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a finitary CalCulus with a syntaCtiC 

Cut-elimination proCedure

Francesca Poggiolesi and Brian Hill

aBstract

In this paper we present a finitary sequent calculus for the S5 multi-modal system 
with common knowledge. The sequent calculus is based on indexed hypersequents 
which are standard hypersequents refined with indices that serve to show the multi-
agent feature of the system S5. The calculus has a non-analytic right introduction 
rule. We prove that the calculus is contraction- and weakening-free, that (almost all) 
its logical rules are invertible, and finally that it enjoys a syntactic cut-elimination 
procedure. Moreover, the use of the non-analytic rule can be restricted so that the 
calculus can be considered as suitable for proof search. 

1. Introduction

Common knowledge is a key feature of multi-agent systems of knowledge 
which was first discussed by [14] and [5]. The books [10] and [15] provide 
an excellent introduction to logics of knowledge in general and of common 
knowledge in particular.

The common knowledge operator is standardly interpreted as the infinite 
conjunction “all agents know A, and all agents know that all agents know 
A and so on”. From a syntactic point of view, the traditional way to capture 
common knowledge is by means of Hilbert-style systems comprising of a 
fixed point axiom, which states that common knowledge is a fixed point, 
and an induction rule that states that this fixed point is the greatest fixed 
point. From a semantic point of view, the common knowledge operator is 
formally defined as the modality of reachability that uses accessibility edges 
corresponding to any of the knowledge operators for the agents.

In this paper we consider common knowledge from the perspective of 
Gentzen-style sequent calculi. Whilst considerable progress has been made 
in developing other sorts of calculi for common knowledge, such as tableaux 
systems [1, 12], the situation regarding Gentzen-calculi is not entirely satis- 
factory. Two sorts of calculi have been explored: finitary calculi, for exam-
ple in [4, 13] and infinitary calculi, for example [2, 22, 7]. (Whilst we 
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concentrate on the literature on common knowledge, there have been related 
developments in the study of proof systems for the modal mu-calculus  
and fixed points logics more generally, for example [3, 17, 16, 8, 9].) None 
of the finitary systems presents a syntactic cut-elimination procedure; cut-
elimination, if it is established, is proved indirectly by showing completeness 
of the cut-free system. Among the cited infinitary systems, only [7, 17, 16, 8] 
propose a cut-elimination procedure.

The aim of this paper is to develop a Gentzen-style calculus for common 
knowledge that is composed of a finite set of finitary rules, but that never-
theless admits a syntactic cut-elimination procedure. The proposed calculus 
has other desirable structural properties, in particular the admissibility of 
all the structural rules and the invertibility of (all but one) logical rules. 
However, in the light of the difficulties in finding Gentzen-style sequent 
calculi for common knowledge [2], these advantages come at a price: the 
rule that introduces the common knowledge operator on the right side of 
the sequent is non-analytic, i.e. there is a principal formula B in the prem-
ises of the rule that does not occur in the conclusion.1 In order to mitigate 
this shortcoming, we note that one can always identify a pair of possibly 
appropriate principal formulas B for any given application of the AR rule; 
as such, the calculus retains much of the interest of a fully analytic calculus 
as regards proof search.

The calculus proposed in this paper is for the modal logic S5 plus com-
mon knowledge. Since the system S5 is used to formalise knowledge, this 
logic is the most appropriate for possible applications in the domain of 
common knowledge. However, we underline that many of the main results 
in this paper (and specifically, the central results in Sections 3-5) are not 
S5-dependent, i.e. they could be straightforwardly adapted to other normal 
modal systems, by exploiting the sequent calculi for these systems intro-
duced in [21].

The calculus introduced in this paper is based on indexed hypersequents. 
Hypersequents were used in [19] in order to construct a cut-free sequent 
calculus for the system S5. Then hypersequents were refined by adding 
indices in order to build a cut-free sequent calculus for the multi-agent ver-
sion of the system S5 [20]. We exploit this last result as a base for building 
a sequent calculus for S5 plus common knowledge. In the papers [19] and 
[20], the intuitive ideas that are behind hypersequents and indexed hyper-
sequents are fully explained, and shall not be repeated here; instead, we 
focus on their formal interpretation.

The paper is organised as follows. In the next section we present the 
calculus for S5 with common knowledge, while in Section 3. we show the 

1 For this reason, the cut-elimination result may be considered to be ‘partial’; see Section 6. 
for further discussion.
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admissibility of the structural rules and the invertibility of (almost all) log-
ical rules. In Section 4. we prove that the calculus is sound and complete 
with respect to the Hilbert system for common knowledge. In Section 5., 
we present a syntactic cut-elimination procedure for our calculus, and in 
Section 6. we show that for any given application of the AR rule, the prin-
cipal formula can be restricted to one of two formulas.

2. The calculus HS5C

Definition 1. We consider a language h
  with h agents for some (finite) 

h > 0. The set of agents is denoted by F; in order to denote agents, we will 
use the letters a, b, c, d. Propositions S are atoms. The set of atoms is 
denoted by Y. Formulas are denoted by capital letters A, B, C, D. They are 
given by the following grammar:

 :: | | ( ) | |= zA S A A A A AØ Ù A

where z Î F, the formula z A  is read as “agent z knows A” and the formula 
AA is read as “A is common knowledge”. The other propositional connec-
tives, as well as the (dual) modal operators are defined as usual. We will 
use the formula A  as an abbreviation for “everybody knows A”:

 1= ... hA A AÙ Ù  

Definition 2. In what follows we will use the following syntactic conventions:
• M, N,…: finite multisets of formulas,
• G, D, …: classical sequents,
• G, H, …: indexed hypersequents,…
• a, b, …: finite (perhaps empty) sets of indices of the form nz, where n Î N 

and z Î F, and, for each set a and for each z Î F, there exists at most 
one index nz Î a. So, for instance, a could be the set {1a, 1b, 2c}, but 
{1a, 2a} is not a legal set of indices.

We use anz to denote the set of indices (understood to satisfy the property 
just mentioned) formed by adding the index nz to a. This notation serves 
to draw the reader’s attention to the index nz. We use || ||H  to denote the 
union of all the sets of indices contained in the hypersequent H. Classical 
sequents are defined in the standard way (i.e. they are objects of the form 
M NÞ ); indexed hypersequents are defined as follows.

Definition 3. An indexed hypersequent is a syntactic object of the form:

 1 1 1 2 2 2: | : | | : nnnM N M N M Na a aÞ Þ Þ
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where i iM NÞ  (i = 1, …, n) is a classical sequent, ai is a finite set of indexes 
as defined above, and, for all m p, 1 £ m, p £ n and m p¹ ,

1. pma aÇ  contains at most one element;
2. there exists a sequence 1, ..., qk k  with 1 =k m and =qk p, and for all r, 1 £ 

r < q, 1r rk ka a +Ç  ¹ Æ. 
3. there does not exist a sequence of indexed sequents 1 1 1 2: | :P Qb bÞ
P Q2 2 |Þ  … | :q q qP Qb Þ  such that: 
− for each pair of indexed sequents :r r rP Qb Þ , 1 1 1:r r rP Qb + + +Þ , with 

1 £ r < q, 1r rb b +Ç  contains one element; 
− 1 1 1: P Qb Þ  is the same sequent as :q q qP Qb Þ .

