, in [14]). Specifically, we forgo a usual 
restriction preventing worlds from having non-empty domains. One might 
argue that, philosophically, an empty world is a somewhat dubious entity, 
but from the technical point of view of trying to create logics that are as 
general and robust as possible, such freedom seems desirable. Also, it is  
interesting to see exactly how some of the proofs and axiom systems need 
to be modified in order to make everything work out (forbidding empty 
domains makes certain technical constructions much easier). We should 
emphasize that in this respect we do not part with Hazen, who also allows 
for worlds to have empty domains.

Before introducing the actuality quantifiers, we first describe a freely 
quantified modal logic. Once this has been established we show that one 
can then extend the results to incorporate logics with the actuality quan-
tifiers.

6  Though, as will be noted later, it by no means solves all problems concerning expressivity.
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4.  The Language of Quantified Actuality Logic

We begin by looking at quantified actuality logic without actuality quantifiers.
Let V be a countable set of variables ({x0, x1, ..., }). In addition, we 

assume, for each n  N \ {0} a countable set of n-ary predicates P, Q, …. 
The well-formed formulas of our language LQ can then be defined recur-
sively:

 ::= P  (x1,  …, xn) | x = y |  |    | �  | @ | x

where x1,  …, xn  V and P is an n-place predicate. The boolean connec-
tives , , and  can be defined as usual, as can the abbreviations , . 
We can employ our identity symbol to define a monadic existence predicate 
E: for a variable x, we define E(x) as y(x = y).

Let [y/x] denote the formula  in which all free occurrences of x have 
been replaced by y such that [y/x] has free occurrences of y wherever  
has free occurrences of x (where bound variables have been renamed, if 
necessary, to avoid inadvertently binding occurrences of y).

The axiom system Q0 + K + A1 is laid out below, and comprises axioms 
governing the propositional and modal components, the actuality operator, 
and the quantifiers.7 We use the same name for the set of formulas that are 
derivable in the system. We present these components separately for clarity. 
For the base propositional actuality logic we will follow, albeit with a slight 
(though inconsequential) change, [10].

The propositional component8:

(PC  ) All substitution-instances of theorems of propositional logic
(K) All formulas of the form (  )  (  )
(MP)          

 

(Nec)  
 

(@1) @(  @)
(@2) @  @
(@3) @(  )  (@  @)
(@4) @  @

(@R1)
 
 @

7 T he upper index “0” indicates that the quantified component of the logic is a free logic.
8  The axiom system for just the propositional component will be called K+ A1.
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The quantifier component:
(Reflexivity)	 x = x
(Substitutivity) 	 (x = y  [x/z])  [y/z]
(Free -Elimination) 	 (x  E(y))  [y/x]
(Universal Distribution 1) 	 x(  )  (x  x )
(Actual Identity) 	 x = y  @(x = y)

and the following rules:
(Free -Introduction)

 (  E(y))  [y/x]
   x

provided y does not occur free in  or x. And
(Free @-Introduction)

 (  @E(y))  [y/x]
   x

provided y does not occur free in  or x.
The following rules, the collection of which, following the terminology 

of Corsi [4], we will dub the Extended Barcan Rule (or EBR)9:
(BR(n), for n > 0)

  1  ( 2  ...   ( n  )…)
  1  ( 2  ...   ( n  x)…)

for x not free in  1, …,   n.
And, finally, we the set of rules that we will collectively refer to as @EBR:
(@BR(n), for n > 0)

 @( 1  ( 2  ...   ( n  )...))
 @( 1  ( 2  ...   ( n  x)...))

for x not free in  1, …,  n.
We can also consider a closely related logic by taking the set of Q0 + 

K + A1 theorems and closing it under the following rule:
(@R2)

 Q0 + K + A1 @

 

9  Hughes and Cresswell call this UGLn.
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and then closing this second set under modus ponens. We will call this logic 
Q0 + K + A2.10

Unless specifically noted, we will assume K as our base modal logic. 
If, for example, we were using S5 instead, this could be denoted Q0 + 
S5 + A1.

Observation 4.1.  Let , , , and  be formulas in LQ. If     is a 
theorem of Q0 + K + A1, and if  and  differ only in that  contains  at 0 
or more places where  contains , then    is also a theorem.

The proof of this more or less follows the standard one presented in [14], 
but with slight alterations due to the differences in the axiom system.

Observation 4.2.  The following are theorems of Q0 + K + A1:

(a)	 @(  )  (@  @ ),
(b)	 @  @@,
(c)	 xEx (Universal Existence),
(d)	 x(  )  (  x ) for x not free in  (Universal Distribution 2),
(e)	 xE(x)  x(x) (Empty Universal),
(f)	 E(z)  y([y/x]  x) (for y not free in ) (Universal Witness),
(g)	 x ! y  (x ! y),
(h)	 x = y  (x = y),
(i)	 y([y/x]  x)  zE(z) for y not free in .

Establishing these theorems is a straightforward exercise using the axiom-
atization.

10  One’s decision regarding which is the more appropriate logic will largely depend on 
the attitude one takes towards sentences of the form @  , all instances of which will 
be theorems of the “A2-logics” (though not of the logics having A1 as their actuality 
component). The motivation for including such formulas amongst our theorems “stems from 
the observation that the outright assertion of ‘Actually p’ (or ‘Now p’) is tantamount to the 
assertion of the simple ‘p’…”, [6, p. 14]. These different logics are accompanied by differing 
notions of validity, often called “general” and “real-world” (because our semantics will not 
include a designated actual world, we will instead refer to the second kind as “diagonal” 
validity). Intuitively, the difference revolves around whether one wishes to evaluate formulas 
at arbitrary worlds or at a specific, designated actual world: a formula is said to be generally 
valid when it is holds at every world in every model, whereas it is real-world valid when it 
holds at every specified actual world in every model. We will not discuss further the merits of 
either approach, but the interested reader ought to consult Crossley and Humberstone [6] for 
a more thorough discussion of these issues.
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5.  Semantics

Definition 5.1 (Varying Domain Relational Frame).  A varying domain 
relational frame is a tuple F = W, R, D,{w }w ∈ W   where W is a nonempty 
set of worlds, R  W  W is a binary accessibility relation, D ! ∅ is the 
domain of the frame, and, for each w    W, w  D.
Note that this definition differs slightly from Kripke’s [15] in that nothing 
prevents individuals from existing in the frame domain without existing in 
any world domain.11 The notion of a frame is extended to that of a model 
as usual.

Definition 5.2 (Varying Domain Relational Model).  A varying domain 
relational model is a tuple M = W, R, D,{w }w ∈ W   V   where V is a func-
tion assigning to each predicate an intension. That is, for each world w and 
n-ary predicate P, V(P, w)  Dn. We can allow Vw (P) as shorthand for 
V (P, w).

