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A SoundneSS And CompleteneSS proof on diAlogS 
And dynAmiC epiStemiC logiC

SébaStien Magnier* and tiago de LiMa

abStract

Since plaza [12], which is most of the time considered as the inaugural paper on 
announcement logics in public communication contexts, a lot of papers on dynamic 
epistemic logics have been published. the most famous dynamic epistemic logic 
is known by the name of PAL (public Announcement logic). the logic PAC is an 
extension of PAL with the common knowledge operator (CG). Soundness and com-
pleteness proofs of those logics are presented in van ditmarsch et al. [18], in 
Balbiani et al. [1] and in de Boer [3]. each of them used either a model-theoretic 
approach or a tableaux calculus. in the present paper, we propose an alternative 
approach to PAC based on the dialogical framework. 

1. Introduction

public announcement logic (PAL) has been proposed at the end of the 80s 
by plaza [12] and then developed further, for instance, by Baltag et al. [2], 
van Benthem et al. [17] and van ditmarsch et al. [18]. it belongs to a 
family of logics called dynamic epistemic logics, which aim at modeling the 
dynamics of knowledge and belief in multi-agent systems. these logics are 
extensions of multi-agent epistemic logic with dynamic operators represent-
ing several kinds of communications among agents. in the case of PAL, the 
extension is public announcements. in this logic, one can write a formula 
of the form [j]y, which means “if j is publicly announced then, after that 
announcement, y is true”. in the standard model-theoretic interpretation of 
such formula, the public announcement of j causes an update of the current 
epistemic state of the agents. the result is a new epistemic state without 
the possible worlds where j is false. it intends to model the result of the pub-
lic announcement j, which should be that, after it, the agents have learned 
that j was true.

in this paper, we propose a dialogical approach to public announcement 
logic, also establishing a formal relation with its standard model-theoretical 

* this paper has been supported by Jurilog project (Anr11 frAl 003 01), hosted at 
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220 SéBAStien mAgnier And tiAgo de limA

approach. the dialogical approach is not a different logical system but 
rather a rule-based semantic framework. the basic idea, inspired by Wittgen- 
stein’s “meaning as use”, is that the meaning of a logical constant (or formula) 
is given by the norms and rules for its use. the truth of logical constants 
is defined by an argumentative process between two antagonists. In this 
process, similar to a game, two players confront each other around a thesis 
(the initial argument). the proponent starts by uttering the thesis and then 
try to defend it against the opponent, which tries to construct a counter-
argument to it. if the proponent is capable to win the argumentative game 
whatever arguments are advanced by the opponent, the thesis is considered 
to be valid, i.e., the thesis is valid if and only if the proponent turns out to 
have a winning strategy to defend it.

the dialogical approach, originally applied to classical and intuitionistic 
logic, was first proposed at the end of the 50s by Lorenzen and then worked 
out by lorenz [8]. on 90s, the framework has been developed further 
and applied to various non-classical logics.1 the present proposal borrows 
some ideas from the dialogical approach to epistemic logic developed by 
rebuschi [16] and rebuschi & lihoreau [15], as well as from the approach 
by magnier [10].

this new approach to public announcement logic gives some interesting 
insights in the area at the intersection between logic and law. this is so 
because the validity of an utterance is defined in terms of the ability of the 
utterer to defend it during a debate, which plays a crucial role in civil law. 
As a simple example of such kind of debate, consider the following con-
ditional precedent: “if a ship arrives from Asia, i (primus) give to you 
(Secundus) 100 coins”. Although this is a conditional sentence, this works 
more like a public announcement than a standard conditional. in fact, 
Secundus can (legally) compel primus to give its due only after the arrival 
of the ship is publicly known, i.e., only after it is publicly announced. We do 
not develop more on this in this paper, but the interested reader may find 
interesting material in magnier [11] and magnier and rahman [9].

the remainder of this paper is organized as follows. in Section 2, we 
present the formal definitions and some examples of argumentative games. 
in Sections 3 and 4, we establish the main result of this paper, namely, 
soundness and completeness for the dialogical approach to PAL (and its 
extension with common knowledge PAC) with respect to the model-theo-
retic approach. more precisely, we show that the thesis uttered by the 
proponent is valid in (the model-theoretic approach to) PAC if and only if 
the proponent has a wining strategy to defend it. this establishes a formal 
relation between the dialogical and the standard model-theoretic approach 

1 One can find introductory texts on these approaches in Fontaine & Redmond [5] and 
in Keiff [7]. 

98348_LogiqueAnalyse_230_04.indd   220 25/03/2016   14:49:45



 A SoundneSS And CompleteneSS proof on diAlogS 221

to PAC. Section 5 concludes the paper and discusses some possible future 
work. 