Let us call disconnected indexed hypersequent, for short dih, an indexed 
hypersequent that satisfies 1 and 3, but not necessarily 2. We use the same 
syntactic notation for DIH as for indexed hypersequents, without risk of 
confusion.

As a point of notation, empty sets of indices may be omitted (e.g. we write 
G rather than :Æ G). Moreover, with slight abuse of notation for a indexed 
sequent :a G and an indexed hypersequent H, we write : Ha GÎ  to express 
the statement that :a G  appears in H.

Definition 4. For : iia G  an indexed sequent belonging to an indexed hyper-
sequent H, define the set of all the indexed sequents belonging to H that have 
at least one common index with : iia G  as follows:

 : { : | }=i i j j jiHa a a aGS G Î Ç ¹ Æ

Definition 5. Given an indexed hypersequent H containing a sequent : iia G , 
we define:

 11 1 11 1\ : = : | | : | : | | :i ni i i ii nH a a a a a+- - +G G G G G¢ ¢ ¢ ¢ 

where \jj ia a a=¢ . That is \ :i iH a G  is the result of dropping, from H, the 
sequent : iia G  and each of the indices belonging to ia  that occur in other 
indexed sequents of H. Note that \ :i iH a G  is a DIH. 

For any , jia a  with a single common element nz, we use ( , )jif a a  to 
denote the agent z.

Definition 6. The interpretation t of a DIH H rooted at :,: ( )
i ii i H t

aa GG  is 
inductively defined as follows:

• if H = iG  or H = |i GG , and iG  = M NÞ , then ( ) iH M Nt
G = ®Ù Ú  
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• if 1 1: | ... | : | ... | :n ni iH =a a aG G G , then :( ) i iH t
a G  =

 
:

( , ) :
:

( ) ( \ : )
i i

j ji j i
j j

i f i iH
a

t t
a a a

a
a

G

G G
G Î S

G Ú GÚ 

Definition 7. The interpretation of an indexed hypersequent H is defined in 
the following way:

 :
:

( ) = ( ) i i
ii H

H H tt
a

a
G

G Î
Ù

We have thus introduced the notion of indexed hypersequent and its syn-
tactic interpretation. In order to introduce the calculus HS5C which exploits 
indexed hypersequents, we require the following definitions.

Definition 8. For any pair of sets of indices a, b,

 = { | , }nz m mzab b aÎ $ Î ÎN

Moreover, for any nz Î ab , call the corresponding element in a (if it exists), 
n za .

Finally,
 1 1 1 1= ( )[ / ]l l l ln z n z n z n za aa b a b+ È  

where 1 1= { , , }l ln z n zab  .

Definition 9. Let H be a DIH, and let a and b be sets of indices. We define 
/Ha b  as follows:

 / 1 1 1 1= [ / ]l l l lH H m w m w m w m wa b a a 

where 1 1= { , , }l lm w m wab  . For a set of indices g, /a bg  is defined similarly.

In the previous definitions, the substitution of indices for indices in an 
indexed hypersequent is defined in the standard way, and the standard nota-
tion is used.

The rules of the calculus HS5C are given in Figure 1. Note that, despite the 
restriction, the cut rule is indeed general as standard, due to the possibility 
of renaming indices which will be shown in Lemma 1 below.

As remarked in the Introduction, the rule AR is non-analytic: B does not 
appear in the conclusion. We shall discuss some consequences of this in 
Section 6. Note that a similar rule has been studied in the literature on 
temporal logics [18], using semantic techniques.
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Figure 1: The calculus HS5C
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3. Admissibility of the Structural Rules

In this section we show which structural rules are admissible in the calculus 
HS5C. Moreover, we prove that the propositional rules, the modal rules and 
the rules AL1 and AL2 are invertible. The cut-elimination proof is given in 
the Section 5.

Definition 10. For a formula A, we define its complexity, dg(A), as follows:

• ( ) 0dg S =
• ( )zdg A

 = ( )dg AØ  = ( ) 1dg A +  
• ( )dg A BÙ  = ( ( ), ( )) 1max dg A dg B +  
• ( )dg AA  = ( ) 1dg A h+ +  

Definition 11. We associate to each derivation d in HS5C three natural 
numbers h(d ) (the height of d), crk(d ) (the cut-rank of d), and prk(d ) (the 
pr-rank of d). The height corresponds to the length of the longest branch in 
a tree-derivation d, minus one. The cut-rank corresponds to the complexity 
of the cut-formulas in d. crk(d ) is the smallest n Î N such that each cut-
formula A occurring in d is such that dg(A) <  n. If crk(d ) = 0, then d is a 
cut-free derivation. Finally the pr-rank corresponds to the maximal number 
of applications of the rule AR in any branch of a tree-derivation d. We omit 
the standard inductive definitions of height and cut-rank of a derivation [23]. 

Definition 12. d ,
n
p qG  means that d is a derivation of G in HS5C, with 

h(d ) £ n, crk(d ) £ p and prk(d ) £  q. We write ,
n
p q Gá ñ

á ñ , for: “there exists a 
derivation d in HS5C such that d ,

n
p qG .” 

Definition 13. An inference rule R with premises 1, ..., nG G  and conclusion H 
is height-, cut-rank- and pr-rank-preserving admissible in the calculus HS5C 
if, whenever ,

n
p q iGHS5C , for each premise iG , then ,

n
p q HHS5C . For 

each rule R, we denote its inverse, which has the conclusion of R as its 
only premise and any premise of R as its conclusion, by R . An inference rule 
is height-, cut-rank- and pr-rank-preserving invertible in the calculus HS5C 
if R  is height-, cut-rank- and pr-rank-preserving admissible in HS5C. 

Lemma 1. For any indexed hypersequent G, if G is derivable in HS5C, 
then 1 1 1 1[ / ]k k k kG n z n z n z n z¢ ¢   is also derivable with the same height 
and the same cut- and pr-rank, provided that 1 1 1 1[ / ]k k k kG n z n z n z n z¢ ¢   is 
an indexed hypersequent (i.e. that it respects the conditions 1. and 3. of 
Definition 3). 

Proof. By straightforward induction on the height of the derivation. 
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Lemma 2. Indexed hypersequents of the form | : , ,G A M N Aa Þ , with A 
an arbitrary formula, are derivable in HS5C. 

Proof. By straightforward induction on A. 

Lemma 3. In the calculus HS5C the following holds:

1. The rules of internal weakening and indices weakening (Figure 2) are 
height-, cut-rank- and pr-rank- admissible. 

2. The rules of external weakening and merge (Figure 3) are height-, cut-
rank- and pr-rank- admissible. 

3. The propositional and modal rules, as well as the rules AL1 and AL2 are 
height-, cut-rank- and pr-rank- invertible. 

Proof. (i) and (ii) follow from a standard induction on the height of the 
proof. The same works for the propositional rules, and the rule z R  in (iii). 
As an illustrative example of this, let us consider the height-, cut-rank- and 
pr-rank- invertibility of the rule z R  in case the premise has been derived 
by the rule A. We have the following situation:2

2 The symbol  means: the premise of the right side is obtained by induction hypothesis 
on the premise of the left side.

Figure 2: Internal Weakening and Indices Weakening

Figure 3: External Weakening and Merge
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The inverses of the rules 1zL , 2zL , AL1 and AL2 are just internal weaken-
ings. 