Definition 5.3 (Assignment).  An assignment is a function  : V  D.

Definition 5.4 (x-variant).  An assignment   is an x-variant of   when (y) = 
 (y) for all y  V \ {x}. This is denoted   x  .

Satisfaction with respect to a pair of worlds and an assignment function can 
now be defined:

M, w0, w  P  (x1, …, xn)	 iff	    (x1), …,  (xn)  V (P, w)
M, w0, w  x = y 	 iff	   (x) =   (y)
M, w0, w   	 iff	 M, w0, w   
M, w0, w    	 iff	 M, w0, w   and M, w0, w  
M, w0, w   	 iff	 for every w   W, if wRw  then M, w0, 
		  w   
M, w0, w  @ 	 iff	 M, w0, w0  
M, w0, w  x(x)	 iff	 for all   x   s.t.  (x)  w, M, w0,  
		  w  (x)

It is useful to note that the semantic clause for an existence predicate E   can 
be understood as follows:

11 T his choice is partly motivated by the desire to keep things as general as possible and 
avoid any unnecessary restrictions. In a similar manner, like Kripke [15], we will allow 
predication over non-existent individuals. This has the added benefit of simplifying certain 
formal aspects (for example, substitution). In addition, though it is not our concern here, 
both of these assumptions allow for a more straightforward translation into two-sorted first-
order logic [1].
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M, w0, w  E(x)	 iff	 there exists a y-variant   of   s.t.  (y)  w  
		  and M, w0, w  x = y

Given the semantic clause for equality, this can be simplified, and one can 
see that E(x) will hold at a pair w0, w just in case  (x)  w, as desired.

Definition 5.5 (General Validity).  A formula  is said to be generally valid 
in a model, denoted M  , if and only if M,w0, w  for all w0, w  W 
and all assignments  . A formula is said to be generally valid with respect to 
a frame, denoted F  , iff it is generally valid on every model based on F.

Definition 5.6 (Diagonal Validity12).  A formula  is said to be diagonally 
valid in a model, denoted M  D , if and only if M, w0, w   for all 
w  W and all assignments  . A formula is said to be diagonally valid with 
respect to a frame, denoted F  D , iff it is diagonally valid on every model 
based on F.

(These definitions give rise to corresponding notions of soundness and com-
pleteness.)

6.  Soundness for Quantified Actuality Logic

We move quite quickly through this section since, as usual, it is far less 
interesting than the completeness section to which we will devote much 
more time. However, we do require a few preliminary results.

Observation 6.1.  The principles of agreement and replacement hold in the 
varying domain semantics presented above.

The principle of replacement says that when  is any formula, M any 
model, and   any assignment, then if   is exactly like   except that  (x) = 
 (y), then M, w0, w   iff M, w0, w  [y/x].

The principle of agreement says that if two assignments   and   agree 
on all free variables in , then M, w0, w   iff M, w0, w  .

The soundness proofs are straightforward, and go through as usual with 
the help of the above observation. Some level of generality can be established 
immediately in the case of soundness by way of the following theorem, which 
is established following the usual methods (outlined, for example, in [14]).

Theorem 6.2.  Let S be a propositional modal logic. F = W, R validates 
every theorem of S iff every theorem of Q0 + S + A1 is generally valid on 

12  As discussed above, diagonal validity corresponds to what is often called real-world 
validity in the literature.
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W, R , D, {w }w ∈ W (for arbitrary D and w). With A2 , the same result 
holds, but for diagonal validity.

Corollary 6.3 (Soundness).  The following soundness results are then imme-
diate:

(a)	� Q0 + K + A1 is generally sound with respect to the varying domain seman-
tics outlined above.

(b)	 Q0 + S + A2 is diagonally sound with respect to the varying domain seman-
tics outlined above.

Obviously, however, due to theorem 6.2, we in fact have a more general 
soundness result.

Corollary 6.4.  If S is sound with respect to a certain class of frames, then 
Q0 + S + A1 will be sound with respect to that class as well.

7.  Completeness for Quantified Actuality Logic

The completeness proof for Q0 + K + A2 (and the other systems) can be 
conducted using a standard canonical model construction. However, our 
desire to make the quantified portion of our logic totally free of existential 
presuppositions complicates this somewhat. Specifically, as one expects, 
we face the familiar problem of dealing with the quantifiers in our canon-
ical model in such a way that any formulas of the form x (or @x, 
in the next sections) found in a set of maximally consistent sentences must 
have witnesses within that same set in order for the truth lemma to go 
through. In a constant domain setting, one simply requires that for every 
universal formula there exists an appropriate witness y. That is, we ensure 
[y/x]  x is in every set of our construction for every formula . With 
varying domains, one can do something similar, however one has the 
added burden of ensuring that the y acting as a witness to the universal 
x exists at the world in question. For example, in their system, Hughes 
and Cresswell [14] require that every maximal consistent set in their 
canonical models contain the formulas E(y)  ([y/x]  x). Unfortu-
nately, an examination of their proofs will reveal that this property will not 
be sufficient for our needs, specifically because our worlds are permitted 
to be empty.

Thus, we have to search for new properties for  (and @) that permit 
the canonical construction. We abstain from a detailed discussion of various 
options and their eventual shortcomings (which, while technically interest-
ing and illuminating, takes us a bit too far afield at present), though a few 
remarks seem worth the detour.
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Traditionally, there have been two standard approaches to constructing 
canonical models with varying domains. One involves using a constant 
language while the other allows the language (in particular the variables) 
to vary from world to world in the canonical model.

Without the actuality operator, canonical constructions with varying lan-
guages can be easier, and more elegant, than with a constant language: we 
can do without the somewhat inelegant EBR rules. The only constraint 
needed to be placed upon the construction is that if wRv, then LQ(w)  
LQ(v). Intuitively, one allows the set of available variables to grow,  
denumerably, when we move from one world to an accessible world. This 
facilitates the proofs of important preliminary constructions used, ulti-
mately, to assemble the canonical model.

However, when we incorporate an @ operator, this approach is compli-
cated. We can understand the necessity operator as forcing our language to 
grow from world to accessible world in the course of our set construc-
tions. On the other hand, the actuality operator places a complementary 
constraint on the variable domains. Specifically, one way to think about 
how the canonical construction works is that one anchors the model 
around some world which acts as the actual world for the purpose of the 
truth lemma.13 In particular, we require, for every world in the model, if 
@ is in that world, then  is in the central, anchor, world. Thus, we can-
not simply add more variables whenever they are needed, for this would 
result in the situation in which we have, at a world in the model, formulas 
of the form @(x) where x is not in the language of the actual world in 
question.

