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Abstract

The standard format for adaptive logics offers a generic and unifying formal 
framework for defeasible reasoning forms. One of its main distinguishing fea-
tures is a dynamic proof theory by means of which it is able to explicate actual 
reasoning.

In many applications it has proven very useful to superpose sequences of 
adaptive logics, such that each logic treats the consequence set of its predeces-
sor as premise set. Although attempts have been made to define dynamic proof 
theories for some of the resulting logics, no generic proof theory is available 
yet. Moreover, the existing proof theories for concrete superpositions are sub-
optimal in various respects: the derivability relations characterized by these 
proposals are often not adequate with respect to the consequence relation of 
the superposed adaptive logics and in some cases they even trivialize premise 
sets. An adequate and generic proof theory is needed in order to meet the 
requirement of explicating defeasible reasoning in terms of superpositions of 
adaptive logics.

This paper presents two equivalent generic proof theories for superpositions 
of adaptive logics in standard format. By means of simple examples, the basic 
ideas behind these proof theories are illustrated and it is shown how the older 
proposals are inadequate.

1.  Introduction

Adaptive Logics (henceforth, ALs) have been suggested as a generic and 
unifying framework to formally explicate defeasible reasoning. For this 
purpose a standard format for ALs has been developed by Diderik Batens 
(see [5]) which comes with a rich meta-theory. We only give an informal 
account of ALs in this introduction, whereas a formal definition is provided 
in Section 2.

One of the most distinguishing features of ALs, compared to other 
formal frameworks for defeasible reasoning, is their proof theory. As 
argued e.g. in [31], such a proof theory is a useful tool in order to model 
the dynamics inherent to defeasible reasoning processes. Let us briefly 
try to explain why this is the case.
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In adaptive proofs some rules are applied in a defeasible way, i.e., they 
are applied conditionally. An inference is considered to be valid as long 
as there is no reason to suppose that its condition is not fulfilled. Hence, 
these proofs explicate the fact that, when reasoning defeasibly, we not 
only make certain inferences, but also retract certain previously drawn 
inferences.

Now, there are two types of dynamics that come with defeasible rea-
soning. First, there is the external dynamics ([3], also known under the 
name synchronic defeasibility [18, 19]). It occurs whenever new premises 
necessitate the retraction of previous inferences. At the meta-level, the 
external dynamics implies the nonmonotonicity of the consequence 
operation.

Another, more neglected form of dynamics is the internal dynamics 
([3], also known under the name diachronic defeasibility [18, 19]). It occurs 
when new insights gained by a logical analysis of the premises necessitate 
the retraction of certain inferences. Note that here no new premises enter 
the picture.

The distinctive feature of ALs is that by means of their dynamic 
proof theory they explicate the actual reasoning processes that give rise 
to the two types of dynamics. Due to the introduction of a new premise 
at a certain stage of an adaptive proof, some inferences on previous lines 
may be invalidated, others may be validated. Hence, adaptive proofs 
explicate the external dynamics of defeasible reasoning.1 Similarly, by 
analyzing premises in an adaptive proof we may derive formulas that 
cause that some previous conclusions are retracted, or others are added 
again. This way, adaptive proofs also explicate the internal dynamics of 
defeasible reasoning.

In order to model defeasible reasoning forms, their combinations and/
or defeasible reasoning with preferences and priorities, it is often very 
useful to combine adaptive logics. Examples of such combinations can 
be found in [8, 6, 4, 15, 30, 28, 32, 2, 25, 13, 20]. The increasing plural-
ity of these systems makes it very useful to have a unifying, generic 
meta-theoretic account of them. Hence, in various recent publications we 
offer results along these lines: in [24] we present a generalized canonical 
form for prioritized ALs, in [22] a new way of combining adaptive logics 
by means of merging their consequence sets is presented, in [26] we 
compare various ways of combining ALs with the prioritized format from 
[24].

In this paper we focus on the most frequent way ALs are combined, 
i.e. on superpositions of ALs. Given a premise set , an AL AL2 is 
superposed on another AL AL1 in case AL2 is applied to the consequence 

1  See also [31, Chapter 2.5] where this is elaborated further.
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set CnAL1
 () of AL1. Given a sequence of adaptive logics AL1, AL2, 

…, ALn, the consequence set of the associated superposition of ALs 
SAL is given by

CnSAL () = CnALn(CnALn−1 (… CnAL2 (CnAL1 ()) …))

In Section 3 we generalize this characterization to the infinite case.
There are numerous applications which require a superposition of ALs. 

Let us give one simple (informal) example, referring the reader to [9, 
Chapter 6, Section 2] for more elaborate ones. Consider an AL that models 
inductive generalization – see e.g. [8]. From a number of singular facts 
or data, this logic allows us to obtain generalizations which are mutually 
compatible with those data. Suppose now that we want to generalize data 
which we receive from various sources, such that possibly, our data may 
be conflicting. In that case, we may first apply a different AL which allows 
us to select the consistent part of our information, much as the systems 
put forward in [27]. The induction-AL is then applied to the consequence 
set obtained from the inconsistency-handling AL.

It should be noted that the consequence operation that results from a 
superposition of ALs in standard format is not in general reducible to 
that of a single AL in standard format.2 Also, although the standard for-
mat equips each ALi with a dynamic proof theory, we have no proof 
theory for SAL. Proof theories have been developed for concrete super-
positions of ALs. However, neither of the proposals is apt for the generic 
case where each ALi is any adaptive logic in standard format and where 
no restrictions on the premise sets are made. This is a severe shortcom-
ing, since the fact that ALs explicate actual reasoning by means of their 
dynamic proof theory is, after all, one of their most salient features.

This paper fills this gap by presenting two generic proof theories for 
superpositions of ALs. As we will demonstrate, these proof theories are 
very similar to the proof theory of ALs in standard format. This has the 
advantage that users familiar with ALs will easily adjust to the super-
posed case, and, more importantly, that all the attractive design features 
of usual adaptive proofs carry over to the new formats.

In Section 2 we will introduce the reader to the standard format of 
ALs and their dynamic proof format while in Section 3 we present super-
positions of ALs. These sections contain no new material, but are neces-
sary to set the stage for the original work that follows. In Sections 4 
and 5 we explicate our generic proof theories for superpositions of ALs. 
We discuss a simplification of both formats that is apt for a subclass of 

2  This follows immediately in view of the negative results concerning superpositions 
of ALs, as reported in [23, Chapter 3]. These show that such superpositions lack a num-
ber of metatheoretic properties which hold for all ALs in standard format.
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superpositions of ALs in Section 6. Finally, in Section 7 we conclude by 
suggesting related future research. In the appendix we present the meta-
theoretical proofs for the adequacy of our proof theories.

2.  Adaptive Logics and Their Standard Format

ALs in standard format are characterized by means of three elements. 
We first state them and then explicate them.

1. � A lower limit logic: a reflexive, transitive, and monotonic logic that 
has a characteristic semantics;3

2. � A set of abnormalities : a set of formulas that is characterized by 
a logical form F; or a union of such sets;

3. � An adaptive strategy: the Reliability or the Minimal Abnormality 
strategy.

The strategy is usually indicated by a superscript: we write ALr to indicate 
the Reliability strategy, and ALm to indicate the Minimal Abnormality 
strategy.

The main idea behind ALs is to strengthen their lower limit logic (most 
usually) in a non-monotonic way. This is done by assuming as many 
members of  to be false as possible, without ending up with a trivial 
consequence set. As we will see below, the two adaptive strategies spec-
ify this basic idea in different ways.

Before moving to the formal details, let us give an example to illustrate 
these three elements by means of a concrete example. Take as a lower 
limit logic the modal logic K.4 However, read ♦A as “A is plausible”. 
The aim of this logic is to model the defeasible inference from “A is plau-
sible” to “A is the case”. This can be achieved by means of taking 
♦A  ∧  ¬A as the logical form for our set of abnormalities. That is, when-
ever we have a premise ♦A, then the logic will allow us to infer that A 
is the case, on the condition that the abnormality ♦A  ∧  ¬ A is false. The 
strategy of the adaptive logic specifies when exactly this condition is to 
be considered as violated. In particular, the strategy will matter in cases 
where two or more formulas A1,  …,  An are all plausible, but cannot be 
true at the same time – this will become clear below.

3  A logic L is reflexive iff for all premise sets ,   ⊆  CnL(); L is transitive iff for 
all premise sets , whenever   ⊆  CnL() then CnL(

)  ⊆  CnL(); L is monotonic iff for 
all premise sets , CnL()  ⊆  CnL(  ∪  ).

4  Recall that K is axiomatized by all the axiom schemes of classical propositional 
logic, the axiom scheme (K),    (A ⊃ B) ⊃ (A ⊃ B), the rule (NEC), if  A then 
 A, and Modus Ponens.
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To obtain a formally precise definition of ALs, we first introduce some 
notation. Let L be the language of the lower limit logic and W the set 
of all well-formed formulas in L. In the remainder we use  as a meta-
variable for premise sets, and always presuppose that  ⊆ W. In ALs L 
is enhanced by “checked” classical connectives ¬̌, ∨̌, ∧̌, … and in case 
of predicate logic also ∃̌ and ∀̌. These additional connectives are used in 
order to express statements concerning normality and may hence also be 
part of the logical form F that characterizes the set of abnormalities . 
The set of well-formed formulas is obtained by closing W under the 
checked symbols. This is done in the usual way respecting the arity of 
the checked connectives: e.g. where A, B ∈ W, both A ∨̌ B and ¬̌A are 
in the obtained set of well-formed formulas. Note that checked connectives 
do not occur within the scope of non-checked connectives. In the remain-
der, let LLL be the lower limit logic enriched by the classical checked 
connectives.5 As we will explain below, (classical) disjunctions of abnor-
malities play a central role in ALs. Thus, it is useful to introduce a 
notational convention:

Definition 1.  Where  = {A1, …, An} ⊆ , let Dab() =df A1 ∨̌ … ∨̌ An. 
We call Dab() a Dab-formula.

Let us proceed with the adaptive proof theory.
The central idea behind AL proofs is to take all the inference rules of 

the lower limit logic for granted, but additionally to allow for defeasible 
applications of some rules. Defeasible inferences in adaptive proofs are 
conditional. Hence, the usual way lines in proofs are presented – by a 
line number, a formula, and a justification – is enriched by a fourth ele-
ment: a condition. A condition in turn is a finite set of abnormalities.

For instance, consider again the AL based on K which was introduced 
above. Suppose that ♦A has been derived at a line in a proof of this 
logic. Then, by the generic rule RC we may derive A on the condition 
{♦A  ∧  ¬A}. This corresponds to our inference from “A is plausible” to 
“A is the case” on the assumption that we don’t have the abnormal case 
in which A is plausible but doesn’t hold.  

In general, whenever some formula A is derived on the condition 
{B1,  …, Bn} ⊆ , this can be read as: A is derived under the assumption 
that all the abnormalities B1,  …,  Bn are false.

Such inferences have a defeasible nature since we may at a later stage 
of our proof find out that the assumption formally expressed by the 

5  In some papers this logic is denoted by LLL+, in others LLL ambiguously denotes 
both, the lower limit logic and the enriched lower limit logic. Since in this paper we will 
not make further references to the lower limit logic without the checked symbols, we drop 
the + from the notation.
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condition {B1, …, Bn } cannot be upheld. In this case the inference is 
retracted by means of a marking mechanism. Let us leave the informal 
discussion at this point and make the various discussed mechanisms for-
mally precise.

Adaptive proofs are characterized by three generic rules and marking 
conditions. Let us first discuss the generic rules. In what follows we skip 
the line numbers and justification of lines.

PREM If A ∈ :        

A  ∅

RU If A1, …, An LLL B:

A1  1

         
An  n

B     1 ∪ … ∪ n

RC If A1, …, An LLL B ∨̌ Dab():

A1  1

         
An  n

B     1 ∪ … ∪ n ∪ 

By means of PREM any premise may be introduced on the empty condition. 
Of course, we do not need any defeasible assumptions in order to state 
premises. The unconditional rule RU makes it possible to apply any infer-
ence rule of LLL in an adaptive proof. Note that these rules may also be 
applied to lines that were derived under defeasible assumptions, i.e. where 
i ≠ ∅. The idea is that all the defeasible conditions under which the 
Ai’s were derived carry forward to the line at which B is derived. By means 
of PREM and RU, ALs inherit all the derivative power of LLL: any LLL-
proof can be rephrased as an AL-proof just by adding the empty condition 
in the fourth column and by replacing the respective LLL-rule by RU.