Note that, for the rule of indices weakening, since the conclusion is an 
indexed hypersequent, there is an implicit restriction on the application of 
the rule to cases where the conditions 1.-3. in Definition 3 are respected.

In order to show the admissibility of the contraction rules, we firstly need 
to prove the following lemma.

Lemma 4. The rule AR permutes down with respect to all the other rules 
of the calculus HS5C.

Proof. The proof is straightforward. Let us anyway make an example of 
permutation with the one-premise logical rule ØR, we have:

 

 

Lemma 5. In the calculus HS5C the contraction rules

are cut- and pr-rank admissible.

Proof. The proof is by induction on the height of the derivation of the 
premise. The cases of the propositional rules and the rules 1zL , 2zL , AL1 
and AL2 are straightforward. The case of the rule z R  is also straightfor-
ward, using the rule of merge. We analyse the following critical case:
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We go up the derivation d1 to the point where the formula AA has been 
introduced. There we have several possibilities.

case 1. The formula AA comes from an initial indexed hypersequent.
case 1a. the initial indexed hypersequent is of the form | : , ,G S M Na Þ¢ ¢ ¢
B¢, S, AA. We take the initial indexed hypersequent obtained by removing 
the occurrence of the formula AA, and continue the derivation d1 + AR 
as before. case 1B. The initial indexed hypersequent is of the form 

| : , , ,G A M N B Aa Þ¢ ¢ ¢ ¢A A . Let us denote this initial indexed hypersequent 
by H. case 1B1. =B B¢ . We consider the initial indexed hypersequent H¢ 
obtained from H by removing the occurrence of the formula B, and con-
tinue the derivation d1 as before, without applying the rule AR at the end. 
case 1B2. B¢ ¹ B, so B has been constructed in the course of the derivation 
d1. We consider the initial indexed hypersequent H² obtained from H by 
removing all formulas, indices and indexed sequents that are used only to 
construct B, and develop the derivation d1 as before omitting those infer-
ence rules that gave rise to the formula B. We no longer need to apply the 
rule AR.

case 1c. The initial indexed hypersequent is of the form | : ,G C Ma Þ¢ ¢A

¢ ¢N C B A, , ,A A . The case can be solved as Case 1a.
case 2. The formula AA comes from the rule AR, so we have:

Using Lemma 4, we permute down the application of the rule AR to obtain 
a derivation of | : , ,G M N B Da Þ . Applying the rule ÚR3 on this indexed 
hypersequent we obtain (i) | : ,G M N B Da Þ Ú . From D AÞ   and 
B AÞ  , by application of the rule ÚL, we obtain (ii) D B AÚ Þ . From 
D DÞ  and D BÞ , by weakening and LÚ , we get ,D B D BÚ Þ   . 
From ,D B D BÚ Þ   , we can derive (iii) ( )D B D BÚ Þ Ú . We use 

3 The rule ÚR, as well as the rule ÚL, can be straightforwardly formulated on the basis 
of the other propositional rules. 
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(i), (ii) and (iii) to obtain, by means of the rule AR, the conclusion 
| : ,G M N Aa Þ A . 

4. Adequateness Theorem

In this section we show that the calculus HS5C proves exactly the same 
formulas as its corresponding Hilbert-style system S5C. The Hilbert system 
S5C is fully described in [10, Ch 3].

Theorem 4.1. For all indexed hypersequents G and for all formulas A,

1. if  G in HS5C, then ( )G t  in S5C.
2. if  A in S5C, then AÞ  in HS5C. 

Proof. The proof of (i) is relatively standard (it is similar to [21, Lemma 5.1]). 
In order to acquaint the reader with the calculus HS5C, we give as exam-
ples the proofs of the fixed point axiom and the induction rule; rest of (ii) 
is similar.

− fixed point axiom4

− induction rule

  

5. Cut-elimination

In this section we prove that the cut-rule is eliminable in the calculus HS5C. 
In the next section we discuss the non-analyticity of rule AR.

4 We use the notation * *
1 ... n+ +R R  to mean repeated applications of the rules R1, …, Rn.  

We take this notation for granted in what follows.
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Lemma 6. If

and d1 and d2 do not contain any application of the cut-rule, then we can 
construct a derivation of /| | : , ,G H M P N Qa b a b+ Þ  with no application 
of the cut-rule. 

Proof. The proof is developed by induction on the pr-rank of the derivation, 
with subinduction on the complexity of the cut-formula, and with a third 
subinduction on the sum of the heights of the derivations of the premises 
of the cut-rule. We distinguish cases according to the last rule applied on 
the left premise.

case 1. | : ,G M N Aa Þ  is an initial indexed hypersequent. Then either 
the conclusion is also an initial indexed tree-hypersequent, or the cut can 
be replaced by various applications of the rules IW, IndW and EW on the 
right premise | : ,H A P Qb Þ , and renaming of indices (Lemma 1).

case 2. | : ,G M N Aa Þ  is inferred by a rule R in which A is not prin-
cipal. This case can be standardly solved by induction on the sum of the 
heights of the derivations d1 and d2.

case 3. | : ,G M N Aa Þ  is inferred by a rule R in which A is the prin-
cipal formula. We distinguish three subcases: in the first subcase, 3.1., R is 
a propositional rule, in the second subcase, 3.2., R is a modal rule, in the 
third subcase, 3.3., R is a common knowledge rule.

case 3.1. This case can be solved by applying Lemma 3 on the right 
premise, and by replacing the previous cut with one (or two, in case of the 
rule ÙR) which is (are) eliminable by induction on the complexity.

case 3.2. R is z R  and A = z B . Consider the last rule R¢ of d2. If no 
rule R¢ introduces | : ,zH B P Qb Þ  because | : ,zH B P Qb Þ  is an 
initial indexed hypersequent, then we can solve the case as in the case 1. If 

z B  is not principal in the rule R¢, then we can solve the case as in the case 2. 
If z B  is the principal formula of the rule R¢, then there are two cases: 
3.2.1. R¢ is 1zL , and 3.2.2. R¢ is 2zL . We consider first 3.2.1. We have5

5 Note that we analyse the case where the index nz only appears in the displayed sequents 
M NÞ  and BÞ  in the premise of R. The case where nz Î || ||G  is dealt with analogously.
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which we reduce to

where * *| : , zG M N Ba Þ   is the result of renaming the indexed hyper- 
sequent | : , zG M N Ba Þ   so that || ||G aÈ , * *|| ||G aÈ  and || ||H bÈ  are 
mutually disjoint. We assume this notation in all the cases below.

The first cut is eliminable by induction on the sum of the heights of the 
derivations of the premises of the cut-rule, while the second cut is elimi-
nable by induction on the complexity of the cut-formula. Moreover, since 

*( ) =a a b a b+ + +  and * * // /( )( ) =H Ha ba b a a b+ , only repeated applications 
of merge and contraction to G and *

*
/( )Ga a b+  are required to obtain the  

conclusion.
As concerns case 3.2.2 (R¢ is 2z L ), we have:

which we reduce to

By repeated applications of merge and contraction, an observation similar 
to that in the previous case, and an application of Lemma 1, we obtain the 
desired conclusion.