Thus, whereas we can view  as placing an increasing restriction on the 
languages of worlds in the canonical model, we can, similarly, view the @ 
operator as placing a decreasing restriction on languages. Combined, it 
seems a constant language approach, its inelegance notwithstanding, is the 
more fruitful option. Thus, the focus ought to be on obtaining a new quan-
tifier property.

It turns out that this is feasible, though predictably inelegant, as we shall 
now see. Our basic property will take the following form: for every for-
mula , we will include in our maximal consistent sets the formula 
(E(y)   ([y/x]  x))  xE(x). As one can see, this formula explicitly 
considers the situation where the domain might be empty. Unfortunately, 
due to the presence of the EBR-type rules, as well as complications induced 
by the actuality operator, we have to require that our sets have several 

13  This is not the only way to proceed. One can also prove the truth lemma for specific 
pairs of worlds with the property that one of the pair serves as the actual world, though the 
same problem, with respect to allowing the language to vary, emerges with these approaches 
as well.
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varieties of this property. We make use of all the following properties in the 
course of our canonical construction.14

Definition 7.1 (E -property).  A set of wff Δ, in a language LQ, is said to 
have the E -property iff for every wff of LQ and variable x there is some 
variable y (in LQ) s.t. (E(y)  ([y/x]  x ))  xE(x)  Δ.

Definition 7.2 (@E -property).  A set of wff Δ, in a language LQ, is said 
to have the @E -property iff for every wff and variable x there is some 
variable y s.t. @((E(y)  ( [y/x]  x ))  xE(x))  Δ.

Definition 7.3 ( n-property).  A set of wff Δ, in a language LQ, is said to 
have the  n-property iff for every wff  1, …,  n (n  0), and , and every 
variable x not free in  1, …,  n, there is some variable y s.t. ( 1  …   
( n   (E(y)   [y/x]))…)   ( 1  …   ( n     x )…)  Δ.

Definition 7.4 (@n-property).  A set of wff Δ, in a language LQ, is said 
to have the @n-property iff for every wff  1, …,  n (n  0), and , 
and every variable x not free in  1, …,  n, there is some variable y s.t.  
@(( 1  …  ( n   (E(y)   [y/x]))…)   ( 1  …   ( n  
 x )…))  Δ.

One can show that these properties can all coexist together in a maximal 
consistent set (the proof is in the appendix).

Theorem 7.5.  If Δ is a consistent set of formulas in our modal language 
LQ, then there exists a consistent set Γ in the language LQ+ (where LQ+ is 
obtained by adding a countable number of new variables to LQ) with the 
@E-property, E-property, n-property, and @ n-property such that 
Δ  Γ.

It is also important to note that the above properties are preserved when 
moving from consistent sets to maximal consistent sets. That is, if Γ has the 
E -property, for example, and Γ is a maximal consistent superset of Γ, 
then Γ also has the E -property (such a Γ is also guaranteed to exist, as 
can be demonstrated by the usual methods.)

We also obtain a version of the usual theorem used to manage the modal 
operators. (If Γ is a set of formulas, ˉ(Γ) = { |    Γ}.)

Theorem 7.6.  Let Γ be a maximal consistent set of formulas in LQ+ pos-
sessing the n-property. Furthermore, let  be a formula of LQ+ such 

14 T he definitions are given here in terms of LQ. In subsequent sections, where we are 
working with languages also containing the actuality quantifiers, on should understand the 
definitions as being modified appropriately.
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that     /  Γ. Then there exists a consistent set of LQ+ formulas, Δ, with 
the E -property and the n-property such that ˉ(Γ)    {}    Δ.

However, once all of these set construction theorems have been estab-
lished, a familiar canonical model approach is readily forthcoming.

MCE Q0 + K + A1
 := {all maximal Q0 + K + A1-consistent sets of wff in 

LQ+ with the E -property and the  n-property} 
Given a maximal-consistent set w0, with the E -property and the 

 n-property and containing all instances of @   (we prove below 
that such a set exists), define the model M  =  W, R, D,{w }w ∈ W, V , for 
the language LQ with extension LQ+ as the tuple

M  Q
w0

0KA1
 = W Q

w0
0KA1

, R Q
w0

0KA1
, D Q

w0
0KA1

, Δ  Q
w0

0KA1
, V Q

w0
0KA1



where:

W Q
w0
0KA1

 = {w  MCE Q0 + K + A1
 | @ˉ(w)  w0}

R Q
w0

0KA1
 = {w1, w2  W Q

w0
0KA1

  W Q
w0
0KA1

 | ˉ(w1)  w2}
[x] := {y  V +| x = y  w0} 
D Q

w0
0KA1

 = {[x]| x  V +}
V Q

w0
0KA1

 {(P,w) = [x1], …, [xn] | P (x1, …, xn)  w}
Δ  Q

w0
0KA1

 = {w }w ∈ W 
Q

w0
0
KA1

 where, for each w,

           w = {[x]  D Q
w0

0KA1
 | E(x)  w}

Where @ˉ(w) = { | @  w}. Let the canonical assignment   be the func-
tion   (x) = [x].

Usually, when working with identity, one must consider a cohesive sub-
model of the canonical model in order to ensure that the model is normal 
with respect to identity. We can forgo this requirement, as the Actual Iden-
tity axiom does this work in the current construction.

Theorem 7.7.  Given M  Q
w0

0KA1
 and  as defined above, for any w  W Q

w0
0KA1

, 
and any formula :

	 M  Q
w0

0KA1
, w0, w   iff   w 

Proof.  We only present the inductive cases for the quantifier, and half of the 
modal case.

In the case of the quantifier, assume first that x  w. Let   x   be 
any x-variant s.t.  (x) = [y] for some y  V+ and [y]  w. Assuming, for 
the moment, that there is some such y, since [y]    w we have E(y)    w. 
This implies, from Free -Elimination, that [y/x]    w and so, by the 
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induction hypothesis, M  Q
w0

0KA1
, w0, w  [y/x]. This means M  Q

w0
0KA1

, w0, 
w  [y/x], from the principle of agreement. But, since   is any x-variant 
s.t.  (x)  w, we have that M  Q

w0
0KA1

 w0, w   x.
If there are no [y]  w, then M  Q

w0
0KA1

, w0, w  x holds true by vacuous 
satisfaction of the quantifier.