What makes adaptive proofs distinctive is the third rule. It allows for 
defeasible inferences. Suppose we can derive B ∨̌ Dab() by means of 
LLL, i.e. that either B is the case or some of the abnormalities in . Then 
the conditional rule RC allows us to derive B under the assumption that 
none of the abnormalities in  is true. This is formally realized by stating 
 in the fourth column for conditions. Similarly as for RU, in case some 
of the lines that are used for the inference step are conditional inferences, 
we carry forward their conditions as well.

Obviously it is not enough to just be able to derive formulas condition-
ally. In order to model defeasible reasoning we need to formally explicate 
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the retraction of inferences as well. In adaptive proofs this is realized by 
means of markings. A line is marked in case the assumption under which 
it was derived is considered as “unsafe”. This idea is made precise by 
two marking definitions: one for the Reliability strategy and one for the 
Minimal Abnormality strategy.

The marking is determined by the Dab-formulas that have been derived 
at a given stage of the proof.

Definition 2.  A stage of a proof is a list of consecutive lines obtained 
by applications of the rules PREM, RU and RC to . A proof at stage s 
is extended to some stage s by inserting or appending lines, in such a 
way that for each line in the list, the lines called upon in its justification 
are above it in the list.6

Definition 3.  Dab() is a minimal Dab-formula at stage s of the proof 
in case (a) it is derived on the empty condition at stage s and (b) there 
is no   ⊂  ∆ such that Dab(∆) is derived on the empty condition at 
stage s. Where Dab(∆1), Dab(∆2), … are all the minimal Dab-formulas 
derived at stage s, s() =df {∆1, ∆2, …}.

Definition 4.  (Set of unreliable formulas at stage s). Us() =df 


s().

When Dab() is a minimal Dab-formula at stage s of the proof, we know 
according to the best insights available at stage s that some member of 
 has to be true. Since we don’t know which member, all the members 
of  are labeled unreliable. The marking according to the Reliability 
strategy makes sure that any line whose condition contains an unreliable 
member is marked:

Definition 5.  (Marking for Reliability).  A line l with condition  is 
marked at stage s, iff     Us()  ≠  ∅.
Example 1.  As before, we let K be the lower limit logic, and enrich K 
by the “checked” connectives as discussed above.7 We take as the set of 
abnormalities 1

K = {A    A  |  A is a literal}.8 Moreover, we enrich K 

6  In case a line is inserted the following lines have to be renumbered accordingly. 
The reason why we do not restrict the notion of extending proofs to the appending of 
lines is that in order to define the derivability relation of ALs we need to be able to talk 
about extensions of infinite proofs.

7  For the sake of simplicity we will denote this logic also by K.
8  A literal is a sentential letter or a negated sentential letter. The reader may wonder 

why we restrict the logical form that characterizes our abnormalities to literals. The reason 
is that otherwise we would obtain a so-called flip-flop AL. In flip-flop ALs any abnormal-
ity can be a disjunct of a minimal Dab-formula whenever some Dab-formula is derivable 
by means of the lower limit logic: a rather unwanted property in most applications. Take 
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by the “checked” connectives as discussed above.9 We call the resulting 
adaptive logic K1r.

Now, let us look at the following K1r-proof from the premises {p, q, 
r, p  o, q  o, p  q} where p, q, r and o are sentential letters.

 1 p PREM 
 2 q PREM 
 3 r PREM 
 4 p  o PREM 
 5 q  o PREM 
 6 r 3; RC {r  r}

  7 p 1; RC {p  p}
  8 q 2; RC {q  q}
  9 o 4,7; RU {p  p}
 10 o 5,8; RU {q  q}

11 p  q PREM 
12 (p  p) ∨̌ (q  q) 1,2,11; RU 

According to the Reliability strategy, line 6 is unmarked since the abnor-
mality in its condition is not part of any minimal Dab-formula and hence 
not unreliable: r r ∉ U12(). However, lines 7–10 are marked since 
each of these lines contains one of the two unreliable formulas, either 
p  p or q  q. After all, by means of line 12 we know that either 
p  p or q       q is the case. Interestingly, o is derived on both 
conditions (at lines 9 and 10).

The Minimal Abnormality strategy gives a more rigorous account of 
“interpreting the premises as normally as possible” than the Reliability 
strategy. As a consequence, the marking for Minimal Abnormality is 
less skeptical in nature. Let us demonstrate this by means of Example 1. 
Line 12 indeed indicates that one of the two abnormalities is the case 
and we don’t know which one. However, we may still defeasibly assume 
that one of the two abnormalities is false. This is in contrast to the Reliability 
strategy which treats both abnormalities as unreliable. As a consequence, 
if a formula is derivable on both conditions, then the inference is considered 
safe. Hence, according to the Minimal Abnormality strategy, lines 9 and 

for instance the premise set Γff = {p, q, p}. Obviously the abnormality p  p is 
K-derivable. Intuitively we would derive q on the condition {q  q} from q at some 
line l and expect this line not to get marked in any extension of the proof. However, we 
can also derive A = (q  q)  ∨    (( p  q)  (p  q)) from Γff by means of K. 
Hence, were we not to restrict the logical form of our abnormalities to literals, we would 
have to mark l as soon as we derived A and there would be no way to remove the marking 
in a further extension of the proof.

9  For the sake of simplicity we will denote this logic also by K.
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10 are not marked while lines 7 and 8 are marked. Take for instance p: 
it is only derivable on one of the two abnormalities, namely p  p. 
This abnormality may very well be the one which is true. Hence, line 7 is 
marked.

Let us spell out the idea behind the minimal abnormality strategy from 
a more general perspective. Suppose we have derived a number of Dab-
formulas on the empty condition at some stage s of a proof: Dab(∆1),  …, 
Dab(n). Since we want to interpret our premises as normal as possible, 
we are interested in the minimally abnormal interpretations of these 
formulas. Each available interpretation picks at least one member from 
each i. Hence, what we are interested in are minimal choice sets of 
{∆1,  …,   n}. For those unfamiliar with the terminology:

Definition 6.    is a choice set of {∆i   | i  I} iff for all i  
I,   i ≠ .    is a minimal choice set of {∆i   | i  I} iff 
it is a choice set of {∆i   | i  I} and there is no choice set  of 
{∆i   | i  I} such that   .

Now suppose we have derived A on a condition  at stage s on some 
line l. According to the minimal abnormality strategy this inference is 
considered safe and the line l is correspondingly unmarked if the follow-
ing two conditions are satisfied:

(1) � There should be at least some minimally abnormal interpretation I of 
our Dab-formulas such that none of the abnormalities in  holds in it. 
This means that there is at least one minimally abnormal interpretation 
in which the assumption (expressed by the condition ) of our argu-
ment for A holds. In other words, there should be a minimal choice 
set  of s() such that    = .10

(2) � Moreover, for each minimally abnormal interpretation I of our Dab-
formulas there should be a conditional inference for A on a condition 
 such that none of the abnormalities in  holds in I. This means 
that for each minimally abnormal interpretation I we want an argument 
for A on an assumption that holds in I. In other words, for each minimal 
choice set  of s() there should be a line l  with the formula A 
and a condition  such that    = .

Let us rephrase this in terms of a marking condition. First we define:

Definition 7.  s () is the set of minimal choice sets of s().

10  The attentive reader may have noticed that we do not consider all Dab-formulas 
that are derived on the empty condition when determining the minimal choice sets but 
restrict the focus to the minimal ones, i.e., to s(). It is a rather trivial set-theoretic fact 
that this restriction yields the same choice sets.
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In our example 12() = {{p    p)},   {(q    q)}}. The marking for 
Minimal Abnormality is defined as follows:

Definition 8.  (Marking for Minimal Abnormality). A line l with formula 
A and condition ∆ is marked at stage s iff 

  (i)  there is no   s() such that ∆   ≠ , or
(ii) � for a   s(): there is no line l  at stage s with formula A and 

condition  such that    = .

Note that our marking definition corresponds to our discussion above: (1) 
is violated in case of (i), while (2) is violated in case of (ii).

Marking is a dynamic enterprise. Suppose for instance that the premise 
set of Example 1 is enriched by q  q and that at line 13 of the proof 
above q  q is derived on the empty condition. In that case the Dab-
formula at line 12 would not be anymore minimal at that stage. Also, the 
only minimal choice set would be {q  q}. Hence, according to both 
the Reliability and the Minimal Abnormality strategy, line 7 would be 
unmarked, while line 8 remains marked.

Altogether, markings come and go: previously marked lines may be 
unmarked at a later stage and previously unmarked lines may be marked. 
In order to define the consequence set of ALs we hence need a more 
stable notion than derivability at a stage.

Definition 9. A is finally derived at a line l of a finite stage s in an 
AL-proof, iff (i) line l is unmarked at stage s, and (ii) every extension 
of the proof in which l is marked can be further extended in such a way 
that l is unmarked.

A is finally derivable from  in AL iff there is a proof from  in which 
A is finally derived.

We write  AL A in case A is finally derivable from  and define the 
consequence set of AL by: CnAL() = {A |  AL A}.

One way of looking at final derivability is by means of a two-person-
game (see [7]). The proponent conditionally derives A on a line l by 
means of a finite argument. Now the opponent has the opportunity to 
extend the proof of the proponent in such a way that line l is marked. 
If the proponent can extend the proof further in such a way that l is 
unmarked again, she wins. A is finally derived at l iff there is a winning 
strategy for the proponent, i.e., whatever the opponent replies, she always 
has a way of winning the game.11

11  One of the subtleties of the adaptive proof theory is that both extensions of the proof, 
the one of the opponent and the one of the proponent, may be infinite (see [5] for a more 
detailed discussion). For Reliability the definition can be restricted to finite extensions.
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Note also that ALs are equipped with a semantics that is based on the 
semantics of the lower limit logic. The idea for Minimal Abnormality is 
to select all so-called minimally abnormal models from the LLL-models 
of a premise set , i.e., models that validate a minimal set of abnormalities. 
For Reliability LLL-models are selected that verify only abnormalities 
that are also verified by some of the minimally abnormal models (see [5, 
29, 23]).

The standard format of ALs comes with a rich meta-theory. For a more 
detailed overview see e.g. [5]. Here we only list some important properties.

Theorem 1.   ⊆ CnLLL () ⊆ CnALr () ⊆ CnALm ().

Moreover, the consequence set of ALs in standard format is a fixed point 
(CnAL() = CnAL(CnAL())) and satisfies the cumulativity property intro-
duced in [14] (CnAL() = CnAL( ∪ ) for all  ⊆ CnAL()).

3.  Superpositions of Adaptive Logics

3.1.  The consequence relation characterized by SAL

In this section we characterize superpositions of ALs in a generic way. 
Let ALi

xiI be a sequence of adaptive logics ALi
xi = LLL, i, xi that 

all share the same lower limit logic LLL. The index set I is either a 
initial set of natural numbers {1, …,  n} or N. Each ALi

xi comes with a 
strategy, either Minimal Abnormality (xi = m) or Reliability (xi = r). For 
each i ∈ I we can define the consequence set that corresponds to the 
superposition of all logics up to ALi

xi:

CnSALi () =df CnALi
xi (…  (CnAL2

x2 (CnALi
xi ())))

In case I is finite we define CnSAL () =df CnSALn (), otherwise:

CnSAL () =df lim inf CnSALi () = lim sup CnSALi () = 
 

CnSALi ()
	

i→∞ 	 i→∞
	 i∈N

Note that the sequence CnSALi ()i∈N converges to its greatest lower bound 
resp. to its least upper bound which is exactly 

 
i∈N CnSALi (), due to the 

fact that the sequence is monotonic (see Theorem 1).

Example 2.  In what follows we generalize the idea presented in Example 1 
in such a way that we allow for different degrees of plausibility. We will 
use the resulting class of logics for demonstrative purposes in the remain-
der of the paper.

Recall that ♦A was read as “A is plausible”. The idea is now to indicate 
the degree of plausibility of a formula by means of sequences of ♦’s, i.e., 

98348_LogiqueAnalyse_230_07.indd   317 25/03/16   15:20



318	 christian straßer and frederik van de putte

the degree of plausibility of A is inversely proportional to the number of 
♦’s that proceed it. We write ♦k for a sequence of k ♦’s.

Each degree i of plausibility is associated with an AL Kix where x ∈ 
{r, m} that has K as its lower limit logic and  i

K = {♦iA ∧  ¬A | A is a 
literal} as its set of abnormalities. Given an index set I we can define 
logics by means of sequences Kixii∈I where xi  ∈ {r, m}.