The first cut is eliminable by induction of the sum of the heights of the 
derivations of the premises of the cut-rule, while the second cut is elim-
inable by induction on the complexity of the cut-formula.

case 3.3. R is AR and A = AB. Let us suppose that AB is the principal 
formula of the rule R¢; the other cases are treated as in 3.2. There are two 
subcases: 3.3.1. R¢ is AL1, and 3.3.2. R¢ is AL2. In the former case, we 
have:
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which we reduce to

where the conclusion is obtained in a similar way to case 3.2 above. The 
cutC is eliminable by induction on the pr-rank, the cut

AB is eliminable by 
induction on the sum of the heights of the derivations of the premises of 
the cut-rule, and the Bcut



 is eliminable by induction on the complexity of 
the cut-formula.

We now consider case 3.3.2 (R¢ is AL2), where we have:

We go up the derivation d2 to the first rule R² that is not a AL2 rule applied 
to some of the AB’s. We distinguish three cases. 

• The premise of R² is an initial indexed hypersequent, call it I. If the 
formula AB is not the principal formula in I, then even the conclusion of 
the cut is an initial indexed hypersequent and the case is solved. If the 
formula AB is the principal formula, then I contains an indexed sequent 

: , ,Z B W Bd Þ¢ ¢A A .6 So the conclusion of the cut has the following form 
/ //| | : , , | : | : ,G H M P N Q Z W Z W Ba b a ba ba b g d¢¢ ¢ ¢+ Þ Þ Þ A .

 By the condition 2 of Definition 3 we know that the set of indices b and 
d in I are linked by a chain of indices 1 1,..., m mn i n i . We now build the fol-
lowing derivation.

6 We consider the case where this sequent is in H ¢, the case where it is : ,B Z Wg ÞA  
is treated similarly.
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where the derivation is continued with the same succession of inferences to 
obtain as conclusion the indexed hypersequent 1 1 : |...| :m mn i C n i CÞ Þ , 
where 1 1, ..., m mn i n i  are exactly those indices that link the sets b and d in 
I. The cuts in this derivation are eliminable by induction on the pr-rank. 
We finish solving the case with the following derivation; the cut is also 
eliminable by induction on the pr-rank.

• None of the AB are principal formulas of R². This case is treated simi-
larly to case 2.

• R² = AL1 and has (any of the) AB as principal formula. If the principal 
formula AB of the rule belongs to the indexed sequent : ,B P Qb ÞA , 
then we apply the rule AL2 n times on the premise of the AL1 and then 
operate as in case 3.3.1. Now consider the case where the principal for-
mula does not belong to this indexed sequent. First, in a way analogous 
to the previous item, we construct a derivation of the indexed hyper- 
sequent 1 1 : | ... | :m mn i C n i BÞ Þ  . Then we apply the rule AL2 n times 
on the premise of the rule AL1 to obtain the indexed hypersequent 

| : , | : | : ,H B P Q Z W B Z Wb g dÞ Þ Þ¢¢ ¢ ¢A  .7 We proceed with the 
following cuts:

where the former cut is eliminable by induction on the pr-rank, and the 
latter by induction on the sum of the heights of the derivations of the 
premises of the cut-rule.
Renaming and applying the cut-rule on the conclusions of these cuts, with 
principal formula B , we obtain the indexed hypersequent:

* * *
/ / /

** /

* ( ) / ( ) / ( ) //

*( ) //1 1 /

| | ( ) | ( ) : , , |

: | ... | ( ) : | ( ) :

m m m m m m

m m

n i n i n i

n i m m

G G H M P N Q

n i M N Z W n i Z W

a b a b a b

a b

d d da b

da b a b

a b a

g d

¢¢ + Þ +

¢ ¢Þ Þ + Þ

7 the B  could belong to the indexed sequent *: Z Wg Þ , instead of to the sequent 
*: ,Z W Bd Þ¢ ¢ A . The case is solved in the same way.
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This cut is eliminable by induction on the complexity of the cut-formula. 
We obtain the desired conclusion by renaming indices and several appli-
cations of the rules of merge and contraction.



The following theorem follows immediately from Lemma 6 by induction 
on the number of cuts.

Theorem 5.1. Every derivation d in HS5C can be effectively transformed 
into a derivation d ¢ where there is no application of the cut-rule.

6. Discussion and refinements

The calculus thus admits a syntactic procedure for eliminating cuts. How-
ever, given the non-analyticity of the AR rule, cut-elimination does not 
imply the subformula property. Moreover, one might consider this to be a 
partial cut-elimination result,8 insofar as some “cut-like” elements are “built 
into” the AR rule.

In reply to this worry, we show that all applications of the AR rule may 
be restricted.9 To this end, we shall first define several notions of disjunctive 
normal form, as follows:

 

:: | | | |=
:: | | |=
:: | | |=
:: |=
:: | | |=
:: |=

z

z

z z

Form S Form Form Form Form Form
MForm S MForm MForm MForm MForm
Lit S S Term Term
Term Lit Term Term
MClause Term Form Form MClause MClause
MDNF MClause MClause MClause
CKClaus

Ø Ù
Ø Ù
Ø Ø Ø Ø

Ù
Ø Ù

Ú

A

A A





 

:: | | |=
:: |=

e Term MForm MForm CKClause CKClause
CKDNF CKClause CKClause CKClause

Ø Ù
Ú

A A

Form are just the formula of the language (we recall this definition as a 
reminder to the reader), and MForm (for Modal Formulas) are the formulas 
containing no occurrences of A. Formulas in Modal Disjunctive Normal 
Form (MDNF) are essentially formulas such that all modal subformulas 

8 Partial cut-elimination results (eg. [2]) show that, as concerns the derivation of a given 
formula, all except a certain class of cuts can be eliminated.

9 The proof of this fact is, contrary to all the others, of a semantic nature. Given the 
difficulty of the problem, we already are satisfied of our result. An alternative syntactic proof 
of the same fact will be subject of future work.
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(i.e. not containing occurrences of A) outside the scope of A are in normal 
form, but any formulas are allowed inside the scope of A. It is essentially 
the standard notion of normal form for modal logic, applied only to the 
operators z (ie. formula of the form AA that do not occur in the scope 
of a A are treated as propositional atoms). Formulas in Common Knowl-
edge Disjunctive Normal Form (CKDNF) are formulas of MDNF with the 
added restriction that there are no embedded occurrences of A: inside every 
occurrence of A are only formulas not containing A, which are themselves 
disjuncts of a MDNF. It is straightforward to show that, for any formula A, 
there is an equivalent modal disjunctive normal form – call it AMDNF – and 
an equivalent common knowledge disjunctive normal form – call it ACKDNF.

Proposition 1. Any formula A is equivalent to a formula AMDNF which is in 
MDNF and to a formula ACKDNF which is in CKDNF. 

Proof. To prove both clauses together, we shall employ the same technique: 
we essentially “take out” the CK formulas that are required, and then 
apply the normal form theorem for modal logic, treating the formula of 
the form AA as propositional atoms. To this end, we introduce the follow-
ing definitions.