In the other direction, if x(x) g w, then, since w is maximal,  
x(x)  w, and so, since x(x)  xE(x) is a theorem, we have 
that xE(x)  w. Then, since w possesses the E -property, it must be 
that there is some variable y  V + s.t. E(y)  ([y/x]  x)  w, which means 
E(y)    w but [y/x] g w. Then, by the induction hypothesis, M  Q

w0
0KA1

,w0, 
w  [y/x]. Taking   x   s.t.  (x) =  (y)  w, M  Q

w0
0KA1

,w0, w   , 
by the principle of replacement. Therefore, since  (x) = [y]  w, we have, 
by the definition of the semantics, M  Q

w0
0KA1

,w0, w  x.
When  is of the form , the right to left direction is straightforward, 

and demonstrated as usual.
From left to right, we assume that  g w. From 7.6 we have the exis-

tence of a maximal consistent LQ+ set of wff w, with the E -property and 
the n-property, s.t. ˉ(w)  {}  w. Thus  g w, M  Q

w0
0KA1

,w0, w  
 (IH), and wRw (by construction). Thus M  Q

w0
0KA1

, w0, w  . As usual, 
since we are using a restricted set of worlds in our model, we must 
ensure that this w actually exists in W. However, this demonstration pro- 
ceeds, unproblematically. If w were not in W, i.e. @ˉ(w)    w0, there 
would have to be some  s.t. @   w but  g w0. Then   w0 and 
@    w0 and @    w (it is easy to show that w and w0 will agree on 
@-formulas), from which it follows that @    w and so @  w, 
contradicting the consistency of w.

Finally, the case for @ is easy.� 

Observation 7.8 (Gregory [10]).  If w is a maximal consistent set, so is 
@ˉ(w).

It is straightforward to adapt the proof given in [10] to the present 
setting.

Theorem 7.9.  Let  be an Q0 + K + A1-consistent formula. Then there is a 
model M, worlds w0 and w, and assignment , such that M,w0,w  .

Proof.  Since  is consistent, we have, from 7.5, that we can construct a 
maximal consistent set w, containing , s.t. w has the @E -property,  
E -property, n-property, and @n-property. Let w0 = @ˉ(w). Then 
w0 is also maximal consistent and possesses the E -property and the  
n-property. Thus we can construct the canonical model, as described 
above, centered around w0. Note that both w0 and w possess all the correct 
properties to be included in the model. So, from 7.7 we have that M, w0, 
w   iff     w. Therefore M,w0,w  .� 
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Corollary 7.10.  Q0 + K + A1 is generally complete.

Corollary 7.11.  Q0 + K + A2 is diagonally complete.

For soundness, we could easily generalize our result by using theorem 6.2. 
As is usual (see [14] for a detailed discussion of this), such generalization 
is not available to us for completeness, though a more relative version is. 
Specifically, from the completeness of a propositional modal logic S with 
respect to a certain class of frames, we do not immediately obtain complete-
ness for Q0 + S + A1 with respect to that same class. Rather, we get the more 
limited result that if the frame of our canonical model for Q0 + S + A1 is also 
an S-frame, then Q0 + S + A1 will be characterized be the class of S-frames 
and, more specifically, by any class of frames for S containing the canonical 
model of Q0 + S + A1.

While this is not as general as one might want, completeness results for 
quantified actuality logics based on many normal modal logics (e.g. T, S4, 
S5, etc.) are almost immediately attainable using this result.

8.  Syntax and Semantics for Actuality Quantifiers

We will now introduce actuality quantifiers to our language. The well-formed 
formulas of our language LQ@ are:

 ::= P (x1, …, xn) | x = y |  |    |  | @ | x | @x

We use @ as an abbreviation of @.
The new axiom system, Q0

@ + K + A1, is obtained by including the fol-
lowing new axioms and rule:

(Free @-Elimination)	 (@x  @E(y))  [y/x]
(@ Distribution 1)	 @x(  )  (@x  @x)
(@BF)	 @x  @x

(@BF@)	 @x@  @@x

and the following rule15:

(Free @-Introduction)

   (   @E(y))  [y/x] 
   @x

provided y does not occur free in  or @x.

15 N ote that we can do without analogues of the EBR-rules of the quantifier segment due 
to the validity of the @ versions of the Barcan Schemata.
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Observation 8.1.  The following are derivable in Q0
@ + K + A1:

(a)	 @x@E(x) (Universal @-Existence);
(b)	 @x(  )  (  @x) for x not free in  (@ Distribution 2);
(c)	 @x@E(x)  @x(x) (Empty @);
(d)	 @E(z)  @y  ([y/x]  @x) (for y not free in ) (Universal @- 

Witness);
(e)	 @y([y/x]  @x)  @z@E(z) for y not free in .

Semantically, we just have to add a clause for the actuality quantifier, which 
is:
M, w0, w:@x(x)  iff  for each  x  s.t. (x)  w0, M, w0, w: 
(x)

9.  Soundness and Completeness for Actuality Quantifiers

9.1.  Soundness

This is uncomplicated, and things work as usual.

Theorem 9.1.  Let S be a propositional modal logic.  F = W, R validates 
every theorem of S iff every theorem of Q0

@ + S + A1 is generally valid on 
W, R, D, {w}wW (for arbitrary D and w). For A2, the same result 
holds, just with diagonal validity.

Corollary 9.2 (Soundness).  The following soundness results are then imme-
diate:

(a)	 Q0
@ + K + A1 is generally sound with respect to the varying domain 

semantics outlined above.
(b)	� Q0

@ + K + A2 is diagonally sound with respect to the varying domain 
semantics outlined above.

As before, this can be generalized, and we obtain a soundness theorem for 
any Q0 + S + A1 where S is sound with respect to a particular class of frames.

9.2.  Completeness for Actuality Quantifiers

A benefit of the proof methods used in the previous sections, particularly 
the canonical model construction, is their flexibility. As such, extending 
our results to include actuality quantifiers turns out to be reasonably 
straightforward. However, we do require additional set-properties for the new 
quantifiers.
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Definition 9.3  (E @-property).  A set of wff Δ, in a language LQ+
@, is said 

to have the E @-property iff for every wff  of and variable x there is some 
variable y s.t. ((@E(y)    ( [y/x]  @x ))    @x@E(x))    Δ.

Definition 9.4  (@-property).  A set of wff Δ, in a language LQ+
@, is said 

to have the @-property iff for every wff  and variable x there is some 
variable y s.t. (@E(y)  [y/x])  @x  Δ.

Definition 9.5 (@@-property). A set of wff Δ, in a language LQ+
@, is 

said to have the @@-property iff for every wff  and variable x there is 
some variable y s.t. @((@E(y)   [y/x])  @x )  Δ.