Let us take a look at the simple example SK2r which is the super
position of K2r on K1r. Our premise set is s = {♦p, ♦2q, ♦2r, ¬p ∨ ¬q}. 
Note that although we can derive the disjunction of abnormalities (♦p ∧ 
¬p) ∨̌  (♦2q ∧ ¬q) in K, there are no Dab-formulas derivable with respect 
to K1r. Hence, since ♦p ∈ s, s K1r p. Hence also s K1r ¬q since 
we also have ¬p  ∨  ¬q  ∈ s. The only Dab-formula in CnK1r (s) with 
respect to K2r is ♦2q  ∧  ¬q. Hence, CnK1r (s) K2r r since ♦2r  ∈  s.

Most superpositions of ALs in the literature (see [15, 30, 28, 32, 2, 
13, 20]) are defined in such a way that the following holds:

(†)  for every i, j ∈ I such that i ≠ j, i ∩ j  = ∅.

If (†) holds, then we can slightly simplify the two proof theories that are 
presented below (see Section 6). However, for the sake of generality, we 
will not assume (†) to hold when defining our generic proof theories for 
superpositions of ALs.

There are also two more concrete motivations to include other kinds 
of superpositions. First of all, in some more recent papers [8, 6, 4], log-
ics are developed for which the following holds:

(‡)  Where i,  i + 1 ∈ I: i ⊆ i+1.

As shown in [26, 23], such logics have several interesting meta-theoretic 
properties. Given some additional restrictions, they are cautiously mono-
tonic and cumulatively transitive, just like ALs in standard format. This 
also means that they are a fixed point, and have the reciprocity property 
– see again [26, 23] for the details and related results. There it was also 
shown that these properties fail for SAL in the more general case.

Secondly, as shown in [26], logics in the format of lexicographic 
adaptive logics from [24] that have the Minimal Abnormality strategy are 
often equivalent to a specific class of superpositions for which (‡) holds. 
Hence, the proof theories for SAL presented in the current section can 
serve as proof theories for those lexicographic ALs as well.

Before we present a proof theory for SAL, we list some meta-theo-
retic properties which are proven in the appendix.

Theorem 2.  For all i, i  +  1 ∈ I, CnSALi () ⊆ CnSALi+1 () ⊆ CnSAL ().

Theorem 3.  (LLL-closure of SAL). CnSAL() = CnLLL (CnSAL()).
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Corollary 1.  If CnLLL () = CnLLL () then CnSAL () = CnSAL ().

Theorem 4.  If CnSAL () is trivial, then CnLLL () is trivial.

3.2.  Previous proposals for proof theories for SAL

In this section we briefly take a look at previous proposals for defining 
adequate proof theories for SAL. By “adequate” we mean the following 
property: A ∈ CnSAL () iff A is (finally) derivable in an SAL-proof.

In [1], Diderik Batens proposed an attractive proof theory for a specific 
class of superpositions of ALs ALi

xii∈I, i.e. superpositions where all 
ALi’s have the same adaptive strategy (i.e., either Reliability or Minimal 
Abnormality) and that satisfy (†). This proof theory is very similar to that 
of flat ALs: the same generic rules are used, with a conditional rule that 
allows one to “push” abnormalities to the condition; a marking definition 
determines which lines are in and which are out at a given stage s of the 
proof; the notions of derivability at a stage and final derivability are 
exactly the same as for flat ALs.

The proof theory from [1] has a certain intuitive appeal. Whether or 
not a line is marked is defined recursively. If the user of a logic wants 
to find out whether or not a line is marked at stage s, she can follow a 
sequential marking procedure. Roughly speaking, such a procedure goes as 
follows: at a stage s, mark lines according to a first marking criterion. This 
criterion solely depends on the lines that have been derived on the empty 
condition. Using the lines that remain unmarked after this first step, we 
obtain a new marking criterion, which then allows us to determine a third 
marking criterion, etc. Lines that remain unmarked at the end of the whole 
procedure are said to be unmarked at stage s.

For superpositions where all logics in the sequence have the Reliabil-
ity strategy and that obey restriction (†) this proof theory is adequate. 
However, in the case in which the logics have the Minimal Abnormality 
strategy adequacy with respect to the consequence relation fails and these 
proof theories even trivialize some (fairly simple) premise sets – we will 
return to this point in Section 4.4.

Christian Straßer made a different attempt to characterize some sequen-
tial superpositions by a dynamic proof theory in his [29]. On the one 
hand, Straßer broadens the scope to include superpositions of ALs with 
mixed strategies. On the other hand, Straßer restricts himself again to 
logics that obey (†), and only considers the case in which I = {1, …,    n}. 
Again, for all superpositions in which all logics have the Reliability strategy, 
this proof theory is adequate, whereas for the Minimal Abnormality-
variants and those with mixed strategies, Straßer’s proposal faces the same 
problem as Batens’ older proposal.
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In the following sections we will define a proof theory for SAL that 
is characterized in a very generic manner:

1.	 the index set I is an arbitrary (possibly infinite) set
2.	 we allow for mixed strategies such that some logics ALi

xi may be 
characterized by the Reliability strategy while other logics ALj

xj may 
be characterized by the Minimal Abnormality strategy

3.	 there is no restriction on the sequence of sets of abnormalities iI, 
i.e., some i and j may intersect, others may be distinct.

4.  A proof theory for superpositions of ALs

4.1.  The proof format

The proof format of sequential superpositions which we present here is 
nearly identical to the one of flat ALs. Again, a line is a quadruple con-
sisting of a line number, a formula, a justification and a condition. The 
only difference concerns the last element. A condition is not just a set 
of abnormalities, but instead a sequence of sets of abnormalities ii∈I 
where each i is a subset of i. In the following, we write  for ii∈I, 
∅ for the sequence ,   , … ,12 


   for 


i∈I  i and Dab () for 

Dab (


i∈I i) where   =  1, …, m,   , … in case I is infinite.

Suppose we have the following line in a proof:13

l   A              k1, …, kn;  R    1, 2,   ,  …

where 1 ≠ ∅ ≠ 2. Suppose moreover that line l is unmarked. The 
idea is that A is derived on the assumption that no abnormality in 1 ∪ 2 
is true. Hence, we make use of the defeasible reasoning forms represented 
by both AL1 and AL2. Moreover, in case A is finally derived at line l 
(see Definition 12 below), then A is a consequence of the superposition 
of AL2 on AL1, since no defeasible assumptions were made that corre-
spond to ALs higher in the sequence of SAL.

In order to realize this idea we will again make use of three generic 
rules and marking definitions.

Similar as in flat adaptive proofs we need to merge the conditions of 
two or more lines. In the flat case we could just take the union of the 
respective sets of abnormalities. This idea can easily be generalized to 
the sequential case in the following way:    =df i      ii∈I  . For 
instance,

{A, B}, {C} , ∅  ∅ , {D} , {E}  =  {A, B} , {C, D}  , {E}

12  The number of terms in  will of course depend on the cardinality of I.
13  We use R as a metavariable for a generic inference rule.

98348_LogiqueAnalyse_230_07.indd   320 25/03/16   15:20



	 proof theories for superpositions of adaptive logics� 321

As in the proof theory of flat ALs, we make use of three generic rules: 
a premise introduction rule PREM, an unconditional rule RU, and a con-
ditional rule RC. Let us start with the first two:

PREM If A ∈ :        
A  ∅

RU If A1, …, An LLL B:

A1  1

         
An  n

B     1  …  n

As in the flat case, by the rule PREM premises can be introduced on the 
empty condition (which is now a sequence of empty sets). Also, the uncon-
ditional rule RU is analogous to the flat case. In case B is derivable from 
A1, …,  An in the lower limit logic, we may derive B also in an adaptive 
proof from A1, …,  An whereby the conditions i on which the Ai’s were 
derived are carried forward and merged to 1    …    n.

The generic conditional rule for our proof theory also closely resem-
bles the conditional rule of Section 2:

RC If A1, …,  An LLL B ∨̌ Dab():

A1  1

         
An  n

B     1  …  n  

Suppose we are able to derive B ∨̌ Dab (1       …     n) in LLL from A1, 
…,  An, where each i     ⊂   i. In that case the proof theory allows us to 
defeasibly derive B from A1,   …,   An, namely on the assumption that none of 
the abnormalities in 1       …       n is true. This is realized by merging  = 
1,   …,   n,      ,   … with all the conditions on which the Ai’s were derived.

We close the discussion on the generic rules with two observations.  
In case some i’s are intersecting, sometimes B can be derived in various 
ways on the basis of the same abnormalities that are assumed to be false. 
Take for instance the case that C1  ∈  1  ∩  2 and that C2  ∈  2  \  1. 
Suppose furthermore that A1,  A2 LLL B ∨̌  (C1 ∨̌ C2). Then the following 
lines may occur in a proof:

l1 A1 … 1

l2 A2 … 2

l3 B l1, l2; RC 1  2   {C1} , {C2}  , ,  …
l4 B l1, l2; RC 1  2   , {C1 , C2} , ,  …
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Note that RC allows for both inferences, the one at line l3 and the 
one at line l4, and hence leaves room for a choice.14 We will return to 
this point at the end of this section, and show that in some cases, it is 
crucial to warrant the completeness of the proof theory with respect to 
the syntactic consequence relation of SAL.

Finally, note that the generic conditional rule RC only allows for a 
finite amount of assumptions to be put in the condition column of the proof 
with each application. As a consequence, for each proof line l with condi-
tion ii∈I there is a maximal k ∈ I such that for all j > k, j = ∅. Or, 
in other words, given that I is infinite we know that for each line of the 
proof the condition has the form 1, …, k,   ,   ,   … for some k ∈ I.

4.2.  Preparing for the marking definitions

Of course, in order to explicate defeasible reasoning it is not enough to 
be able to apply certain rules conditionally. What is still missing is a 
mechanism that makes it possible to retract defeasible inferences. As in 
the case of flat ALs, lines in an SAL-proof are marked at a certain stage 
of the proof in order to signify that the corresponding inference is retracted 
at that stage.

The marking definitions reflect the hierarchical structure of the super-
position. For each level i ∈ I we will state i-marking definitions. That a line 
is not i-marked for any i ∈ I indicates that we have no reason to suspect 
that line. If a line in an SAL-proof is i-marked for an i ∈ I, then this 
means the line is retracted at the given stage of the proof.

Since either xi = r or xi = m, and since we also include superpositions 
of ALs with mixed strategies, we need to state i-marking definitions for 
both strategies. In order to do so it is useful to define sequential counter-
parts to various notions that play a central role for the marking definitions 
in Section 2.

We first give a sequential account of minimal Dab-formulas resulting 
in the notion of a minimal Dabi-formula for each i ∈ I, i.e. a disjunction 
of members of i . Similar as the marking at stage s for flat ALs was 
determined by a set of minimal Dab-formulas relative to s, the i-marking 
in the sequential case will be determined by a set of Dabi-formulas rela-
tive to s.

Definition 10.  Let s be the stage of an SAL-proof from  and i ∈ I.

•	 A proof line l with condition  is a [≤0]-line iff  = .

14  Note that B  ∨  (C1 ∨̌ C2) corresponds to both B ∨̌ Dab () and B  ∨  Dab () where 
  =  {C1} , {C2} and  = , {C1 ,  C2}.
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•	 A proof line l with condition  is a [≤i]-line iff  = 1, …, i,   , ….
•	 A proof line l is an i-line iff it is a [≤i]-line and not a [≤i−1]-line.
•	 Where  ⊆ i, Dab() is a minimal Dabi-formula at stage s in 

case (i) Dab() is derived at some [≤i−1]-line l at stage s, (ii) line l 
is not marked at stage s (see below for the marking definition), and 
(iii) for no   ⊂  , Dab() is derived at an unmarked [≤i−1]-line 
at stage s.

•	 Where {Dab (j)  |  j  ∈  J  } is the set of the minimal Dabi-formulas at 
stage s, let C i s () =df {j  |  j  ∈  J  }.

•	 CUi s() =df 


 C i s()
•	 Ci s() is the set of minimal choice sets of C i s()

4.3.  The i-Marking for Reliability

Now we are able to define the i-marking at a stage s. Let us begin with 
the marking definition for the Reliability Strategy.

Definition 11.  (i-marking for Reliability). A line l with condition  is 
i-marked at stage s iff i   ∩  CUi s()  ≠  ∅.
We say a line is marked in case it is i-marked for some i ∈ I (see also 
the i-marking Definition 13 for Minimal Abnormality below).