The modal depth of an occurrence of A is the number of occurrences of 
z in whose scope it is, and the CK depth of an occurrence of A is the 
number of occurrences of A in whose scope it is, plus one. (So the CK 
depth of the occurrence of A in Ap is 1.) The modal depth of a formula is 
the sum of the modal depths of all occurrences of A that are of CK depth 
one in the formula. The CK depth of a formula is the sum of the CK depths 
of all occurrences of A of depth strictly greater than one.

For the case of AMDNF we operate by induction on the modal depth of the 
formula. If the modal depth is n > 0, then there exists an occurrence of A 
in the scope of a z; without loss of generality, we can take occurrences 
such that we have a subformula zB where the occurrence of A in B is not 
in the scope of any occurrence of z or A. Hence, applying recursively the 
following standard equivalences of S5C – z C CºA A , z C CØ º ØA A , 

( ) z zz C D C DÙ º Ù   , ( )z zC D C DÚ º ÚA A  , ( )z C D CØ Ú º Ø ÚA A  
zD – one obtains an equivalent formula where the occurrence of A is not 
in the scope of the z. Replacing the initial subformula by this formula, one 
obtains a formula of modal depth less than n, as required. By this procedure 
one obtains a formula A¢ equivalent to A of modal depth zero. We now 
apply the normal form theorem for modal logic [11], and treating subfor-
mulas of the form AB where the occurrence of A is of CK depth one as 
propositional atoms; note that, since A¢ is of modal depth zero, no such 
formulas occur in the scope of a z. It is straightforward to see that the 
formula obtained, which is equivalent to A, is in MDNF, as required.
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For the case of ACKDNF, we begin with the MDNF formula AMDNF and 
operate by induction on the CK depth of the formula. If the CK depth is 
n > 0, then there exists an occurrence of A of CK depth one with an occurrence 
of A in its scope; take any ‘outermost’ occurrence of A in its scope. Applying 
recursively the equivalences cited above inside the scope of A as well as the 
following standard equivalences of S5C – C CºAA A , C CØ º ØA A A , 

( )C D C DÙ º ÙA A A , ( )C D C DÚ º ÚA A A A , ( )C D C DØ Ú º Ø ÚA A A A  
– one obtains an equivalent formula where the inner occurrence of A is 
eliminated. Replacing the initial subformula by this formula, one obtains a 
formula of CK depth less than n, as required. By this procedure one obtains 
a formula A¢ equivalent to A of CK depth zero. Since A¢ is of modal depth 
zero, there are no occurrences of A in the scope of a A; hence, applying 
once again the normal form theorem for modal logic [11] (and treating 
subformulas with AB as propositional atoms), one obtains a formula obtained 
equivalent to A that is in CKDNF, as required. 

For a formula A, AMDNF is the disjunction of clauses D of the form 
propD D D- +Ù Ù

A A

, where propD


 contains no occurrences of A, and is in 
normal form for modal logic and D-A and D+A are conjunctions of formulas 
of the form CØA  and AC respectively. To fix notation, let .=prop ii ID EÎÙ  
Define . .= i

ii

i I s t D D E
prop iand D D E ED E- +

- +

Î Ù
Ù Ù ÞÙ A A

A A







 . For any set of propositional atoms
P, let propD



P be the result of removing from propD


 any propositional atom 
not belonging to P.10 For each clause D and any set of propositional atoms 
P, we define the common knowledge core of D, =CK coreD D D-

- +ÙA A, the 
common knowledge reduction of D, = ,CK

prop propD D D D D- +ÙØ Ø Ù ÙA AA
 

 
and the common knowledge reduction of D restricted to P, =CKDP
D D D Dprop prop� �∧¬ ¬ ∧ ∧− +A

A A

� P . Similarly, for any formula A with 
modal disjunctive normal form AMDNF = iDÚ , the common knowledge core 
of A is defined to be =CK core CK coreA D- -Ú , the common knowledge reduction 
of A is defined to be =CK CKA DÚ , and the common knowledge reduction of 
A restricted to P is defined to be /= CK

i

CK CK
iDA DºÚ PP P .

As standard, an occurrence of the A is said to be positive (respectively 
negative) if it is in the scope of a even (resp. odd) number of negations. For 
a formula A, define A-P  to be the set of propositional atoms occurring in 
the scope of a negative occurrence of the A operator in A.

An application of the AR rule yielding the conclusion | :G Ma Þ 
N, AA is said to be canonical if the principal formula is either 

:( ( | : ) ) A
CK

M NG M N t
aa

-ÞØ Þ P  or :( ( | : ) )CK core
M NG M N t

aa -
ÞØ Þ .11 a deri- 

10 Formally, removing corresponds to replacing a positive occurrence of p by  and any 
negative occurrence of p by ^.

11 Recall the notation from Definition 6.
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vation is canonical if every application of the AR rule in the derivation is 
canonical.

We shall show that for any derivation involving the application of the 
AR rule, there is a canonical derivation of the same indexed hypersequent. 
Before coming to this result, we state three preparatory lemmas.

Lemma 7. For any indexed hypersequent | :G M Na Þ  and any set of 
propositional letters P, there exists a canonical derivation of | :G Ma Þ
N G M N M N

CK, ( ( | : ) ):¬ ⇒ ⇒α α
τ

P .

Proof. This is a consequence of the observation that, since the definition of 
:( ( | : ) )CK
M NG M N t

aa ÞØ Þ P  does not interfere with occurrences A, there is 
straightforward derivation of :| : , ( ( | : ) )CK

M NG M N G M N t
aa a ÞÞ Ø Þ P  

that involves only applications of propositional, modal rules and AL1 and 
AL2. Since there are no applications of the AR rule, this derivation is canon-
ical, as required. 

We shall say that a rule is canonical-admissible if, whenever there exists a 
canonical derivation(s) of the premise(s) of the rule, there exists a canonical 
derivation of its conclusion.

Lemma 8. The Common Knowledge Rules in Figure 2 are canonical-
admissible. 

Figure 4: Common Knowledge Rules 
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Proof. The cases are similar, so we shall only consider the cases of CKLÙ , 
CKRÙ  and CKMDNF L in detail. First consider the case of CKLÙ ; suppose 

we have a canonical derivation d of | : , ,G M A B Na ÞA A . Go up this 
derivation to the axioms and consider all formulas from which the AA and 
AB have been derived. Consider firstly the common knowledge formulas 
AA and AB in the axioms. For any sequents in the axioms containing only 
occurrences of AA and AB that are not principal (ie. such that neither AA 
nor AB have a positive occurrence on the right hand side), replace any pair 
AA, AB by ( )A BÙA .