There are a few small positive aspects to note here. First, because of the 
presence of Barcan-like schemas in the case of the actuality quantifiers,  
the @ property is simpler, and more intuitive, than its n counterpart. 
In addition, because of @BF@, we needn’t include an @-version of the 
E @-property.16

We now need an updated version of theorem 7.5.

Theorem 9.6.  If Δ is a consistent set of formulas in our modal language 
LQ@, then there exists a consistent set Γ in the language LQ+

@ (where 
LQ+

@ is obtained by adding a countable number of new variables to LQ@) 
with the @E -property, E -property, n-property, @n-property, E @- 
property, @-property and @@-property such that Δ  Γ.

We also need a new version theorem 7.6.

Theorem 9.7.  Let Γ be a maximal consistent set of formulas in LQ+
@  pos-

sessing the n-property and the @-property. Furthermore, let  be 
a formula of LQ+

@ such that  g  Γ. Then there exists a consistent set 
of LQ+

@ formulas, Δ, with the E -property, the n-property, the 
E @-property, and the @-property such that –(Γ)  {}  Δ.

The canonical model construction can now proceed as before.

MCE @
Q0

@ + K + A1
 := {all maximal Q0

@ + K + A1-consistent sets in LQ+
@ of 

wff with the E -property, the n-property, the E @-property, and the 
@-property}

Given a maximal-consistent set w0, with the E -property, the n-property, 
the E @-property, and the @-property (we prove below such a set 
exists), containing all instances of @  , define the model M = W, R, 
D, {w} wW, V , for the language LQ@ with extension LQ+

@  as the tuple

MQ
w0 

0

@ KA1
 = WQ

w0 
0

@ KA1
, RQ

w0 
0

@ KA1
, DQ

w0 
0

@ KA1
, ΔQ

w0 
0

@ KA1
, V Q

w0 
0

@ KA1


16 T he required proof of that fact that if w has the E @-property then so will @–(w) can 
be completed with just @BF@.
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where:

WQ
w0 

0

@ KA1
 = {w  MCE @

Q0

@ + K + A1
 | @–(w)  w0}

RQ
w0 

0

@ KA1
 = {w1, w2  WQ

w0 
0

@ KA1
  WQ

w0 
0

@ KA1
 | –(w1)  w2}

[x] := {y  V + | x = y  w0}

DQ
w0 

0

@ KA1
 = {[x] | x     V +}

V Q
w0 

0

@ KA1
 (P, w) = {[x1], …, [xn] | P  (x1, …, xn)  w}

ΔQ
w0 

0

@ KA1
 = {w }w ∈ W 

Q

w0
0
KA1

 where, for each w,

    w = {[x]  DQ
w0 

0

@ KA1
 | E (x)  w}

Let the canonical assignment  be the function  (x) = [x].
Now the standard truth lemma follows nicely.

Theorem 9.8.  Given MQ
w0 

0

@ KA1
 and  as defined, for any w  WQ

w0 
0

@ KA1
, and 

any formula :

MQ
w0 

0

@ KA1
, w0, w   iff   w

Proof.  We only present the inductive cases for the actuality quantifiers. The 
rest of the proof is as before.

Assume that @x  w. If there is no y    V  + s.t. [y]    w0, MQ
w0 

0

@ KA1
, 

w0, w  @x. So, assuming there is some appropriate y, take  x  s.t. 
 (x) = [y] for [y]  w0. Therefore E(y)    w0, and so @E(y)    w0 and 
@E(y)    w. Therefore, from Free @-elimination, we have [y/x]  w. 
By the induction hypothesis this implies MQ

w0 
0

@ KA1
, w0, w  [y/x]. From 

the principle of agreement, MQ
w0 

0

@ KA1
, w0, w  [y/x]. Therefore, since 

 is an arbitrary x-variant of  with (x)    w0, we have MQ
w0 

0

@ KA1
, w0, 

w  @x.
In the other direction, take @x g w. Thus, from the Empty @ axiom, 

we have @x@Ex  w, and so, from the E @-property, (@Ey   
([y/x]  @x))    w. From @Ey    w we know that Ey    w0, and so 
[y]    w0. From the conditional half of the conjunction, we can conclude 
that [y/x]    w. From the induction hypothesis, MQ

w0 
0

@ KA1
, w0, w  

[y/x]. Taking  x  with (x) = (y) = [y], the principle of replacement 
gives us MQ

w0 
0

@ KA1
, w0, w  . But, since (x)  w0, MQ

w0 
0

@ KA1
, w0, 

w  @x, as desired.
� 

Observation 9.9.  If a maximal consistent set, w, has the E @-property, then 
so does @–(w).

(The proof is in the appendix.)
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Theorem 9.10.  Let  be a Q0
@ + K + A1-consistent formula. Then there is 

a model M, worlds w0 and w, and an assignment  s.t. M, w0, w  .

Proof. S ince  is consistent, we have, from 9.6, that we can construct a 
maximal consistent set w, containing , s.t. w has the @E -property, 
E -property, n-property, @n-property, E @-property, @-property, 
and @@-property. Let w0 = @–(w). Then w0 is also maximal consistent 
and possesses the E -property, the n-property, the E @-property (from 
observation 9.9), and the @-property. We can construct the canonical 
model, as described above, centered around w0. Note that both w0 and w 
possess all the correct properties to be included in the model. Thus, from 9.8 
we have that M, w0, w   iff     w. Therefore M, w0, w  .� 

Corollary 9.11.  Q0
@  + K + A1 is generally complete.

Corollary 9.12.  Q0
@  + K + A2 is diagonally complete.

Once again, these results are not generalizable to the same extent as our 
soundness results, and for the same reasons. However, the same limited 
form of generalization still applies by virtue of theorem 9.1.

10.  Conclusion

Lastly, let us return to the motivating examples of the first section. Recall 
our sentence

(A)  It might have been that everyone who is in fact rich was poor.

Now, with the actuality operators, we can formalize this as

(E)  @x(@Rx  (Ex  Px)).

(E) avoids our previous problems. First, it isn’t satisfied at a world where 
the domain excludes all actual individuals. Also, (E) will be false at a world 
at which some of the actually rich people don’t exist (due to the consequent 
of the conditional failing to hold true). In addition, we can now articulate 
other sentences that were previously unavailable to us.

Theorem 10.1 (Hodes [12]).  There is no wff  in the language of quantified 
modal logic with an actuality operator (LQ) such that:

  (i)	 for all models, and all worlds w0, w1, M, w0, w1   iff (w0)  (w1);
(ii)	 for all models, and every world w0, M, w0, w0   iff  w  W s.t. 

(w0)  (w).
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With the inclusion of @, this is easily overcome. Consider the following 
formulas:

 (I)  @xEx  y@Ey;
(II)    (@xEx  y@Ey).