2.  Definitions

in this section, we present the public announcement logic with common 
knowledge PAC. We start with its syntax, i.e., its language and intended 
meanings, and its model-theoretic semantics, as presented in van ditmarsch 
et al. [18]. After that, we present an alternative semantics based on the 
dialogical framework. 

2.1. Syntax

Definition 1  (language). Let a non-empty finite set of agent names Ag 
and a countable set of propositional variables P be given. the language 
LPAC(Ag,P) is the set of formulas j inductively defined by the following 
Bnf:

: | | | | | |= a G Gp K E Cj j j j j j j j jØ Ù á ñ

where a ranges over Ag, G ranges over 2Ag and p ranges over P. 
in what follows, we also use the common abbreviations for Ú, ® and [ ]. 

The latter one is defined by: def[ ] =j y j yØá ñØ .
the intended meanings for formulas in LPAC(Ag,P) are the following: 

Individual knowledge
aK j means “agent a knows that j is true”.

Sharing knowledge

GE j means “all members of the group G know that j is true”.

Common knowledge

GC j means “all members of the group G know that all members of the 
group G know that ... j is true”.

Public announcement
[ ]j y means “if j is publicly announced then, after that announcement, 
y is true”.

Dual of public announcement
j yá ñ  means “j is publicly announced and, after that announcement, 
y is true”. 

98348_LogiqueAnalyse_230_04.indd   221 25/03/2016   14:49:45



222 SéBAStien mAgnier And tiAgo de limA

2.2. Model-theoretical Semantics

Definition  2  (epistemic model). An epistemic model is a triple M = 
,{ } ,a Aga Îá ñW R V  such that W is a non-empty set of possible worlds, each 

aR  is a binary equivalence relation over W, and V is a valuation function 
such that, for every p ÎP , it yields a set p ÍV W  of possible worlds.

Definition  3  (pointed epistemic model). A pointed epistemic model is 
a pair ( , )wM  such that = ,{ } ,a Aga Îá ñM W R V  is an epistemic model as 
defined above and w ÎW . 

Definition 4  (Satisfaction relation). the satisfaction relation  between 
pointed epistemic models and formulas in LPAC(Ag,P) is inductively defined 
as follows:

( , )w pM   iff pw ÎV
( , )w jØM   iff ( , )w jM 
( , )w j yÙM   iff ( , )w jM   and ( , )w yM 
( , ) aw K jM   iff ( , )w j¢M  , for all w¢ such that ( , ) aw w Î¢ R
( , ) Gw E jM   iff ( , )w j¢M  , for all w¢ such that ( , ) aa Gw w ÎÎ¢



R  
( , ) Gw C jM   iff ( , )w j¢M  , for all w¢ such that ( )*( , ) aa Gw w ÎÎ¢



R  
( , )w j yá ñM   iff ( , )w jM   and ( , )wj yM 

where ( )*
aa GÎ

R  is the reflexive, symmetric and transitive closure of 
aa GÎ

R ,2 and jM  = ,{ } ,a Aga
j j j

Îá ñW R V  is the update of M by the 
announcement of j, which is defined as follows: 

= { : ( , ) }w wj jÎ¢ ¢W W M 

= ( )a a
j j jÇ ´R R W W

=p p
j jÇV V W

let 1 2 nj j j  be a sequence of formulas from LPAC(Ag,P). for the sake 
of readability, we use 1 2 nj j jM  to denote 1 2((( ) ) ) nj j j

M ; and we also 
use 1 1( , ) nw j j jM   to denote 1( , )w jM   and 1 2( , )wj jM   and and 

1 2 1( , )n
nwj j j j-M  .

Definition 5 (Validity). A formula ( , )Agj Î PACL P  is valid in (the model-
theoretical approach of) PAC, which is noted j , if and only if ( , )w jM  , 
for all pointed epistemic models ( , )wM . 

2 We note that the different semantic definitions for common knowledge, for instance in 
gerbrandy [6, chapter 3] and fagin et al. [4, chapter 11] are equivalent to ours. 
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Definition 6  (Satisfiability). A formula ( , )Agj Î PACL P  is satisfiable in 
(the model-theoretical approach of) PAC if and only if, ( , )w jM  , for 
some pointed epistemic model ( , )wM .

note that the latter means that j is satisfiable if and only if jØ .
At this point, it is perhaps worthwhile to recall the axiomatization of 

PAC. this is displayed in table 1. its soundness and completeness is proved 
in van ditmarsch et al. [18]. 