Now consider a sequent in an axiom H where AA is principal: ie. the 
sequent has the form , ,A M N AÞA A . (The case of a sequent where AB is 
principal is treated similarly.) Let = : ( ), ,H H A B M N AÙ Þ¢ ¢¢ A A  be the 
result of replacing this sequent in the axiom by ( ), ,A B M N AÙ ÞA A ; we 
shall show that there is a canonical derivation of H ¢. It is straightforward 
to construct an AR-free derivation of ( )A B AÙ ÞA  ; moreover, since 

( )A BÙA  is a conjunct in every disjunct in : ( ), ,( ( ) )CK core
A B M N AH t

a
-

Ù Þ¢Ø ¢ A A , one 
obtains using weakening a AR-free derivation of : ( ),( ( ) )CK core

A B M NH t
a

-
Ù¢ ÞØ Þ¢ A

A. Since : ( ), ,( ( ) )CK core
A B M N AH t

a
-

Ù¢ ÞØ ¢ A A  is a disjunction of conjunctions 
of common knowledge formulas, it is straightforward, using essentially 
the rules AL2 and the modal rules, to construct a AR-free derivation of 

: :( ), ( ),( ( ) ) ( ( ) )CK core CK core
A B A BM N M NH Ht t

a a
- -

Ù Ù¢ ¢Þ ÞØ Þ Ø¢ ¢A A . Finally, by the 
same reasoning as that used in Lemma 7, there exist AR-free derivations 
of the ,:| : ( ), , ( ( ) ) )CK core

A M NH A B M N H t
aa -

ÞÙ Þ Ø¢¢ ¢ ¢ A . Hence AR may 
be applied, yielding a canonical derivation of H ¢. Repeating for all such 
sequents in the axioms, one obtains a derivation where all the relevant 
occurrences of AA and AB have been replaced by ( )A BÙA . Proceeding 
similarly for occurrences of zA, zB which were involved in the derivation 
of AA, AB via an application of the AL1 rule (replace occurrences in the 
axioms by ( )z A BÙ  and derivations by derivations of this formula), one 
obtains a derivation d ¢ of | : , ( )G M A B Na Ù ÞA . Since d is canonical, 
the only new applications of the AR rule in d ¢ are canonical, and any appli-
cations of the AR rule in d evidently correspond to canonical applications in 
d ¢, d ¢ is a canonical derivation as required.

the CK RÙ  rule is treated similarly, with one extra case to be examined. 
Consider a canonical derivation d of | : ,G M A B Na Þ ÙA A . If the occur-
rences of AA and AB in A BÙA A  have come from axioms, then a procedure 
similar to the one above can be straightforwardly applied: if either of them 
or the conjunction come from non-principal occurrences in an axiom, then 
replace that occurrence and proceed with the derivation from there; if both 
of them come from principal occurrences, then one must have a sequent 
of the form , , ,A B M N AÞA A A  in an axiom, and it is straightforward to 
supply a canonical derivation of , , , ( )A B M N A BÞ ÙA A A  with which to 
replace it. The final (novel) case is where AA or AB are introduced in an 
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application of the AR rule; suppose this is the case for AA. By Lemma 4, 
we can assume without loss of generality that the relevant application(s) of 
the AR rule – to A and to B if it too was derived by a AR rule – occur(s) 
just before the ÙR rule used to derive AA Ù AB. Let H be the ‘context’  
for this application of the ÙR rule: ie. = | :H H a G¢  and the premises of 
the ÙR rule are | : ,H Aa G¢ A  and | : ,H Ba G¢ A . Since d is canonical, the 
application of the AR rule introducing AA involves the derivation of 
a sequent of the form :( ( ) ) A

CKH At
a -GØ ÞP  or a sequent of the form 

:( ( ) )CK coreH At
a

-
GØ Þ . As concerns AB, either it has been introduced in 

the axioms, in which case (given that the context H is the same) there are 
AR-free derivations of :( ( ) )

A
CKH Bt

a -GØ ÞP  and :( ( ) )CK coreH Bt
a

-
GØ Þ , or 

it has also been introduced in an application of the AR rule, in which case 
there is a canonical derivation of a sequent of the form :( ( ) )

B
CKH Bt

a -GØ ÞP  
or a sequent of the form :( ( ) )CK coreH Bt

a
-

GØ Þ . We distinguish two cases. 
On the one hand, if the principal formula in the introduction of both formula 
is :( ( ) )CK coreH t

a
-

GØ , or there is no application of the AR rule introducing AB 
and the principal formula in the derivation of AA is :( ( ) )CK coreH t

a
-

GØ , then 
combining the derivations described above (and using the invertibility of 
the modal rules) yields a canonical derivation of :( ( ) ) ( ).CK coreH A Bt

a
-

GØ Þ Ù  
Moreover, the derivation of AA contains a canonical derivation of 

: :( ( ) ) ( ( ) )CK core CK coreH Ht t
a a

- -
G GØ Þ Ø , giving the third premise of the AR 

rule. On the other hand, if the principal formula in the introduction of both 
formula is :( ( ) )

A
CKH t

a -GØ P  and :( ( ) )
B

CKH t
a -GØ P , or there is no application of 

the AR rule introducing AB and the principal formula in the derivation of 
AA is :( ( ) ) A

CKH t
a -GØ P , then, since ( ):( ( ) ) A B

CKH t
a - ÙGØ P  contains all the conjuncts 

in :( ( ) ) A
CKH t

a -GØ P  and in :( ( ) ) B
CKH t

a -G¢Ø ¢ P , the derivations described above can 
be used to obtain a canonical derivation of ( ):( ( ) ) ( )A B

CKH A Bt
a - ÙGØ Þ ÙP . 

Moreover, since 
( ):( ( ) )
A B

CKH t
a - ÙGØ P  differs from :( ( ) )

A
CKH t

a -GØ P  only in that it 
contains more common knowledge formulas, and for any common knowl-
edge formula CØ A  it is straightforward to construct a AR-free deri- 
vation of C CØ Þ ØA A , one can use the canonical derivation of 

: :( ( ) ) ( ( ) )A A
CK CKH Ht t

a a- -G GØ Þ ØP P  in the derivation of AA to construct a canon-
ical derivation of ( ) ( ): :( ( ) ) ( ( ) )A B A B

CK CKH Ht t
a a- Ù - ÙG GØ Þ ØP P . By Lemma 7 and 

similar reasoning, there exists AR-free derivations of 
( ):| : , ( ( ) )
A B

CKH H t
aa

- ÙGG Ø¢ P  
and :| : , ( ( ) )CK coreH H t

aa -
GG Ø¢ . Hence there are canonical derivations of 

the premises of a canonical application of the AR rule with conclusion 
| : , ( )H A Ba G Ù¢ A . Repeating, and given the canonicity of d, one obtains a 

canonical derivation of | : ( ),G M A B Na Þ ÙA , as required.
Finally consider MDNFCKL. This is essentially the same as the previous 

cases, with the added observation that, to derive the appropriate sequent 
(in this case, MDNFA AÞA  ), one does not require any applications of the 
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rule AR (because, essentially, by the definition of AMDNF, there is a AR-free 
derivation of MDNFA AÞ ), and hence the derivation is canonical. The rea-
soning in the first case considered above goes through to yield the desired 
conclusion.  

Lemma 9.  If | : ,G M N Aa Þ A  is derivable, 
then :( ( | : ) )CK

M NG M N At
aa -ÞØ Þ ÞP  is derivable. 

Proof. By Theorem 4.1 and Definition 7, since | : ,G M N Aa Þ A  is deriv-
able, : ,( | : , ) M N AG M N A t

aa ÞÞ AA  in the system S5C. It follows from 
Definition 6 and propositional logic that :( | : ) M NG M N At

aa ÞØ Þ A . 
For brevity, let := ( | : ) M NG M N t

aa ÞØ ÞC . We now show that CK A- APC  , 
reasoning semantically, and using the soundness and completeness of the 
standard Kripke semantics with respect to the system S5C.12 We thus have 

AAC  , and we wish to show that CK A- APC  .
First note that, if C is true for some state in a CK-cell, then CCK holds for 

that state in the cell; conversely, if CCK holds for some state in a CK-cell, 
then there must be a state in the cell which satisfies C. Hence the set of 
CK-cells for which C is true for some state in the cell coincides with the set 
of CK-cells for which CCK is true for some state in the cell. Since, by the 
form of AA, the truth of AA in a state depends entirely on the CK-cell to 
which the state belongs, and since AAC  , we have that CK AAC  .