If we just assume K then these will not suffice. However, if we upgrade our 
modal logic to S5, and take  to range over all worlds in the frame (as Hodes 
does), then these formulas express precisely the properties we were for-
merly unable to articulate.

It must also be pointed out that actuality quantiers are not the only formal 
mechanism that can be introduced to deal with the kind of expressivity issues 
with which we have been concerned. Consider the formula @x(@Rx  
Px). Using the Vlach-operators  and , this can be rendered as   
@x(Rx  P  x) (see [8], for example, for more on these operators). 
Alternatively, one could also adopt indexed actuality operators (introduced 
by Peacocke [16], and given a detailed study by Stephanou in [17]). In this 
case, the same sentence could be expressed by 1 @x(Rx  @1P x).

However, as has been noted by several authors (including, for example, 
Bricker [2], Cresswell [5], and Williamson [18]), while the actuality quantifi-
ers do increase the expressivity of quantified modal logic, they by no means 
solve all the problems. Specifically, when dealing with natural language 
sentences involving iterated modality, actuality quantifiers are no longer suf-
ficient to provide a formal translation.17 To use an example from [2]:

(F) I t might have been the case that some person in the room had to win

involves just this kind of iterated modality that outruns the capabilities of 
the actuality quantifiers. The problem is that evaluating these types of sen-
tences involves making comparisons across multiple worlds, specifically, more 
than two. While the actuality quantifiers, in conjunction with the actuality 
operator, allow one to make more precise comparisons between two worlds 
(the actual and some other), they do not help when more involved bookkeep-
ing is called for. (It should also be noted that a similar malady faces  and .)

There are solutions to this. One is to adopt many Vlach-operators:  
1, 2, 3, …, 1, 2, 3, … (see Correia [3]). Another calls for the indexed 
operators studied by Stephanou [17]. Both techniques allow us to overcome 
the problems presented by the aforementioned cases of iterated modality.18 

17  A more abstract, and formal, example illustrating a situation we are unable to articulate 
can be found in Hodes [12]:

For all w  W, there exists w  W s.t. (w)   (w).
18  However, there is also some reason to think that, when one moves beyond first-order 

quantification, these types of issues relating to the expressivity of our modal languages 
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And, indeed, in both settings the actuality quantifiers become a mere frag-
ment of the richer language.19

This leaves the actuality quantifiers as a stepping stone on a path of 
increasing expressivity: they add, in a reasonably intuitive way, to the  
expressive power of quantified modal logic while failing to remedy all the 
ailments. Our goal in this paper has been to demonstrate more thoroughly, 
and formally, how this intermediate step might work.

A.  Proofs

Theorems 7.5 and 9.6.  Consider first theorem 7.5. Assume an enumeration 
of wff of LQ+ that begin with a universal quantifier as well as an enumera
tion of all wff of the form (1  …  (n  x)…). In addition, 
assume a double enumeration (Z and U, say) of all variables in V  + \ V 
(which may be assumed to be countably infinite) such that both Z and U 
are disjoint and countably infinite. Let Γ0 = Δ. As usual, we construct Γ one 
formula at a time. Specifically, for Γn, we let Γn+1 = Γn  {[(E(y)  ([y/x] 
 x))  xE(x)], @[(E(z)  ([z/x]  x))  xE(x)],  (1 
 …  (h    (E(u)  [u/x]))…)  (1  …  (h  x 
)…), @[(1  … (h  (E(t)  [t/x]))…)  (1  …  
(h  x )…)]}, for x  the n+1th member of the universal enumer-
ation and (1  …  (h  x )…) the n+1th of its enumeration. 
Finally, y and z are the first variables in Z, and u and t the first in U not 
occurring in Γn or x, or x, or 1, …, h. We show that Γn+1 is con-
sistent when Γn is. Finally, we let Γ = 


 Γn.

	 n
So, assuming Γn is consistent, we will demonstrate Γn+1 is as well.

We make use of the fact that, for a formula  and a set of formulas ,  
  {} is consistent iff it is not the case that   .

So assume Γn  [(E(y)  ([y/x]  x))  xE(x)].

( Γn  (E(y)  ([y/x]  x))
( Γn  xE(x)
( Γn  xE(x)
( Γn  E(y)  ([y/x]  x)
( Γn  y([y/x]  x) (Free -intro, y not in Γn)
( Γn  y([y/x]  x)
( Γn  E(y) (Universal Witness Axiom)
( Γn  xE(x) (Free -intro, y not in Γn)

cannot adequately be overcome without reverting to the use of constant domains and outer 
quantifiers (see Williamson [19] and Fritz [9]).

19  See Hazen [11] for more discussion on this.
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Contradicting Γn’s consistency. So then Γn    {[(E(y)    ([y/x]   
x))    xE(x)]} must be consistent.

We must now show that we can consistently add @[(E(z)  ([z/x]  
x))  xE(x)] to this. (For simplicity, let  be a meta-variable standing 
for the formula [(E(y)  ([y/x]  x))  xE(x)].) Assume not. This 
would mean that

( Γn  { }  @[(E(z)  ([z/x]  x))  xE(x)]
( Γn  { }  @[ (E(z)  ([z/x]  x))  xE(x)]
( Γn  { }  @(E(z)  ([z/x]  x))
( Γn  { }  @x E(x)
( Γn  { }  @(E(z)  ([z/x]  x))
( Γn  { }  @E(z)  @([z/x]  x)
( Γn  { }  @z([z/x]  x) (free @-intro, z not in Γn  { })
( Γn  { }  @z([z/x]  x)
( Γn  { }  @E(z) (Universal witness, @R1, @3)
( Γn  { }  @xE(x) (free @-intro, z not in Γn  { })
( Γn  { }  @x E(x)
( Γn  { }  @x E(x)

A contradiction.
As before, for simplicity, let  be a meta-variable for @[(E(z)  ([z/x] 

 x))  xE(x)], we show that we can consistently add (1  … 
 (h  (E(u)  [u/x]))…  )  (1  …  (h   x )…).

Assuming not, we have 

Γn  {,   }  (1  …  (h   x )…) 

and 

Γn  {,   }  (1  …  (h   (E(u)  [u/x]))…)

Then, since u is not free in Γn, ,  , or i, we obtain from the Extended 
Barcan Rule that

Γn  {,   }  (1  …  (h    u (E(u)  [u/x]))…).