Before we turn to the i-marking definition for Minimal Abnormality, 
let us illustrate the generic inference rules and the above marking defini-
tion by means of a simple example. Recall that the logic SK2r from 
Example 2 (see page 10) is defined as the superposition of the logic K2r 
on the logic K1r. Now consider the premise set p1 = {♦p, ♦♦q, ♦♦r, 
¬p ∨ ¬r} . According to this premise set, p, q and r are all three plausi-
ble, but p is more plausible than the other two propositions. However, 
we also know that either p or r is false. Hence we can expect that the 
prioritized logic will only allow us to finally derive p, and hence by dis-
junctive syllogism ¬r. Also, since q is not involved in the conflict, we 
expect it to be finally derivable. This can be done as follows.

We start by introducing the premises on the condition ∅,   ∅:

1 p PREM ∅, ∅
2 q PREM ∅, ∅
3 r PREM ∅, ∅
4 ¬p ∨ ¬r PREM ∅, ∅

By the rule RC, we may subsequently derive p, q and r from the first 
three premises. In order to avoid notational clutter let us from now on 
abbreviate abnormalities iA  ∧  ¬A by !iA. Note that p1 K p ∨̌ !1p, p1 
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K q ∨̌ !2q  and p1 K r ∨̌ !2r. Hence we can derive e.g. p on the assump-
tion that !1p is false. In the adaptive proof this means that we derive p 
on the condition { !1p,  ∅} and similar for q and r:

5 p 1; RC  {!1p},  ∅
6 q 2; RC ∅,   {!2q}
7 r 3; RC ∅,  {!2r}

To understand the rule RU, consider the following continuation of the 
proof, in which the conditions of lines 5 and 6 are merged:15

8 p ∧ q 5,6; RU  {!1p},   {!2q}

Let us now turn to the marking. We use i to denote that a line is 
i-marked. To avoid clutter, we only represent the marks at one stage: where 
k is the last line in the example proof the displayed marks represent mark-
ing at stage k.

In order to render line 7 marked, we first have to derive the Dab2-for- 
mula !2r. This is done as follows:

  
5 p 1; RC  {!1p},  ∅
6 q 2; RC ∅,   {!2q}

2 7 r 3; RC ∅,  {!2r}
8 p ∧ q 5,6; RU  {!1p},   {!2q}
9 !1p  ∨̌ !2r 1,3,4; RU ∅,  ∅

10 !2r 9; RC  {!1p},  ∅

Let us discuss the marking at stage 10 step by step. First of all, note that 
at stage 10, no Dab1-formula has been derived on the condition ∅,   ∅.16 
This means that C1 10(p1) = ∅, whence also CU1 10(p1) = ∅. As a result, 
no line is 1-marked at stage 10.

Now consider line 10 and its formula !2r. This is a Dab2-formula, derived 
on a condition of the form ,  ∅. Moreover, line 10 is not 1-marked. 
As a result, !2r is a minimal Dab2-formula at stage 10. This implies that 
C2

10(p1) = {{!2r}}, whence CU2
10(p1) = {!2r}. As a result, line 7 is 

2-marked at stage 10, as indicated by the symbol 2.
We define final derivability for our proof theory exactly in the same 

way as it was defined for flat adaptive logics in Definition 9.17

15 Note that it is also possible to derive p ∧ q from lines 1 and 2, using the rule RC.
16  The formula on line 9 is not a Dab1-formula, since it contains the abnormality !2r 

which is not a member of Ω1
K.

17  In case some xi = m this definition also makes reference to the i-marking for Min-
imal Abnormality which we define in Section 4.4.
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Definition 12. A is finally derived at a line l of a finite stage s in an 
SAL-proof, iff (i) line l is unmarked at stage s, and (ii) every extension 
of the proof in which l is marked can be further extended in such a way 
that l is unmarked.

A is finally derivable from  in SAL iff there is a proof from  in 
which A is finally derived. We write  SAL A in case A is finally deriv-
able from .

As a matter of fact, p, q and p ∧ q are finally derived in the proof from 
p1 above. Note that no Dab1-formula is derivable from this premise set, 
and the only minimal Dab2-formula that can be derived from p1 is !

2r. 
This means that in every extension of the proof, the marking of lines 1–10 
remains unchanged.

4.4.  The i-Marking for Minimal Abnormality

The i-marking for Minimal Abnormality is slightly more complicated:

Definition 13.  (i-marking for Minimal Abnormality). A line l with for-
mula A and condition  is i-marked at stage s iff one of the following 
conditions hold:

  (i)  there is no   ∈  Ci s() such that i  ∩    ≠  ∅
(ii) � for a   ∈  Ci s(): there is no line l that is not j-marked for some 

j  <  i at stage s, with formula A and condition 1,  …,  i,  i +1, 
i +2, …, and i   ∩    =  ∅.

Recall that final derivability as defined in Definition 12 also applies to 
superpositions that feature ALs with Minimal Abnormality. This completes 
the technical characterization of our first proof theory for SAL. In the 
appendix we prove its adequacy:

Theorem 5.   SAL A iff A  ∈  CnSAL ()

Let us in the remainder of this section illustrate the proof theory and discuss 
some noteworthy point concerning the marking for Minimal Abnormality.

Requirement (ii) in marking definition for Minimal Abnormality may 
strike some as surprising. The marking condition has a prospective char-
acter since it also takes into account sets of abnormalities in  that belong 
to higher levels than i. Naively it may be expected that requirement (ii) 
reads as follows:

(ii’) �for a   ∈  Ci s(): there is no line l  that is not j-marked for some 
j  <  i at stage s, with formula A and condition  such that i ∩   = ∅.

Let us interpret Definition 13 in terms of an argumentation game. Sup-
pose our proponent derives formula A on the condition  at stage s. The 
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i-marking concerns the question whether the defeasible assumption that 
corresponds to level i in the superposition is feasible. The minimal choice 
sets of Ci

s() offer minimally abnormal interpretations (in terms of 
abnormalities in i) of the premises with respect to the Dabi-formulas at 
the given stage s. That is, they offer possible counter-arguments against 
the defeasible assumption  of line l. However, there is a slight compli
cation involved.

The assumptions used in order to derive A may involve abnormalities 
of lower and higher levels than i. Concerning the lower levels we adopt 
a bottom-up approach. In case one of the defeasible assumptions at a 
lower level is not feasible we rely on the marking corresponding to the 
lower level to retract the line. In this sense the i-marking procedure safely 
ignores the defeasible assumptions belonging to lower levels. However, 
the i-marking is sensitive to the defeasible assumptions that belong to 
higher levels.

The idea is as follows. According to point (i) there should be at least 
one minimally abnormal interpretation   ∈  Ci

s() in which the ith defea-
sible assumption is valid, i.e., i  ∩    =  ∅. Moreover, for each counter- 
argument, i.e., for each   ∈  Ci

s() for which i  ∩    ≠  ∅, our proponent 
should be able to defend herself in the following way. She should be able 
to produce an argument such that the ith defeasible assumption is valid 
in  and such that all the higher level defeasible assumptions are the 
same as in her original argument at line l (see point (ii)).

It is crucial that in her defense, the proponent uses the same higher level 
defeasible assumptions as in her original argument. Let us demonstrate 
this by a simple example. As before, we use a K-based prioritized logic 
with only two levels of abnormalities. This time however, we consider 
the Minimal Abnormality-variant, i.e. SK2m characterized by the sequence 
 K1m,  K2m.

Let p2 = {♦p, ♦q, ♦♦r, ♦♦s, ¬p ∨ ¬q, ¬p ∨ ¬r, ¬q ∨ ¬s}. Note 
that the following disjunctions of abnormalities are K-derivable from p2:

  (i) !1p  ∨̌ !1q
  (ii) !1p  ∨̌ !2r
 (iii) !1q  ∨̌ !2s

However, (ii) and (iii) are neither Dab1-formulas nor Dab2-formulas. The 
following SK2m-proof shows how we can derive Dab2-formulas from p2:

 1 p PREM ∅, ∅
 2 q PREM ∅, ∅
 3 r PREM ∅, ∅
 4 s PREM ∅, ∅
 5 ¬p  ∨  ¬q PREM ∅, ∅
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 6 ¬p ∨ ¬r PREM ∅, ∅
 7 ¬q ∨ ¬s PREM ∅, ∅
 8 !1p  ∨̌ !1q 1,2,5; RU ∅, ∅
 9 !1p  ∨̌ !2r 1,3,6; RU ∅, ∅
10 !1q ∨̌ !2s 2,4,7; RU ∅, ∅
11 !2r ∨̌ !2s 9; RC  {!1p}, ∅
12 !2r ∨̌ !2s 10; RC  {!1q}, ∅

1 13 !2r 9; RC  {!1p}, ∅
1 14 !2s 10; RC  {!1q}, ∅

Note that C1 14(p2) = {{!1p, !1q}}, whence C1 14(p2) = {{!1p}, {!1q}}.
Hence, at the current stage of our proof there are two minimally abnor-

mal interpretations with respect to the abnormalities in 1: one according 
to which !1p is the only true abnormality, and another one according to 
which !1q is the only true abnormality. This means that we cannot finally 
derive !2r on the condition  {!1p},   ∅ , since we cannot derive !2r on an 
assumption that is valid in the minimally abnormal interpretation offered by 
means of the minimal choice set {!1q} (see condition (ii) in Definition 13).

For the same reason, we cannot finally derive !2s. Both lines 13 and 
14 are 1-marked. However, the disjunction of both level 2-abnormalities 
is finally derived at stage 12. This follows immediately from the fact that 
Dab(1) where 1  =  {!1p,  !1q} is the only minimal Dab1-consequence of 
p2. Also, it can easily be verified that Dab(2) where 2  =  {!2r,  !2s} is 
the only minimal Dab2-consequence of CnK1m(p2).

In view of the preceding, it is easy to see that the sets C1 s(p2) and 
C2 s (p2) remain stable from stage 12 on. Put differently, in every further 
stage s of the proof,

(†1)  C1
s(p2) = C1

12(p2) = {{!1p}, {!1q}}
(†2)  C2

s(p2) = C2
12(p2) = {{!2r}, {!2s}}

Let us now return to the prospective character of clause (ii) in Definition 13. 
Consider the following extension, in which the (arbitrarily chosen) for-
mula t is derived:

 9 !1p  ∨̌ !2r 1,3,6; RU ∅, ∅
10 !1q ∨̌ !2s 2,4,7; RU ∅, ∅
        

15 t ∨̌ !1p ∨̌ !2r 9; RU ∅, ∅
1 16 t 15; RC  {!1p},  {!2r}

17 t ∨̌ !1q ∨̌ !2s 10; RU ∅, ∅
1 18 t 17; RC  {!1q},  {!2s}
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Since we obtained lines 15 and 17 by the rule of addition, we can make 
a similar move with any formula A instead of t. Let  be the condition 
of line 16. The following facts hold:

(i.t.1) � there is a   ∈ S1 18 (p2) such that 1      =  ∅ (viz. 1  =  {!1q})
(ii.t.1)’ � for every   ∈  S1 18(p2), t is derived on a condition 

 such that 


1      =  ∅ at stage 18

(i.t.2) � there is a   ∈  S2
18(p2) such that 2      =  ∅ (viz. 2  =  {!2s})

(ii.t.2)’ � for every   ∈  S2
18(p2), t is derived on a condition  such 

that 
2      =  ∅ at stage 18

In other words, replacing clause (ii) with (ii)’ in the definition of i-marking 
for Minimal Abnormality, would imply that line 16, and by an analogous 
argument line 18, are not marked at stage 18 of the proof. Moreover, in 
view of (†1) and (†2), these lines would not be marked in any further 
extension of the proof.

This is where the prospective character of item (ii) in Definition 13 
comes into play. Take for instance line 16. It is not the case that for 
every   ∈  S1 18 (p2), t is derived on a condition ,  {!2r}  such that  
   = ∅ – this requirement fails for {!1p}, which is a minimal choice 
set of level 1. According to item (ii) t would also have to be derived on 
the condition {!1q}, {!2r}  in order for line 16 not to be 1-marked. An 
analogous argument applies to line 18. As a result, lines 16 and 18 are 
1-marked at stage 18. Moreover, there is no way to extend this proof such 
that these lines are not 1-marked.

Recall the remark in Section 3.2 that the proof theories proposed in 
[1] and [29] are not adequate with respect to the consequence relation of 
SALm. This negative result holds even in very simple (finite) cases and 
under the assumption that for every i, j ∈ I such that i ≠ j, i  j = ∅. 
The above example is one of those cases. What was lacking in those ear-
lier proposals, is precisely the prospective character of (ii) in the marking 
for Minimal Abnormality.

The following continuation of the proof shows how the formula (p ∧ 
s) ∨ (q ∧ r) can be finally SK2m-derived from p2. In this case, require-
ment (ii) of Definition 13 is fulfilled for both i  =  1 and i  =  2, whence 
lines 21–24 are neither 1-marked nor 2-marked.