Now, for any set P of CK-cells, let the A-P -closure of P be the largest set 
of CK-cells containing P such that the (states in the) cells all give the same 
valuation to all formulas of the form AC, and to all formulas of the form 

CØA  containing only propositional atoms in A-P . It is clear that the set of 
CK-cells satisfying CK

-PC  is contained in the A-P -closure of the set satisfying 
CCK. Moreover, since the only propositional atoms occurring in the scope 
of negative occurrences of A in AA belong to A-P , the set of CK-cells sat-
isfying AA is the A-P -closure of itself. Since the operation of A-P -closure is 
evidently monotonic (ie. if P QÍ , then the A-P -closure of P is contained 
in the A-P -closure of Q), it follows that CK A- APC  .

Since CK A- APC  , it follows that CK A
-

PC  . By the completeness 
of the standard Hilbert calculus and Theorem 4.1, it follows that 

:( ( | : ) )CK
M NG M N At

aa
-ÞØ Þ Þ

P  is derivable, as required.
 

We finally come to the main result concerning the principal formula in the 
applications of the AR rule.

12 We assume standard Kripke semantics terminology (eg. [6]); moreover, we use the 
term CK-cell for the set of states accessible from a given state by the accessibility relation 
for the common knowledge operator. 

98348_LogiqueAnalyse_230_06.indd   300 25/03/2016   14:51:09



 a finitary CalCulus with a syntaCtiC Cut-elimination proCedure 301

Proposition 2. If  | : ,G M N Aa Þ A  is derivable, then there exists a canon-
ical derivation of it.

Proof. We construct a derivation whose last rule is an application of the AR 
rule with principal formula :( ( | : ) )

A
CK

M NG M N t
aa

-ÞØ Þ P  (so the application 
is canonical), and such that all the derivations of the premises only contain 
canonical applications of the AR rule. Consider the derivations of these 
premises.

Lemma 7 guarantees that there exists a canonical derivation of the left 
premise, :| : , ( ( | : ) )CK

M NG M N G M N t
aa a

-ÞÞ Ø Þ
P
. Now consider the 

right premise, : :( ( | : ) ) ( ( | : ) ) .CK CK
M N M NG M N G M Nt t

a aa a
-Þ ÞØ Þ Þ Ø Þ

P  
By definition, :( ( | : ) ) = (CK prop

jM N iG M N D Dt
aa

-

-
ÞØ Þ Ù Ø ÙÚ Ù Ù A

A
P

∧ +
A

ADk ); it suffices to give, for each conjunct, a canonical derivation 
of ( )prop prop

i j k i j kD D D D D D- + - +Ù Ø Ù Þ Ù Ø ÙÙ Ù ÙÙ Ù ÙA A A A

A A A A  – 
combination of these derivations into a derivation of ( ( | :G MaØ Þ
N G M NM N

CK
M N

CK) ) ( ( | : ) ): :α
τ

α
τα⇒ ⇒− −

⇒ ¬ ⇒P PA A
  is a straightforward applica-

tion of modal and propositional rules (and their invertibility). It is straight-
forward, using modal rules, AL1 and AL2, to construct (canonical) deri- 
vations of prop

i j jkD D D D- + -Ù Ø Ù Þ ØÙ Ù Ù ÙA A A

A A  and similarly for 
kD+Ù A

A . As concerns prop
iDÙ , either there is a AR-free derivation of 

prop prop
i ikD D D+Ù ÞÙ Ù ÙA

A   or not. In the former case, weakening evi-
dently yields a AR-free – and hence canonical – derivation of the required 
sequent. In the latter case, note that, by the definition of ( ( | :G MaØ Þ
N M N

CK) ):α
τ
⇒ −P A and CKDNF, ( )CKDNFprop prop

ji k iD D D D- +Ù Ø Ù ÞÙ Ù ÙÙA A

A A   
is derivable; moreover, since prop

iD  does not contain any occurrences of A 
and there are no embedded occurrences of A on the left hand side of this 
sequent, ( )CKDNFprop prop

ji k iD D D D- +é ùÙ Ø Ù Þê úë ûÙ ÙÙ Ù A A

A A   is derivable, 

where ( )CKDNFprop
ji kD D D- +é ùÙ Ø Ùê úë ûÙ Ù ÙA A

A A  is the result of removing 
every conjunct of the form EØA  from ( ) .CKDNFprop

ji kD D D- +Ù Ø ÙÙ Ù ÙA A

A A  
Since there are no negative occurrences of A on the left hand side of this 
sequent and no positive occurrences on the right hand side, the derivation 
of this sequent does not involve any applications of the AR rule, and hence 
is canonical. By weakening, one thus obtains a canonical derivation of 
( )CKDNFprop prop

ji k iD D D D- +Ù Ø Ù ÞÙ Ù Ù ÙA A

A A  . However, by definition 
of CKDNF (see in particular the proof of Proposition 1), prop

jiD D-Ù Ø ÙÙ Ù A

A  

∧ +
A

ADk  can be obtained from ( )CKDNFprop
i j kD D D- +Ù Ø ÙÙ Ù ÙA A

A A  by a 
series of equivalences that correspond to the common knowledge rules in 
Figure 2; Lemma 8 thus implies that there is a canonical derivation of 
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prop prop
ji k iD D D D- +Ù Ø Ù Þ ÙÙ Ù ÙA A

A A  . Hence one obtains a canoni-
cal derivation of (prop prop

i j k i jD D D D D- + -Ù Ø Ù Þ Ù Ø ÙÙ Ù Ù Ù ÙA A A

A A A

∧ +
A

ADk ), as required.
Consider now the central premise :( ( | : ) ) .CK

M NG M N At
aa

-ÞØ Þ ÞP   
By Lemma 9, there exists a derivation of this premise. It remains to be 
shown that there exists a derivation in which all applications of the AR rule 
are canonical. We shall do this by essentially reasoning by induction on 
the number of (appropriate) occurrences of A in the indexed hypersequent. 
To this end, for each formula A, we define the positive (resp. negative) CK 
degree of A, ( )dgCK A+  (resp. ( )dgCK A- ) to be the number of positive 
occurrences of A in A. Similarly, the positive (resp. negative) CK degree of 
a multi-set of formulas M, ( )dgCK M+  (resp. ( )dgCK M- ) is the sum of the 
positive (resp. negative) CK degrees of the formulas in A. Finally, the CK 
degree of a sequent M NÞ , ( ) = ( ) ( )dgCK M N dgCK M dgCK N- +Þ +  
and the CK degree of an indexed hypersequent is the sum of the CK degrees 
of the sequents composing it. This notion is important since, as is easily 
seen on inspection, the CK degree of a indexed hypersequent H all of 
whose formulas are in CKDNF is the maximum possible number of appli-
cations of the rule AR in a derivation of H. In particular, if the CK degree 
of an indexed hypersequent sequent is zero, then any derivation of it con-
tains no applications of the AR rule, and hence is canonical.