Using propositional logic and instances of x(  )  (x  x), 
we may conclude that

Γn  {,   }   h u E(u)  (1  …  (h    u [u/x])…)
Γn  {,   }  (1  …  (h   x )…)

(The last step follows from the Universal Existence theorem and Necessi-
tation.) This, however, is a contradiction.
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Finally, let  be a meta-variable for (1  …   (h  (E(u)  
[u/x]))…)  (1  …  (h   x )…). We show that we can  
consistently add @((1  …  (h  (E(t)  [t/x]))…)  
(1  …  (h   x )…))

So, assuming not:

Γn  {,   ,   }  @(1  …  (h   (E(t)  [t/x]))…)

and
Γn  {,   ,   }  @(1  …  (h   x )…)

From @EBR we have

Γn  {,   ,   }  @(1  …  (h    t   (E(t)  [t/x]))…)

Using the result from propositional modal logic, as we did before, that (1 
 …   (h   t(E(t)  [t/x]))…)  h t Et  (1  …  
(h    t   [t/x])…), we obtain the result that @ [(1  …   (h 
  t(E(t)  [t/x]))…)]  @[h t Et  (1  …  (h    
t   [t/x])…)]. Thus

Γn  {,   ,   }  @h t Et  @ (1  …  (h   t  [t/x])…)

From which, using Universal Existence, Necessitation, and @R1, we may 
conclude:

Γn  {,   ,   }  @(1  …  (h   t [t/x])…)

Contradicting the consistency of Γn  {,   ,   }.
Turning our attention to theorem 9.6, we simply supplement this con-

struction to account for the other formulas. First off, we need to assume yet 
another enumeration of formulas in LQ+

@, this time all those beginning 
with @. Also, we can assume, for ease, yet another countable set of vari-
ables X  V  +  \ V which are not in our other variable enumerations.

As usual, we take Δ = Γ0, and build upwards, adding, at each stage, an 
instance of each desired property. Since we have already shown that at each 
step of the construction of Γ we can add the relevant instances of the 
@E -property, E -property, n -property, and the @n -property, we 
just have to show that we can also add the properties relevant for @. So, 
letting ,   ,   , and  denote the formulas already added at the (n + 1)th step, 
we will show we can also add [(@E(r)  ([r/x]  @x))  @x@E(x)] 
and (@E(s)  [s/x])   @x and @((@E(t)  [t/x])   @ 

x), where r, s, and t are new variables from X, currently unused.
So assume that Γn  {,   ,   ,     }  [(@Er  ([r/x]  @x))  @

x@Ex].
( Γn  {,   ,   ,    }  (@Er  ([r/x]  @x))
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( Γn  {,   ,   ,     }  @x@Ex

( Γn  {,   ,   ,    }  @Er  ([r/x]  @x)
( Γn  {,   ,   ,     }  @r([r/x]  @x) (Free @ Intro)
( Γn  {,   ,   ,    }  @Er (Universal @ Witness)
( Γn  {,   ,   ,     }  @x@Ex (Free @ Intro)

A contradiction. Note that the instances of Free @ Introduction may be 
invoked as r is new.

Let    denote (@Er  ([r/x]  @x))  @x@Ex. We must now 
show that we can consistently add (@E(s)  [s/x])  @x. 
Assuming not, we would have that Γn  {,   ,   ,     ,   }  (@E(s)  
[s/x])   @x ). 

( Γn  {,   ,   ,    ,  }  ((@E(s)  [s/x])  @x))
( Γn  {,   ,   ,     ,  }    @x

( Γn  {,   ,   ,    ,  }  (@E(s)  [s/x])
( Γn  {,   ,   ,    ,  }  @s  (@E(s)  [s/x]) (since s is new)
( Γn  {,   ,   ,    ,  }   @s(@E(s)  [s/x]) (@BF))
( Γn  {,   ,   ,    ,  }  (@s @E(s)  @s [s/x]) (@ Dist. 1)
( Γn  {,   ,   ,    ,  }   @s @E(s)   @s [s/x])
( Γn  {,   ,   ,    ,  }   @s  [s/x] (Universal @-Exist.)

Contradicting the consistency of Γn  {,   ,   ,    ,  }.
Finally, letting  represent (@E(s)  [s/x])   @x, we show that 

we can consistently add @((@E(t)  [t/x])  @x)). Assuming not:

Γn  {,   ,   ,    ,  ,  }  @((@ E(t)  [t/x])  @x)
( Γn  {,   ,   ,    ,  ,  }  (@(@E(t)  [t/x])  @@x))
( Γn  {,   ,   ,     ,  ,  }  @(@ E(t)  [t/x])
( Γn  {,   ,   ,     ,  ,  }  @@x

( Γn  {,   ,   ,     ,  ,  }  @t@�(@E(t)  [t/x]) (since t is new)
( Γn   {,  ,   ,     ,  ,  }  @@t(@E(t)  [t/x]) (@BF and @BF@)
( Γn  {,   ,   ,     ,  ,  }  @(@t@E(t)  @t[t/x])
( Γn  {,   ,   ,     ,  ,  }  @@t@E(t)  @@t[t/x])

Thus, since  @@t@E(t), we have Γn  {,  ,   ,     ,  ,  }  @@t[t/x], 
a contradiction.



Theorems 7.6 and 9.7.  Again, we consider the segment of the language 
without actuality quantifiers first. Enumerate all formulas of the form x 
and then all formulas of the form (1  …   (n  x)…). In 
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addition, assume an enumeration of all variables. Let  0 = . Given  n, 
define  n+1 as follows. Letting x be the n + 1th wff of the enumeration 
of such wff, and y the first variable such that

 –(Γ)  {n  [(E(y)  ([y/x]  x))  x  E(x)]} is consistent.

Let n+ = n  [(E(y)  ([y/x]  x))  x  E(x)]. 
We must demonstrate that such a y always exists. By a standard result in 

modal logic, we know that  –(Γ)  { 0} is consistent. We will demonstrate 
that if  –(Γ) ) {n} is consistent, there will exist the appropriate y.

Suppose not. That is,  –(Γ) ) {n} is consistent, but there does not 
exist a y such that  –(Γ)  {n  [(E(y)  ([y/x]  x))  x  E(x)]} 
is consistent. Then, for all y, there must be a finite Λ   –(Γ) s.t.:

Λ    (n  [(E(y)  ([y/x]  x))  x  E(x)]
Λ   n   [(E(y)  ([y/x]  x))  x  E(x)]
Λ   n   x  E(x)] 
Λ   n   [(E(y)  ([y/x]  x))
Λ   E(y)  (n  [(E(y)   ([y/x]  x)) ])

Therefore, since Λ   –(Γ), we will have, for each y,

 (E(y)  (n  [(E(y)   ([y/x]  x))]))  Γ

Thus, since Γ has the  n-property we have, letting z be s.t. it doesn’t occur 
in  or n,

  z  (n  [(E(z)   ([z/x]  x))])  Γ
  z  (E(z)  [(n    ([z/x]  x))])  Γ
 z E(z)    z((n    ([z/x]  x)))  Γ
  z  ((n    ([z/x]  x)))  Γ (from Universal Existence)

Then, from the axiom x(  )  (  x) where x is not free in ,

 ((n    z  ([z/x]  x))  Γ
 ((n     z   ([z/x]  x))  Γ

From which, using propositional modal logic and the fact that    y ([y/x] 
 x  z  E(z) for y not free in  (from observation 4.2), we may con-
clude that:

 (n  xE(x))  Γ

Since if  B  C then  (A  B)  (A  C), and so, using necessitation 
and distribution,   (A  B)   (A  C).