        
1 19 p ∧ s 1,4; RC  {!1p},     {!2s}
1 20 q ∧ r 2,3; RC  {!1q},     {!2r}

21 (p ∧ s) ∨ (q ∧ r) 19; RU  {!1p},     {!2s}
22 (p ∧ s) ∨ (q ∧ r) 20; RU  {!1q},     {!2r}
23 (p ∧ s) ∨ (q ∧ r) 9;RC  {!1p},     {!2r}
24 (p ∧ s) ∨ (q ∧ r) 10;RC  {!1q},     {!2s}
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4.5.  The need for sequences of abnormalities as conditions

In Section 6, we will show how the SAL-proof theory can be simplified 
whenever restriction (†) from Section 3.1 holds. More specifically, given 
this restriction, we can just use sets of abnormalities for the conditions, 
instead of sequences of such sets. However, as we will now show, we need 
sequences in the more general case.

Consider the superposition-logic SKP, whose consequence relation is 
defined as follows: CnSKP() =df CnK1r (CnK2r (CnK1r ())).

Note that in this specific superposition, 1 = 3 = 1
K. Let p3 = {p, 

q, r, ¬p ∨ ¬q, ¬p ∨ ¬r}. The following are minimal Dab-consequences 
of p3:

!1p ∨̌ !1q (1)

!1p ∨̌ !2r (2)

In view of (1), both !1p and !1q are unreliable for the first logic in the 
superposition. This means that we cannot finally derive !2r on the condi-
tion {!1p} in a K1r-proof from p3. More generally, !2r     ∉    CnK1r (p3). 
Hence !2r is a reliable abnormality in view of the second logic in the 
superposition. Since also !1p  ∨  !2r   ∈   CnK1r (), it follows that we can 
derive !1p on the condition !2r in a K2r-proof from CnK1r (p3). But then 
!1p ∨̌ !1q is no longer a minimal Dab-formula for the third logic in the 
superposition, whence q is finally K1r-derivable from q on the condition 
{!1q}, and hence q   ∈   CnSKP (p3).

The following proof illustrates the fact that q is not K1r-derivable 
from p3, but only from CnK2r (CnK1r (p3)), whence it is SKP-derivable 
from p3:

 1 p PREM ,, 
 2 q PREM ,,
 3 r PREM ,,
 4 p  q PREM ,,
 5 p  r PREM ,,
 6 !1p ∨̌ !1q 1,2,4; RU ,,
 7 !1p ∨̌ !2r 1,3,5; RU ,,
 8 !1p 7; RC  ,{!2r},   

1  9 q 2; RC {!1q}, , 
10 r 3; RC  ,{!2r},  
11 q 2; RC , , {!1q}

Note that CU
1
11(p3) = {!1p, !1q}. This explains why line 9 is 1-marked: 

the first member of its condition contains the abnormality {!1q}, which is 
unreliable at level 1. Since C2

 11(p3) = ∅, lines 8 and 10 are not 1- or 
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2-marked. But this means that !1p, the formula derived on line 8, is a 
Dab3-formula at stage 11 of the proof. Hence, !1p ∨̌ !1q is no longer a 
minimal Dab3-formula at stage 11, whence CU 311(p3) = {!1p}. The last 
crucial move takes place at line 11. Here, q is derived, but this time by 
pushing !1q to the third set in the condition – note that this is perfectly 
in line with the generic rule RC, which leaves room for choice in this 
case. Since {!1q} ∩ CU 311(p3) = ∅, line 11 is unmarked and will remain 
so in every further extension of the proof.

5.  A Bottom-Up Proof Theory

In this section we define a proof theory that is more in the “bottom-up” 
sequential spirit of SAL. Taking over the proof format of Section 4.1, 
the variant is realized in three respects:

1.	The generic rule RC of the proof theory in Section 4 has a holistic 
character in the sense that defeasible assumptions corresponding to vari-
ous ALs in the sequence. Let ALii∈I can be applied in one and the 
same inference step. In what follows we replace RC by generic condi-
tional rules RCi for each ALi in the sequence. Where l1,  …,  ln are 
[≤i]-lines,   ⊆  i, and  is such that i  =   and j  =  ∅ for all j ≠ i:

RCi If A1,  …,  An LLL B ∨̌ Dab():

A1  1

        
An  n

B    1  …  n  

Each conditional rule RCi forces the user to make inferences that make 
use of one defeasible reasoning form at a time, i.e., those modeled by 
ALi. This way the proofs are more analytic and transparent in expli-
cating the reasoning processes leading to the SAL-consequences.
We employ the rules PREM and RU just as before.

2.	The i-marking definitions for Reliability and Minimal Abnormality only 
apply to i-lines. This is realized by making efficient use of the mark-
ings gained in the previous steps in the sense that these markings get 
inherited to higher levels.

3.	This allows us furthermore to replace the prospective character of require-
ment (ii) in the definition for the marking with Minimal Abnormality 
by its simplified version (ii’) (see Section 4.4).

The latter two points can be summarized as follows: the i-marking of a 
line l with condition  concerns for both adaptive strategies only i-lines 
and depends only on i. In contrast, before we also had to check whether 
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some i-line is j-marked for any j < i. This may introduce some complex-
ity overhead especially if the strategy is Minimal Abnormality. In this 
variant we use a less expensive forward-chaining of the markings from 
previous inference steps that belong to lower levels: If the justification 
of an i-line l calls upon a marked j-line l  (where j < i), the marking of 
l  is inherited to l. Similarly, if the justification of l calls upon a line l  and 
l  already inherits some marking from a lower level, this marking is inher-
ited to l (see Definition 16 below).

We say that a line is marked iff it is i-marked for some i ∈ I according 
to Definitions 14 or 15 (depending on the strategy), or it is inh-marked 
according to Definition 16, where:

Definition 14.  (i-marking for Reliability, bottom-up variant).  An i-line l 
with condition  is i-marked at stage s iff i    CUi

s()  ≠  ∅.

Definition 15.  (i-marking for Minimal Abnormality, bottom-up variant). 
An i-line l with formula A and condition  is i-marked at stage s iff one 
of the following conditions hold:

 (i) � there is no   ∈  Ci s() such that i   ∩    ≠  ∅
(ii) � for a   ∈  Ci s(): there is no unmarked [≤i]-line l  at stage s with 

formula A and condition  such that i  ∩    =  ∅.

Definition 16.  (inh-marking of lines). An i-line l with condition  and 
justification l1,  …,  ln;  R is inh-marked in case some lj (where 1  ≤  j  ≤  n) 
is (i) k-marked for some k  <  i, or (ii) inh-marked.

This completes the characterization of our variant. Final derivability is 
defined as in Definition 12. We write  bu

SAL A in case A is finally derivable 
from  by means of the proof theory presented in this section. In the 
appendix we prove the following adequacy result:

Theorem 6.   bu
SAL A iff A  ∈  CnSAL()

In order to illustrate our new variant we take again a look at our premise 
set p1 (we skip the introduction of premises in lines 1–7, see Section 4.4):

      PREM , 
 8 !1p ∨̌ !1q 1,2,5; RU , 
 9 !1p ∨̌ !2r 1,3,6; RU , 
10 !1q ∨̌ !2s 2,4,7; RU , 
11 !2r ∨̌ !2s 9; RC1 {!1p}, ∅
12 !2r ∨̌ !2s 10; RC1 {!1q}, ∅

1 13 !2r 9; RC1 {!1p}, ∅
1 14 !2s 10; RC1 {!1q}, ∅
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15 t ∨̌ !1p ∨̌ !2r 9; RU , 
1 16 t ∨̌ !2r 15; RC1 {!1p}, ∅
inh 17 t 16; RC2 {!1p}, {!2r}

18 t ∨̌ !1q ∨̌ !2s 10; RU , 
1 19 t ∨̌ !2s 18; RC1 {!1q}, ∅
inh 20 t 19; RC2 {!1q}, {!2s}

Note that t cannot be inferred in one step on the condition {!1p}, {!2r}, 
but we first need to derive t ∨̌ !2r on the condition {!1p}, ∅ by means 
of RC1 at line 16. Then we can derive t by means of RC2 at line 17. An 
analogous argument applies to the derivation of t at line 20. What ensures 
the marking of lines 17 and 20 is the inh-marking. Note that e.g. line 16 
gets 1-marked due to the fact that t ∨̌ !2r is not derived on the condition  
{!1q}, ∅ (recall that 1

20() = {{!1p}, {!1q}}). This marking carries for-
ward to line 17 since it calls upon the 1-marked line 16. This ensures that 
the arbitrary formula t is not derivable.

Were we only to proceed along the lines of points 2 and 3 and hence 
use a generic conditional rule RC as in the proof theory of Section 4, then 
we would immediately be confronted with problems. In that case we would 
be able to produce the following proof fragment:

15 t ∨̌ !1p ∨̌ !2r 9; RU , 
16 t 15; RC {!1p}, {!2r}
17 t ∨̌ !1q ∨̌ !2s 10; RU , 
18 t 17; RU {!1q}, {!2s}

Recall that the arbitrarily introduced formula t is not SK2m-derivable. 
Hence, lines 16 and 18 should get marked. According to the marking defi-
nition 15, we only have to check whether lines 16 and 18 are 2-marked, 
since both lines 16 and 18 are 2-lines. However, neither line is 2-marked 
and hence t would be finally derivable.

6.  A Simplification for Disjoint i’s

We will now consider the special case in which (†) for all i, j ∈ I for 
which i  ≠  j we have i ∩ j = ∅. In this case the logical form of an 
abnormality A unambiguously determines an i ∈ I such that A ∈ i. This 
means in turn that we do not need to represent the condition of lines in 
the proof in terms of sequences of sets of abnormalities but can instead 
just represent them by means of sets of abnormalities in 


i∈I i.

To implement this simplification, we need to slightly adjust our termi-
nology. Let i ∈ I and l be a proof line with condition ∆. First, we say line l 
is a [≤0]-line iff ∆ = ∅, it is a [≤ i]-line iff ∆ ⊆ 1 ∪  … ∪ i. Given 
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these adjustments, we can use the same definitions of  CUi
s  () and Ci

s () 
as before – see Definition 10.

Let us now turn to the proof theory from Section 4. The generic rules 
are very straightforward: just take the generic rules of the standard format, 
but treat the sets i and  as metavariables for subsets of 


i∈I i. The 

marking definitions are adjusted as follows:

Definition 17.  (i-marking for Reliability, special case). A line l with 
condition ∆ is i-marked at stage s iff ∆ ∩  CUi

s  () ≠ ∅.

Definition 18.  (i-marking for Minimal Abnormality, special case). A line l  
with formula A and condition ∆ is i-marked at stage s iff one of the 
following conditions hold:

  (i)  there is no   ∈  Ci
s () such that   ∩    ≠  ∅, or

(ii) � there is a   ∈  Ci
s () such that there is no line l  that is not j-marked 

for some j  <  i at stage s, with formula A and condition  such that 
  ∩    =  ∅, and   ∩ (i+1  ∪  i+2  ∪  …)  =    ∩  (i+1  ∪ i+2  ∪  …).

Note that even in this special case, we cannot do without the prospective 
character of the marking definition for Minimal Abnormality – this follows 
immediately from the example p2 which we discussed in Section 4.4.

To spell out the simplification for the proof theory of Section 5, we first 
redefine the generic rule RCi. Where for each j  (1  ≤  j  ≤  n), j  ⊆ 1  ∪ … 
∪  i, and where   ⊆  i, we have:

RCi If A1, …, An LLL B ∨̌ Dab():

A1  1

        

An  n

B     1 ∪ … ∪ n ∪ 

Next, we adjust the marking definitions, in the same way as this was done 
with the first proof theory. In this case, it suffices to just replace  and 
i with , and  and i with  in Definitions 14–16. We leave it to the 
reader to check that this proof theory is equivalent to the original version 
from Section 5. Also, by the same example as the one spelled out in 
Section 4.5, it follows that in some cases where the restriction (†) fails, 
one still needs sequential conditions in order to obtain an adequate proof 
theory along the lines of that defined in Section 5.

7.  Outlook and Conclusion

In this paper we have presented two proof theories for superpositions of 
ALs in standard format. We bring it to a closing by indicating some 
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interesting further developments to which the research presented here 
provides a fruitful basis.

First of all, as pointed out in Section 3.1, there is a specific class of 
superpositions that are very interesting from a metatheoretic perspective, 
i.e. those for  which (‡) 1  ⊆  2  ⊆  …. It remains to be seen whether we 
can also simplify the SAL-proof theory for these superpositions in a way 
similar to the simplification we provided in Section 6.