Since :( ( | : ) )CK
M NG M N At

aa
-ÞØ Þ Þ P  is derivable, and since 

( )CKDNFprop
ji kD D D- +Ù Ø ÙÙ Ù ÙA A

A A  can be obtained from prop
iD ÙÙ

∧ ∧¬ ∧− +
A A

A AD Dj k  by a series of equivalences (see the proof of Pro- 
position 1), and likewise for ( )CKDNFA , there exists a derivation of 
( ):( ( | : ) ) ( )CKDNFCK CKDNF

M NG M N At
aa

-ÞØ Þ Þ 

P . Moreover, by Lemma 8, 
it suffices to show that there is a canonical derivation of this sequent to con-
clude that there is a canonical derivation of :( ( | : ) )CK

M NG M N t
aa

-ÞØ Þ Þ
P

A. By definition, ( ):( ( | : ) ) = (CKDNFCK prop
M N iG M N Dt

aa
-ÞØ Þ ÙÚ ÙP

∧ ∧¬ ∧− +
A A

A AD Dj k ), for some D prop, jD-A and kDA not containing any 
occurrences of A. By the invertibility of the propositional rules (Lemma 3), 
there are derivations of sequents of the form prop

ji kD D D- +Ù Ø Ù ÞÙ Ù ÙA A

A A

( )A CKDNF . Naturally, it suffices to show that there are canonical deriva-
tions of these sequents; applications of the appropriate propositional 
rules will yield the required canonical derivation of (( ( | :G MaØ Þ
N AM N

CK CKDNF CKDNF) ) ( ):α
τ
⇒ −

⇒P A )  .
Consider any such sequent ( )prop CKDNF

ji kD D D A- +Ù Ø Ù ÞÙÙ Ù A A

A A   
and any derivation of this sequent, d. If d is canonical, there is nothing 
more to show; now suppose that this is not the case, and consider the 
last application of the AR rule in d. Let the conclusion of this applica- 
tion be | : ,H P Q Bb Þ A . By the same reasoning as applied above to 
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| : ,G M N Aa Þ A , this application can be replaced by a canonical applica-
tion, whose central premise :( ( | : ) )CK

P QH P Q Bt
bb

-ÞØ Þ ÞP  is derivable 
(as shown above, there are canonical derivations of the other premises). Since 
all the occurrences of the A in ( )prop CKDNF

ji kD D D A- +Ù Ø Ù ÞÙ Ù ÙA A

A A  , 
and hence in | : ,H P Q Bb Þ A  have CK depth one (and hence do not have 
any occurrences of A in their scope), =B- ÆP  and so (( ( | :dgCK H bØ
P Q B dgCK H P Q dgCK H P Q BP Q

CK⇒ ⇒ ⇒ ⇒⇒ −
) ) ) = ( | : ) < ( | : , ) =:β
τ β βP B  A

dgCK D D D Ai
prop

j k
CKDNF( ( ) )∧ ∧ ∧∧ ¬ ∧ ⇒− +

A A
A A

 . Since ( ( | :H PbØ Þ 
Q BP Q

CK) ):β
τ
⇒ −

⇒P B   is derivable, this procedure can be repeated on any  
derivation of this premise. Moreover, since, by the argument just used, the 
CK degree of the central premise of the ‘next’ application up of the AR is 
strictly less than CK degree of the central premise of the last application of 
the AR rule to be treated, and since, as noted above, when the CK degree of 
a indexed hypersequent is zero, any derivation of it is canonical, this proce-
dure will eventually halt with a canonical derivation of the central premise of 
an application of the AR rule. Since all the applications of the AR rules in the 
derivation obtained by this procedure are canonical, this yields a canonical 
derivation of ( ) ( )CKDNFprop CKDNF

i j kD D D A- +Ù Ø Ù ÞÙ Ù ÙA A

A A  , and hence, 
by Lemma 8, a canonical derivation of .prop

ji kD D D A- +Ù Ø Ù ÞÙ Ù ÙA A

A A   
Repeating for the other disjuncts, we obtain a canonical derivation of 

:( ( | : ) )CK
M NG M N At

aa
-ÞØ Þ Þ 

P , as required.
 

By restricting the form of the principal formula in every application of 
the AR rule, this result limits the non-analyticity of the calculus. On the 
one hand, it indicates that, to search for a proof of a formula, it suffices 
at any point to consider at most two possible applications of the AR 
rule (with the formula :( ( | : ) )

A
CK

M NG M N t
aa

-ÞØ Þ P  or with the formula 
:( ( | : ) )CK core
M NG M N t

aa -
ÞØ Þ ); a major inconvenience of the lack of sub-

formula property, namely the fact that it renders proof search impossible, 
because one would have to search for ‘disappearing’ principal formulas, is 
thus largely overcome. Indeed, it should be noticed that often in practice 
the two formulas defined in the notion of canonical application of the AR 
in fact coincide, so there is only one possible application of the rule to 
consider. On the other hand as concerns the ‘partialness’ of our cut-elimination, 
they strengthen the cut-elimination result, insofar as they greatly restrict the 
application of the AR rule: to one of two potential principal formulas for 
each conclusion. Indeed, Proposition 2 could be thought of as a sort of 
elimination result for all applications of the AR rule except, at most, two.

To give an idea of the strength of the restrictions Proposition 2 places on 
the application of the AR rule, to give a comparison with partial cut-elim-
ination results for finitary calculi elsewhere in the literature, as well as to 
give an example of an application of the calculus, suppose that there are 
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only two agents a and b, and consider the following (derivable) sequent, 
taken from [2]: ( ), ( ) ( ).a bP Q Q P P QÙ Ù Þ ÚA A A   This sequent is not 
derivable in the finitary calculus proposed by [2] without the cut rule, and 
the partial cut-elimination result they have limits the set of cuts that can be 
used to derive the formula to (at least) an order of 218.13

By contrast, straightforward calculation shows that the formula proposed 
in Proposition 2 for this case is just P QÙA A . (This is an example where 
the two canonical principal formula coincide.) To search for a proof involv-
ing a final application of the AR rule, it suffices to search for one where the 
principal formula is P QÙA A . And indeed, it is easy to see how to construct 
such a proof. The derivation of the leftmost premise of the rule is:

The derivation of the middle premise is:14

and similarly for ( )bP Q P QÙ Þ ÚA A  , with a final application of the RÙ  
rule. Finally, the derivation of the right premise is:

and similarly for ( )bP Q P QÙ Þ ÙA A A A .

13 [2] proposes a partial cut-elimination result according to which any derivable sequent 
can be derived using only cuts on formula in the disjunctive-conjunctive closure of the 
Fisher-Ladner closure of the sequent to be proven, though they cite stronger results involving 
only the conjunctive closure of the Fisher-Ladner closure. They state that the size of the 
Fischer-Ladner closure is of the order of the length of the formula (which in this case is 18), 
so the set of conjunctions of elements of the Fischer-Ladner closure is of order 218.

14 See footnote 3 concerning the ÚR rule.
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We conclude that, though the proposed calculus is not strictly speaking 
analytic, it is remarkably easy to construct proofs using it, given the diffi-
culty in finding finitary calculi for common knowledge, and in comparison 
to other proposals. 
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