Thus, we have the following two facts:
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 –(Γ)  n  xE(x) (from above), and
 –(Γ)  n  xE(x).

Together, these mean that  –(Γ)  n   n, and so  –(Γ)  n,  
contradicting the consistency of  –(Γ)  {n}. Thus, if  –(Γ)  {n} is 
consistent, so is  –(Γ)  {n+}.

We can now extend n+ to n+1 as follows. Let (1  …  (h   
 x)…) be the n + 1th such formula and z the first variable such that 
 –(Γ)  {n+   (1  …  (h  E(z)   [z/x]))…)  (1  … 
 (h   x )…)} is consistent. Then we let n+1 = n+  ((1  … 
 E(z)   [z/x] ) )…)   (1  …   (h   x )…)).

Without loss of generality, we may assume x is not free in any  . So, 
suppose there is no such z. In that case, we would have that for some finite 
Λ   –(Γ): 

Λ   n+  ((1  …  (h  (E(z)   [z/x]))…))
Λ   n+    (1  …  (h  x)…)

Then, from the first line, we have that, for every z,

(n+ (1  …  (h  (E(z)   [z/x]))…)))  Γ

Which gives us

(n+ (1  …  (h   x )…))  Γ(n-property)

And so

n
+  (1  …  (h   x )…)   –(Γ)

This, however, implies that  –(Γ)  {n+} is inconsistent. Thus  –(Γ)  {n+1} 
is consistent if  –(Γ)  {n+} is.

Thus, we have that if  –(Γ)  {n} is consistent, so is  –(Γ)  {n+1}.

Finally, let Δ =  –(Γ)   


 Γn. Since  –(Γ)  {n} is consistent for each
	 n
n, and n  m for m  n, so is the union. Finally, by construction, any
maximal consistent extension of Δ has the E -property and the n-
property.

For theorem 9.7 we again just supplement the proof of 7.6. Specifically, 
starting where we just left of, we can begin again by letting   n = n  
[(E(y)  ([y/x]  x))  xE(x)]  ((1  …  (h  (E(z) 
 [z/x]))…)  (1  …  (h  x )…)), and then show, in 
exactly the same manner, that we can extend   n to n+1.

Assuming an enumeration of @ formulas, where @x is the n + 1th such 
formula, consider (@Es   ([s/x]  @x))  @x@Ex where s is the 
first variable s.t.  –(Γ)  {  n  [(@Es    ([s/x]  @x)]  @x@Ex]}  
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is consistent. We show that there must be such an s. For, if not, we would 
have for every s, some nite Λ   –(Γ):

( Λ  (  n  [(@Es  ([s/x]  @x))  @x@Ex])  
( Λ    n   [(@Es  ([s/x]  @x))  @x@Ex]
( Λ    n   @x@Ex

( Λ    n   (@Es  ([s/x]  @x))
( Λ    n  (@Es   ([s/x]  @x))
( Λ  @Es  (  n   ([s/x]  @x))

Where the last stop follows from the propositional equivalence of A  (B 
 C) and B  (A  C).

Continuing, then,

(  (@Es  (  n   ([s/x]  @x)))  Γ

But, since this is for all variables s, and Γ is assumed to have the @-
property, we can take z to be a variable not appearing in  or   n:

( @z (  n   ([z/x]  @x))  Γ
( (  n  @z  ([z/x]  @x))  Γ (@-Distribution 2)

Then, since   @z ([z/x]  @x)  @x@Ex is a theorem, for z 
not free in  (observation 8.1),

( (  n  @x @Ex)  Γ
(  –(Γ)    n  @x @Ex

But, from above, we also have that Λ    n  @x @Ex. Thus,  –(Γ)  
  n, a contradiction. Thus, take † 

n =   n  [(@Es  ([s/x]  @x))  
@x@Ex]. 

We now wish to add the appropriate (@Er    [r/x])  @x 
formula. Assuming there is no variable r for which this can be added con-
sistently, we would have, for all r, a finite Λ   –(Γ) s.t.

          Λ  † 
n   (@Er  [r/x])   @x

( Λ  † 
n  (@Er  [r/x])

( Λ  † 
n    @x

( Λ  @Er  († 
n   (@Er  [r/x]))

Since Γ is assumed to have the  @-property, we have, for a z not existing 
in † 

n or :

( @z († 
n  (@Ez  [z/x]))  Γ

( († 
n  @z (@Ez  [z/x]))  Γ	 (@-Distribution 2)
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( († 
n   @z  (@Ez  [z/x]))  Γ	 (BF@)

( († 
n   (@z  (@Ez  @z[z/x]))  Γ	 (@-Distribution 1)

( († 
n  ( @z @Ez   @z[z/x]))  Γ	

( († 
n   @z  [z/x])  Γ	 ( @ z@Ez)

(  –(Γ)  † 
n   @z  [z/x]

But this implies the inconsistency of † 
n with  –(Γ) since we have from above 

that Λ   † 
n   @ x, a contradiction.

Thus, let  n+1 = † 
n  (@Ez  [r/x])   @x. The rest of the 

proof proceeds as before.� 

Observation 9.9.  We use @BF @ and @CBF@. Assume @–(w) does not 
have the E @-property. This would mean that for some formula @x, and 
every variable y, (@E(y)  ([y/x]  @x))  @x@E(x) / @–(w).

( �((@E(y)  ([y/x]  @x))  @x@E(x))  @–(w) 
	 (max. of @–(w))

( �@((@E(y)  ([y/x]  @x))  @x@E(x))  w 
	 (Defn of @–(w))

( (@(@E(y)  ([y/x]  @x))  @@x@E(x))  w 
	 (@ distribution)
( ((@E(y)  (@[y/x]  @@x))  @@x@E(x))  w 

	 (@ axioms)
( ((@E(y)  (@[y/x]  @x@))  @x@E(x))  w

Where the last step follows via the @ axioms along with @BF@ and 
@CBF@. This is contradictory to w having the E @-property.

David R. Gilbert
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