In [24] we presented a generalization of the standard format to reason 
with prioritized defeasible assumptions, resulting in so-called lexicographic 
ALs. There we also presented proof theories for Reliability and Minimal 
Abnormality, which have the same generic rules as those of the standard 
format. The marking definitions are analogous to the marking definitions 
of the standard format, with the difference that they also take into account 
priorities among the abnormalities. Altogether, the structural similarity 
between ALs in standard format and lexicographic ALs makes it plausible 
that we may use the same techniques as presented in this paper in order 
to define proof theories for superpositions of lexicographic ALs.

We also intend to adjust the presented proof theories to other (non-
standard) strategies such as the normal selections strategy [29] or the 
counting strategy [21, 11].

Finally, another question for future research is to investigate the com-
putational complexity of sequential combinations of adaptive logics. 
Therefore the results obtained in [33, 17, 12] for inconsistency-adaptive 
ALs will be very useful. Especially the forthcoming [16] that contains 
generalizations of the previous results for ALs in the standard format and 
for some special cases will provide an excellent starting point for deter-
mining the computational complexity of the sequential combinations of 
ALs that are studied in the current paper.

APPENDIX

Preliminaries.  Due to the more technical nature of the appendix we drop the 
supposition Γ  ⊆  W that was used throughout the paper. In the remainder W+ 
denotes all well-formed formulas in the extension of the language L by the 
checked classical connectives (see Section 2). From now on, if not stated differ-
ently, Γ  ⊆  W+.

Let SAL be a superposition of the ALs ALi in the sequence ALii∈I with 
lower limit logic LLL and set of abnormalities Ω i. All ALi’s are in standard 
format.

Let Ω = 


i∈I Ωi. Where ∆ ⊆ Ω is finite, we say that a sequence ∆  =  ∆ii∈I 
corresponds to ∆ iff (i) 


 ∆  =  ∆ and, in case I = N, there is an i  ∈  I such that 

for all j  ∈  I for which j  >  i, ∆j  =  ∅.
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Lemma 1.  The set of ∆ that correspond to ∆ is countable.

Proof.  We prove the Lemma for the case I = N. The other cases are trivial. Let 
i  ∈  I be minimal such that ∆ ⊆ Ω1 ∪ … ∪ Ωi. Where n ≥ i, since ∆ is finite 
also the set of all ∆  =  ∆1, …, ∆n, ∅ where ∆n ≠  ∅ that correspond to ∆ is 
finite (possibly empty). Let ∆n

1, …, ∆n
mn be a list of all these ∆’s.  Altogether, 

∆i
1, …, ∆i

mi, ∆1
i+1, …, ∆i

m
+
 (i
1
+1), ∆1

i+2, …, … is a list of all ∆’s that correspond 
to ∆.� 

We say that Dab(∆) is a minimal Dabi-consequence of Γ iff ∆ ⊆ Ωi, Dab(∆) ∈ 
CnLLL(Γ), and for all ∆  ⊆  ∆: if Dab(∆)  ∈  CnLLL(Γ) then ∆  =  ∆. Where 
Dab(∆1), Dab(∆2), … are the minimal Dabi-consequences from Γ, let Σi(Γ) =df 
{∆1, ∆2, …}. Let Φi(Γ) be the set of all minimal choice sets of Σi(Γ) and 
Ui(Γ) =df 

 
Σi(Γ).

In the remainder, AL is a flat AL in standard format with lower limit logic 
LLL and the set of abnormalities Ω. Dab(∆) is a minimal Dab-consequence of 
Γ iff ∆  ⊆  Ω, Dab(∆)  ∈  CnLLL(Γ) and for all ∆  ⊆  ∆: if Dab(∆)  ∈  CnLLL(Γ) 
then ∆  =  ∆. Where Dab(∆1), Dab(∆2), … are all the minimal Dab-consequences 
of Γ, Σ(Γ)  =df {∆1, ∆2, …}. Φ(Γ) is the set of minimal choice sets of Σ(Γ) and 
U (Γ)  =df   

  
Σ(Γ).

In the following, ∨̌ Dab(∆) denotes the empty string in case ∆ = ∅. For the 
sake of convenience we will sometimes speak about the empty proof, meaning 
the “proof” which consists of 0 lines. We denote this proof by Pε.

In what follows we will first show the adequacy for the proof theory of Sec-
tion 4 and in the last subsection we will show the adequacy of the proof theory 
presented in Section 5. Hence, before this last subsection, whenever we refer to 
a SAL-proof we mean a proof in the system presented in Section 4.

A complete proof stage g.  In the following it will be very useful to speak about 
the extension of a given (possibly empty) AL-, resp. SAL-proof P in which 
(a) A is derived on the condition  whenever  LLL A ∨̌ Dab() resp. A is 
derived on the condition ∆ whenever  LLL A ∨̌ Dab() where  corresponds 
to , and (b) A is derived on the condition ∅ resp.  whenever  LLL A . We 
dub a corresponding stage g(P) a complete stage.

This stage exists and can be constructed along the following lines (we show the 
variant for SAL, the one for AL is analogous). Note that each well-formed formula 
has a Gödel-number. From this it follows immediately that  = {A |  LLL A } is 
enumerable, e.g.  = {B1, B2, …}. Moreover, due to the compactness of LLL, 
for each Bi  ∈   there are some {A1,  …,  An} such that A1,  …,  An  LLL  Bi. Hence, 
for each Bi  ∈   we have the following proof Pi:

l
i
1 A1 PREM ∅
.
.
.

.

.

.

.

.

.

.

.

.

l
i
n An PREM ∅

l in+1 Bi l i1, …, l in; RU ∅
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In case Bi is of the form A ∨̌ Dab() we add some further lines. By Lemma 1 
there is a list ∆i

1, ∆
i
2, … of all ∆’s that correspond to . We add a line l in+1+j 

for each ∆ i
j that corresponds to :

l in+j+1 A l in+1; RC ∆

Where P consists of lines l 01, l
0
2, …, we now combine the proofs P, P1, P2, … 

to a proof P  that extends P to the stage g(P) by means of listing the respective 
lines as follows (and by renumbering the lines accordingly):

l 01,   l
0
2,   l

1
1,   l

1
2,   l

0
3,   l

1
3,   l

2
1,   l

2
2,   l

2
3,   l

0
4, …, l 24,   l

3
1, …, l 34,   l

0
5, …, l 35,   l

4
1, …, l 45, …� (3)

Fact 1.  If a line l is marked at stage g(P), then it is marked in every further 
extension. Hence, the markings remain stable from stage g(P) on.

Note that the marking at a stage is determined by the minimal Dabi-formulas 
derived at this stage (where i ∈ I). Since in g(P) every possible Dabi-formula is 
derived on every possible condition, the marking remains stable from g(P) on.

Some results for flat ALs In order to prove Lemma 8 and Corollary 2 it is use-
ful to first prove some lemmas about flat ALs.

The following fact holds for the extension of an AL proof P to the stage g(P):

Fact 2. g(P) () =  () and hence Ug(P) () = U() and g(P) ()  =  ().

The following fact follows immediately by the reflexivity, the monotonicity, and 
the transitivity of LLL.

Fact 3.  (Fixed point property for LLL). CnLLL(CnLLL()) = CnLLL()

The following two lemmas are known to hold where   ⊆  W (see [5]). In what 
follows it is useful to show that they also hold where   =  CnLLL().18

Lemma 2.  Where  = CnLLL() or  ⊆ W: if  LLL A ∨̌ Dab() and   ∩ 
U()  =  ∅ then A  ∈  CnALr ().

Proof. The case   ⊆  W has been proven in [5]. Suppose   =  CnLLL () and that the 
antecedent is true. Suppose first A ∈ . Since  ∩ U  () = ∅ and A ∨̌ Dab() ∈ 
CnLLL (), also A  ∈  CnLLL()  =  . Hence we can finally derive A in one step by 
means of PREM. Suppose now that A  ∉  . Note that A ∨̌ Dab()  ∈  . Hence we 
can prove A on the condition  in two steps: in line 1 we introduce the premise 
A ∨̌ Dab() by PREM, in line 2 we derive A on the condition  by RC. Since 
A  ∉  , line 2 is not marked. Suppose it is marked in an extension P of the proof, 
then we can further extend the proof to stage g(P). In this stage line 2 is not 
marked due to the supposition, Fact 2 and the marking Definition 5.� 

18 Note that they do not hold for just any premise set that also contains formulas with 
“checked” symbols as the example in [29] (for Minimal Abnormality), [9] (for Minimal 
Abnormality), and [23] (for both strategies) show.
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Lemma 3. Where   =  CnLLL() or   ⊆  W : if for every   ∈  () there is a      
such that   ∩    =  ∅ and   LLL  A ∨̌ Dab(), then A  ∈  CnALm ().

Proof.  The case   ⊆  W is proven in [5]. The other case is similar to the previ-
ous proof and left to the reader.� 

Lemma 4.  (Lemma 3 in [5]). If A  ∈  CnALr () then there is a   ⊆   for which 
  LLL  A ∨̌ Dab() and   ∩  U()  =  ∅.

Lemma 5.  If A  ∈  CnALm () then for every   ∈  () there is a   ⊆   for 
which   LLL  A  ∨  Dab() and   ∩    =  ∅.
The lemma is identical to the left-to-right direction of Theorem 8 in [5]. Hence, 
the proof can be found there.19

Lemma 6.  Where   =  CnLLL() or   ⊆  W: CnAL()  =  CnLLL(CnAL()).

Proof.  The left-right direction is trivial due to the reflexivity of LLL. Suppose 
A  ∈  CnLLL(CnAL()). By the compactness of LLL there are B1,  …,  Bn  ∈  CnAL() 
such that B1,  …,  Bn  LLL  A. Suppose the strategy of AL is Reliability. By 
Lemma 4, for each i  ≤  n there is a i  ⊆   such that i  ∩  U()  =  ∅ and 
  LLL  Bi  ∨   Dab(i). Hence  LLL A ∨̌ Dab(1 ∪ … ∪ n). Since (1  ∪  … 
∪  n)  ∩  U  ()  =  ∅, by Lemma 2 also A  ∈  CnAL(). The case for Minimal Abnor-
mality is similar and left to the reader (we use Lemmas 3 and 5 instead of 
Lemmas 2 and 4).� 

Lemma 7 (Dab-conservatism of AL). If Dab()  ∈  CnAL() then Dab()  ∈   CnLLL().

Proof.  Suppose   ALx  Dab(). Case 1: x  =  r. By Lemma 4,   LLL  Dab()  ∨ 
Dab(), for   ⊆  \U(). Let   ⊆   and   ⊆   be minimal such that   LLL 
Dab()  ∨  Dab(). It follows that   ∪    ⊆  U(). If   ≠  ∅, then   ∩ 
U()  ≠  ∅ — a contradiction. Hence   =  ∅, which means that   LLL  Dab(), 
and by CL-properties,   LLL  Dab().

Case 2:  x  =  m. By Lemma 5, for every   ∈  (), there is a   ⊆    \   
such that   LLL  Dab()  ∨   Dab(). Let each   ⊆   and 

  ⊆   be minimal 
such that   LLL  Dab()  ∨   Dab(

). It follows that each Dab(  ∪  
) is a 

minimal Dab-consequence of .
Assume now that each 

  ≠  ∅. Let  be a minimal choice set of {
  |    ∈ 

 ()} and let  be a minimal choice set of {  ∈  ()  |    ∩    =  ∅}. It can be 
easily verified that   ∪   is a minimal choice set of ().20 It follows that 
there is a ∪  ⊆   \ (  ∪  ) such that   LLL  Dab()  ∨  Dab(∪). But 

19 Although Batens restricts the scope of his Theorem 8 to Γ  ⊆  W, it is easy to see 
that the proof of the left-to-right direction is applicable also to the more general setting 
where formulas in Γ may contain “checked connectives” (see page 4). Note though that 
the right-left direction of our Lemma 4 resp. of Batens’ Theorem 8 does not hold in 
general in the latter case (as e.g., the example in Section 2.7 of [31] shows).

20  The reasoning proceeds wholly analogous to the proof of Lemma 6 in [24].
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in view of the construction, there is a B  ∈  ∪ such that B  ∈  , — a contra-
diction. Hence, some 

  =  ∅. Thus, Dab() is a minimal Dab-consequence and 
hence Dab()  ∈  CnLLL().� 

Some results for SAL and SALi

Lemma 8 (LLL-closure of SALi). Where   ⊆  W: CnSALi()  =  CnLLL(CnSALi ()).

Proof. “i  =  1”: This follows by Lemma 6. “i  ⇒  i+1”: Note that CnSALi+1()  = 
CnALi+1(CnSAL()). By the induction hypothesis and Lemma 6, CnSALi+1()  = 
CnLLL(CnALi+1 (CnSALi ()))  =  CnSALi+1()  =  CnLLL(CnSALi+1()).� 

In order to avoid clutter it will in the following be useful to define SAL0 by LLL.

Corollary 2. Where   ⊆  W: A  ∈  CnSALi() iff there is a   ⊆  i such that A     ̌∨   
Dab()  ∈  CnSALi−1 () and

1.	 where xi  =  r,   ∩  Ui(CnSALi−1())  =  ∅, or
2.	 where xi  =  m, there is a   ∈  i(CnSALi−1()) such that   ∩    =  ∅ and for each 

  ∈  i(CnSALi−1()) there is a     i such that A  ∨  Dab()  ∈  CnSALi−1() 
and   ∩    =  ∅.

Proof. “i = 1” follows directly by Fact 3, Lemmas 2, 3, 4, 5 and the fact that 
CnSAL1

() = CnAL1(). “i ⇒ i+1”: Note that CnSALi+1()  =  CnALi+1(CnSAL()) and 
by Lemma 8 CnSALi()  =  CnLLL(CnSALi()). Thus, the corollary follows by Lem-
mas 2, 3, 4, and 5.� 

Now we are also able to prove Theorem 3 which we restate here.21

Theorem 3 (LLL-closure of SAL). Where   ⊆  W: CnSAL()  =  CnLLL(CnSAL()).

Proof.  The left-right direction follows immediately due to the reflexivity of LLL. 
Suppose now A  ∈  CnLLL(CnSAL()). By the compactness of LLL there is a finite 
  ⊆  CnSAL() such that A  ∈  CnLLL(). For each B  ∈   there is a i  ∈  I such 
that B  ∈  CnSALi(). Let k be the maximal such i. By Theorem 2,   ⊆  CnSALk(). 
By Lemma 8, A  ∈  CnSALk() and hence A  ∈  CnSAL().� 

The following corollary follows immediately by Lemma 7 and Lemma 8.

Corollary 3 (Dab-conservatism of SALi). Where   ⊂  i: if Dab()  ∈  CnSALi() 
then Dab()  ∈  CnSALi1().

The adequacy of the proof theory from Section 4.  We now prove Theorem 5, 
i.e. Γ  SAL  A iff A  ∈  CnSAL(Γ). That is, we show that given some SAL-proof P 
from Γ, a formula A is derived on an unmarked line at stage g(P ) iff A  ∈ 
CnSAL(Γ).

21  Note that throughout the main paper we presupposed that Γ  ⊆  W. This supposition 
was dropped in the Appendix, whence the slightly different formulation of the Theorem here.
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Lemma 9.  Where Γ  ⊆  W and P  is a SAL-proof from Γ, each of the following 
holds for every i  ∈  I: 

1a. � C i
g(P ) (Γ)  =  i (CnSALi−1()), whence also 

1b. � CU i
g(P ) (Γ)  =  U i(CnSALi−1()) and

1c. � Ci
g(P ) (Γ)  =  i (CnSALi−1())

2a. � there is a line l with formula A and condition ∆jj ∈ I that is not j-marked 
for all j  ≤  i at stage g(P ) iff A   ∨  Dab(∆i+1  ∪  ∆i+2 ∪ …)  ∈  CnSALi  (Γ), and 
hence

2b. � there is a line l with formula A and a condition ∆1,  …,  ∆i,  ∅ , … that is 
not marked at stage g(P ) iff A  ∈  CnSALi (Γ).

Proof. “i  =  1”: Ad 1. Immediate in view of Fact 3.
Ad 2. Case x1 = r. There is a line with formula A and with a condition  

that is 1-unmarked iff [by the construction of stage g(P ) and Definition 11] 
Γ  LLL  A  ∨  Dab() and ∆1  ∩  CU

1
g(P ) (Γ)  =  ∅ iff [by 1.] Γ  LLL   A  ∨  Dab() and 

∆1  ∩  U 1(CnLLL 
(Γ))  =  ∅ iff [by Fact 3] Γ  LLL  A  ∨  Dab() and ∆1  ∩  U 1(Γ)  =  ∅ 

iff [by Corollary 2.1] A  ∨  Dab(∆2  ∪  ∆3  ∪  …)  ∈  CnSAL1(Γ).
Case x1  =  m. There is a line with formula A and with a condition  that is 

1-unmarked iff [by Definition 13] for each   ∈  Ci
g(P ) (Γ) there is a line with 

formula A and a condition ,  ∆2,  ∆3,  …   such that   ∩    =  ∅ and ∆1  =   
for some   ∈  Ci

g(P ) (Γ) iff [by the construction of stage g(P ) and 1.] for each 
  ∈  1(CnLLL 

(Γ)) there is a  such that Γ  LLL  A  ∨  Dab(  ∪  ∆2  ∪  …) iff 
[by Fact 3 and Corollary 2.2] A  ∨  Dab(∆2  ∪  ∆3  ∪  …)  ∈  CnSAL1 (Γ).

“i   ⇒  i+1”: Ad 1. Where ∆  ⊂  i+1, the following are equivalent in view of (1) 
the definition of Ci

g(P ) (Γ), (2) item 2b of the induction hypothesis, (3) Lemma 8 
and (4) the definition of i(Γ):

•	∆   ∈  Ci 
g
+1
(P) (Γ)

•	Dab(∆) is derived at an unmarked [≤i]-line at stage g(P ) and for no ∆  ⊂  ∆: 
Dab(∆) is derived at an unmarked [≤i]-line at stage g(P )

•	Dab(∆)  ∈  CnSALi(Γ), and for no ∆  ⊂  ∆: Dab(∆)  ∈  CnSALi(Γ)

•	Dab(∆)  ∈  CnLLL(Γ) (CnSALi(Γ)), and for no ∆  ⊂  ∆: Dab(∆)  ∈  CnLLL(CnSALi(Γ))

•	∆   ∈  i+1(CnSALi(Γ)).

Ad 2. Case xi+1  =  r. At stage g(P ), each of the following are equivalent in view 
of (1) Definition 11, (2) item 1b and (3) item 2a of the induction hypothesis, 
(4) Corollary 2.1 and Lemma 8:

•	� there is a line l with formula A and condition ∆jj ∈ I that is not j-marked for 
any j  ≤  i+1

•	 there is a line l with formula A and condition ∆jj ∈ I that is not j-marked for 
any j  ≤  i, and ∆i+1  ∩  CU i 

g
+1
(P)(Γ)  =  ∅

•	 there is a line l with formula A and condition ∆jj ∈ I that is not j-marked for 
any j  ≤  i, and ∆i+1  ∩  CU i+1(CnSALi(Γ))  =  ∅
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•	 there are ∆i+1  ⊂  i+1,  ∆i+2  ⊂  i+2,  …,  such that A  ∨  Dab(∆i+1  ∪  ∆i+2  ∪ …)  ∈ 
CnSALi (Γ) and ∆i+1  ∩  CU i+1(CnSALi(Γ))  =  ∅

•	� there are ∆i+2  ⊂  i+2,  ∆i+3  ⊂  i+3,  …, such that A ∨̌ Dab(∆i+2  ∪  ∆i+3 ∪…)  ∈ 
CnSALi+1

(Γ)

Case xi+1  =  m. At stage g(P), each of the following are equivalent in view 
of (1) Definition 13, (2) item 1c, (3) item 2a of the induction hypothesis and 
(4) Corollary 2.2 and Lemma 8:

•	� there is a line l with formula A and condition ∆jj ∈ I that is not j-marked for 
any j  ≤  i+1

•	 there is a line l with formula A and condition ∆jj ∈ I such that

(a)	 l is not j-marked for any j  ≤  i,

(b)	∆i+1  ∩    =  ∅ for a   ∈  Ci
g 
+
(P)
1
   (), and

(c)	 for every   ∈  Ci
g 
+
(P)
1
   (): A is derived on a line l with condition 1,  …, 

i+1,  ∆i+2,  ∆i+3,  … such that i+1  ∩    =  ∅, and each line l is not j-marked 
for any j  ≤  i

•	 there is a line l with formula A and condition ∆jj ∈ I such that

(a)	 l is not j-marked for any j ≤ i,

(b)	∆i+1  ∩    =  ∅ for a i  +1(CnSALi ()), and

(c)	 for every   ∈  i+1(CnSALi ()): A is derived on a line l with condition  
1,  …,  i+1,  ∆i+2,  ∆i+3,  … such that i+1  ∩    =  ∅, and each line l is 
not j-marked for any j  ≤  i

•	 there are ∆i+2  ⊂  i+2,  ∆i+3  ⊂  i+3,  …, such that for every   ∈  i+1(CnSALi ()), 
A  ∨  Dab(i+1  ∪  ∆i+2  ∪  ∆i+3  ∪  …)  ∈  CnSALi () for a i+1  ⊆  i+1  \  

•	A  ∨  Dab(∆i+2  ∪  ∆i+3  ∪  …)  ∈  CnSALi  +1
 ()� 

Lemma 10.  Where   ⊆  W and P is a SAL-proof from : A  ∈  CnSAL () iff A 
is derived at an unmarked line at stage g(P).

Proof. A  ∈  CnSAL() iff there is an i  ∈  I for which A  ∈  CnSALi () iff [by Lemma 9.2b] 
A is derived on an unmarked line l at stage g(P) with some condition   = 
∆1,  …,  ∆i,  ∅,  ∅,  … iff A is derived at an unmarked line at stage g(P).� 

Theorem 7.  Where   ⊆  W  : if   SAL  A, then A  ∈  CnSAL ().

Proof.  Suppose   SAL  A. By Definition 12, A is derived at an unmarked line l of 
a finite SAL-proof P from . Suppose we extend P to stage g(P). By Fact 1, if 
l is marked in this extension, then l is marked in every further extension of the proof, 
which contradicts the fact that A is finally derived at line l. Hence line l is 
unmarked at stage g(P). By Lemma 10, A  ∈  CnSAL().� 

Theorem 8.  Where   ⊆  W  : if A  ∈  CnSAL(), then   SAL  A.

Proof.  Suppose A  ∈  CnSAL(). By Lemma 10, (†) A is derived at an unmarked line l 
with condition ∆ at stage g(Pε). In view of Lemma 9.1 and the marking defini-
tions 11 and 13, we can infer that for all i  ∈  I and any SAL-proof P  from :
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 (†r) � where xi  =  r: ∆i  ∩  Ui(CnSALi+1 ())  =  ∆i  ∩   CU i g(P)()  =  ∆i  ∩   CU i g(P)()  =  ∅
(†m) � where xi  =  m: ∆i  ∩    =  ∅, for a   ∈  i(CnSALi  1())  =  Ci g(P)()  =  

Ci g(P)()

By the construction of stage g (P),   LLL  A  ∨  Dab(), whence by the compact-
ness of LLL, there is a   =  {B1,  …,  Bm}  ⊆   such that   LLL  A  ∨  Dab().

Let the SAL-proof P be constructed as follows. At line 1 we introduce the 
premise B1 by PREM, …, and at line m we introduce the premise Bm by PREM. 
At line m+1 we derive A by RC on the condition . Let s be the stage consist-
ing of lines 1 up to m+1.

Since   ⊆    ⊆  W, for every i  ∈  I, all Dabi-formulas that are derived at stage s 
(if any) are singletons C  ∈  i. Moreover, by the reflexivity of each logic SALi, 
for every such C, C  ∈  CnSALi  1(), whence also C  ∈  U i(CnSALi  1()) and C  ∈   
for every   ∈  Φi(CnSALi  1()). Hence for every i  ∈  I:

   (‡r)  CU i
s()  ⊆  U i(CnSALi  1())

   (‡m) 


C
i

s()  ⊆   for every   ∈  Φi(CnSALi  1())

By (†r), (†m), (‡r) and (‡m), we can infer that there is no i  ∈  I such that line m +1 
is i-marked at stage s. Suppose that line m+1 is marked in an extension P  of 
the proof. In that case, we may further extend the proof to stage g(P ). Hence 
in view of (†r) and (†m), line m+1 is unmarked in the second extension. By 
Definition 12, A is finally derived at stage s.� 

The adequacy of the proof theory from Section 5.   We now prove that also 
the second proof theory is sound and complete with respect to the consequence 
operation CnSAL.

First we have to show how we construct a complete stage g(P ) for a given 
SAL-proof P  from . Let again   =  {B1,  B2,  …}  =  {A  |    LLL  A}. For each Bi  ∈  
we have the following proof Pi :

l i1 A1 PREM 

 

l in An PREM 
l in+1 Bi l i1, …, l in; RU 

In case Bi is of the form A  ∨  Dab(∆) we extend the proof further. By Lemma 1 
there is a list {1,  2,  …} of all ’s that correspond to ∆. For each 

j
  =  

∆j 
1,  …,  ∆

j
 m,  ∅,  … we append a sub-proof P j

i    to Pi as follows:

l i1
, j

A ∨̌  Dab(∆
j 
2 ∪ … ∪ ∆

j
 m) l in+1;  RC1 ∆j 

1, ∅,  …

 

l i
, j
m1 A ∨̌  Dab(∆

j
 m) l i

, j
m1;  RCm1 ∆j 

1,  …,  ∆i
m1 , ∅,  …

l i
, j
m  A l i

, j
m  ;  RCm ∆j 

1,  …,  ∆i
m, ∅,  …
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We combine the proofs P, P1, P2, … by means of the construction in (3) to an 
extension of P  at stage g(P ).

Analogous to Fact 1 we get:

Fact 4.  The markings of the lines at stage g(P ) remain stable in every further 
extension of the proof at stage g(P ).

Lemma 11. Where Γ  ⊆  W and P  is a SAL-proof from Γ, we have for each i  ∈  I:

1. � Ci
g(P ) (Γ)  =  i (CnSALi  ˉ1 (Γ)) and hence CU i

g(P )(Γ)  =  U i(CnSALi  ̄ 1 (Γ)) and 
Ci

g(P ) (Γ)  =  i (CnSALi  ˉ1 (Γ));

2. � there is a [≤i]-line l with formula A and that is unmarked at stage g(P ) 
iff A ∈ CnSALi(Γ).

Proof.  “i = 1”: Ad 1. Immediate in view of Fact 3.
Ad 2. Case x1  =  r. There is a [≤1]-line l with formula A and condition  that 

is unmarked iff [by the construction of stage g(P ) and Definition 14] Γ  LLL 
A  ∨  Dab() and 

 
  ∩  CU 1

g(P )(Γ)  =  ∅, iff [by 1.] Γ  LLL  A  ∨  Dab() and  
  ∩  U 1 

(CnLLL(Γ))  =  ∅, iff [by Fact 3] Γ  LLL  A  ∨  Dab() and 
 

  ∩   
U 1(CnLLL(Γ)  =  ∅, iff [by Lemma 2 and 4] A  ∈  CnSAL1(Γ), iff A  ∈  CnSAL1 (Γ).

Case x1  =  m. The proof is similar and left to the reader.

“i  ⇒  i  +  1”: Ad 1. Where ∆  ⊆  i+1, we have: ∆  ∈  C
i
g
+
(P)
1
  (Γ) iff Dab(∆) is 

derived at an unmarked [≤i]-line and there is no ∆  ⊂  ∆ such that Dab(∆) is 
derived at an unmarked [≤i]-line, iff [by 2. and the induction hypothesis] 
Dab(∆)  ∈  CnSALi(Γ) and for no ∆  ⊂  ∆, Dab(∆)  ∈  CnSALi(Γ), iff [by Lemma 8] 
Dab(∆)  ∈  CnLLL(CnSALi(Γ)) and for no ∆  ⊂  ∆, Dab(∆)  ∈  CnLLL(CnSALi(Γ)), 
iff ∆  ∈  i +1(CnSALi(Γ)).

Ad 2. Case xi+1 = r. Let l be some [≤i+1]-line with formula A and condition . 
Suppose line l is unmarked. If l is a j-line with j  ≤  i we get A  ∈  CnSALi+1 (Γ) 
due to the induction hypothesis and Theorem 2. Thus, suppose l is i +1-line. 
We prove the statement by another induction on the number of steps j needed 
to derive A. “j  =  1”: Only premises can be introduced in one inference step, 
but this does not lead to a i +1-line. “j  =  2”: The proof looks as follows: A is 
derived by RCi+1 from some line l  at which some B is introduced as a premise 
and B  LLL  A  ∨  Dab(∆i+1). Since l is unmarked at stage g(P ), ∆i+1  ∩  CU

i
g
+
(P)
1
  (Γ) = 

∅ and hence by 1., ∆i+1  ∩  Ui+1(CnSALi(Γ))  =  ∅. By Corollary 2.1, A  ∈  CnSALi+1 (Γ). 
“j  ⇒  j  +  1”: Suppose A is derived with the justification l1,  …,  ln; R where R  ∈ 
{RU, RCi+1} and each line lk (where 1  ≤  k  ≤  n) features a formula Ak and a 
condition k. By the definition of RU and RCi+1, (†) A1,  …,  An  LLL  A  ∨ Dab(∆

i+1) 
for some (possibly empty) ∆

i+1  ⊆  ∆i+1  ⊂  i+1, and ∆
i+1  ∪  ∆1

i+1  ∪  …  ∪ ∆n
i+1  =  ∆i+1. 

Since l is unmarked, (a) by Definition 14 and 1., ∆
i+1  ∩  U i+1(CnSALi (Γ))  = 

∆
i+1  ∩  U

i
g
+
(P)
1
  (Γ)  =  ∅, (b) by the definition of inh-marking each of the lines lk is 

neither o-marked for any o  ≤  i nor inh-marked, (c) neither line lk is i+1-marked 
since ∆k

i+1  ⊆  ∆i+1 and by (a). By our induction hypothesis, (b) and (c),  Ak  ∈ 
CnSALi+1 (Γ) and by (†) and Lemma 8 also (‡) A  ∨  Dab(∆

i+1)  ∈  CnSALi+1 (Γ). By (a), 
¬̌Dab(∆

i+1)  ∈  CnSALi+1 (Γ) and hence by Lemma 8 and (‡), A  ∈  CnSALi+1(Γ).
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For the other direction suppose A  ∈  CnSALi+1 (Γ). By Corollary 2.1 there is a  
∆  ⊆  i+1 for which A  ∨  Dab(∆)  ∈  CnSALi (Γ) and ∆  ∩  Ui+1(CnSALi (Γ))  =  ∅. By 
the induction hypothesis there is an unmarked [≤i]-line l at which A  ∨  Dab(∆) 
is derived on some condition . By the construction of stage g(P ) there is a 
line l  with formula A, justification l; RCi+1 and condition ∆

1
,  …,  ∆i,  ∆,  ∅ , …. 

Since by 1., ∆  ∩  CU
i
g
+
(P)
1
  (Γ)  =  ∅, line l is not marked according to the i+1-marking 

with Reliability. Moreover, since l is unmarked, l is also not inh-marked.
Let xi+1  =  m. The proof is similar and left to the reader.� 

Since A  ∈  CnSAL(Γ) iff there is an i  ∈  I such that A  ∈  CnSALi(Γ), we get by item 2 
of the previous lemma:

Corollary 4.  Where Γ  ⊆  W and P  is a SAL-proof from Γ: A  ∈  CnSAL(Γ) iff A 
is derived at an unmarked line at stage g(P ).

Theorem 9.  Where Γ  ⊆  W: if Γ   Sbu
AL  A then A  ∈  CnSAL (Γ).

Proof.  Suppose Γ   Sbu
AL  A. Hence, there is a finite SAL-proof P  in which A is 

finally derived at some line l. We extend P  to stage g(P ). By Definition 12 
and Fact 4, line l is unmarked and hence A  ∈  CnSAL (Γ) by Corollary 4.� 

Suppose A is derived at an unmarked line at stage g(P). Let ∆  =  {1,  2,  …} 
be the set of conditions on which A is derived at stage g(P) at an unmarked 
line. We say that  is a minimal sequence for A iff   ∈  min≺(∆) where ≺ is 
the partial order defined as follows:   ≺   iff there is a k  ∈  I such that (i) for 
all j  ∈  I for which j  >  k, ∆j  =  j, and (ii) ∅  =  ∆k  ⊂  k.22 Obviously,

Fact 5.  If A is derived at an unmarked line at stage g(P), then there is a 
minimal such sequence for A (there may be many).

Lemma 12. Where   =  1,  …,  m,  ∅ ,  … is a minimal sequence for A: there 
are no l, k  ≤  m such that l  ≤  k, {A}  ∪  l  ∪  …  ∪  m  ⊆  k, and k  ≠  ∅.
Proof.  Assume there are l and k such that {A}  ∪  l  ∪  …  ∪  m  ⊆  k, l  ≤  k and 
k  ≠  ∅. Case k  <  m: Evidently also (†) {A}  ∪  k+1  ∪  …  ∪  m  ⊆  k. Since, by 
the construction of stage g(P) and Lemma 11.2, A  ∨  Dab(k+1  ∪  …  ∪  m)  ∈ 
CnSALk (Γ), by Corollary 3 and (†) also A  ∨  Dab(k+1  ∪  …  ∪  m)  ∈  CnSALk1 (Γ). 
Hence, by Lemma 11.2, there is an unmarked [≤  k−1]-line at stage g(P) at 
which A  ∨  Dab(k+1  ∪  …  ∪  m) is derived on some condition ∆1,  …,  ∆k1, 
∅, …. Note that also   =  ∆1,  …,  ∆k1, ∅, k+1,  …,  m, ∅ , … is a sequence 
for A. But then,   ≺   since (i) for all i  >  k, ∆i  =  i and (ii) ∅  =  ∆k  ⊂  k. Thus, 
 is not a minimal sequence for A, — a contradiction.

Case k = m: Evidently also A  ∈  m. Since by Lemma 11.2, A  ∈  CnSALm
(Γ), by 

Corollary 3, also A  ∈  CnSALm1 (Γ). Hence, by Lemma 11.2, there is an unmarked 
[≤ m−1]-line at stage g(P) at which A is derived on a condition   =  ∆1,  …, 

22  E.g., where ∆1, ∆2, ∆3, ∆4 ≠ ∅, we have ∆1, ∆2, ∆3, ∅, ∅, … ≺ ∆1, ∅, ∆3, ∆4, 
∅, ∅, … and ∆1, ∅, ∅, ∆4, ∅, ∅, … ≺ ∆2, ∆3, ∅, ∆4, ∅, ∅, ….
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∆m1, ∅ , …. Note that also  is a sequence for A. But then   ≺   since 
(i) for all i  >  m, ∆i  =  i  =  ∅, and (ii) ∅  =  ∆m  ⊂  m. Thus,  is not a minimal 
sequence for A, — a contradiction.� 

Theorem 10.  Where Γ  ⊆  W: if A  ∈  CnSAL(Γ) then Γ   Sbu
AL  A.

Proof.  Suppose A  ∈  CnSAL (Γ). Hence by Corollary 4, A is derived at an unmarked 
line at stage g(P). Let (†)   =  1,  …,  n,  ∅ ,  … be a minimal sequence for A. 
Since LLL A  ∨  Dab(1  ∪  …  ∪  n) and by the compactness of LLL, there are 
B1,  …,  Bo  ∈  Γ such that {B1,  …,  B0}  LLL  A  ∨  Dab(1  ∪ …  ∪  n). We now con-
struct a SAL-proof P for A as follows:

1 B1 PREM 

 
o B0 PREM 

o + 1 A  ∨  Dab(1   ∪  …  ∪  n) 1, …, o; RU 

 

o +  n A  ∨  Dab(n) o+n 1; RCn 1 1,  …,  n 1
o + n + 1 A o+n; RCn 1,  …,  n

Let s be the stage of our proof. Since Γ  ⊆  W, the only Dab-formulas in {B1,  …, 
Bo} are abnormalities and hence for every j  ∈  I, {B1,  …,  Bo}  ∩    j  ⊆  CU

j
g(P )(Γ)  = 

CU
j
g(P)(Γ); and for every   ∈  C

j
g(P )(Γ)  =  C

j
g(P)(Γ), {B1,  …,  Bo}  ∩   j  ⊆  .

By Lemma 12 and (†), for all j  ≤  n there is no j-Dab-formula at any line o + j  
where j   ≤  j and j  ≠  ∅. From these facts, one can easily infer that line o + n + 1 
is unmarked.

Suppose line o + n + 1 is marked in an extension of the proof resulting in the proof 
P . We can extend the proof further to stage g(P ). That line o + n + 1 is unmarked 
is an immediate consequence of the construction of line o + n + 1, (†), and the 
fact that by Lemma 11 C

j
g(P) (Γ)  =  C

j
g(P) (Γ) and CU

j
g(P)(Γ) = CU

j
g(P) (Γ).� 
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