2.3. Dialogical Semantics

As mentioned earlier, in the dialogical semantics, the validity of a formula 
is defined via an argumentative game between two adversaries, the propo-
nent and the opponent. the proponent starts the game by uttering a thesis 

( ) ( )

( ) ( )
( )

( ) ( )
[ ] ( )
[ ] ( [ ] )
[ ]( ) ([ ] [ ] )
[ ] ( [ ] )
[ ][ ] [ [ ] ]
from and infer
from infer
fr

a a a

a

a a a

a a a

G G G

GG G

GG G

a a

a

K K K
K
K K K

K K K
C C C
C E C
C E C

p p

K K

K

j y j y
j j
j j

j j
j y j y

j j j
j j j j

j j
j y j j y
j y c j y j c
j y j j y
j y c j j y c

j j y y
j j

® ® ®
®
®

Ø ® Ø
® ® ®

® Ù
® ® ®

« ®
Ø « ® Ø

Ù « Ù
« ®
« Ù

®

om infer
from infer [ ]
from [ ] and
infer [ ]

G

G

G

C

E
C

j j
j y j
c j y c j c

c j y
® Ù ®

®

All tautologies of classical propositional logic

(distribution of Ka over ®)
(truth)

(positive introspection)
(negative introspection)

(distribution of CG over ®)
(mix of common knowledge)

(intro. of common knowledge)
(atomic permanence)

(announcement and negation)
(announcement and conjunction)
(announcement and knowledge)

(announcement composition)
(modus ponens)

(necessitation of Ka)
(necessitation of CG)
(necessitation of [j])

(announcement and
common knowledge)

table 1: Axiomatization of PAC
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(a formula in LPAC(Ag,P)) and then tries to defend it against the opponent. 
the moves in this game are either challenges on adversary’s moves or 
defenses against adversary’s challenges. the players alternate their moves 
and must respect a number of rules. In the sequel, we define this argumen-
tative game formally.

Definition 7 (dialog). A dialog is a (possibly infinite) sequence of moves 
0 1 2=d m m m , which is allowed by the rules of the dialogical game (given 

in several definitions to come). 

Definition 8 (move). A move is a quintuple ( , , , , )tw l jX , where: 

• { , }ÎX P O  is the player who authors of the move: P represents the pro-
ponent whereas O represents the opponent; 

• ( )Agw *Î   is a finite (possibly empty) sequence 0 0 1 1 k ka n a n n a  such 
that for each 0 i k£ £ , ia AgÎ  and in Î ; 

• ( , )Agl *Î PACL P  is a finite (possibly empty) sequence of public announce-
ments, i.e., a finite sequence 0 1 kj j j  such that for each 0 i k£ £ , 

( , )i Agj Î PACL P ; 
• ,{ , , , , , , , ,  , , }t K RK E RE C RC U PÎ Ø Ù áñ! ? ? ? ? ? ? ? ? ? ? ?  is the type of the 

move: ‘!’ represents a defense and the other ones represent several dif-
ferent challenges (which are explained latter); 

• ( , )Agj Î PACL P  is the argument advanced in the move. 

We use ( ) to denote the empty sequence. moreover, Y denotes the adver-
sary of player X, i.e., if X = P then Y = O and if X = O then Y = P.

in a move ( , , , , )= tm w l jX , the pair formed by w and l is also called 
the context of m. in the model-theoretical semantics, w would correspond 
to a possible world in the epistemic model updated by the sequence of 
public announcements l. the role of such contexts in dialogs will become 
clearer after the explanations of the examples in the next pages.

for the sake of readability, we sometimes drop parentheses, comas and 
empty sequences when displaying moves. for example, we may simply write 

 ! jP  to mean that ‘proponent defends argument j in the empty context’ 
instead of ( , (),(), !, )jP .

In the sequel, we define the rules that govern the dialogical game. There 
are two kinds of rules. The first kind, called structural rules, define how 
the game starts, how it ends, how the players execute moves and how to 
determine the winner of a dialog.

Definition 9 (Structural rules).
• Starting: the dialog starts with the defense of the thesis in the empty 

context by the proponent. That is, the first move of a dialog is a move of 
the form ( , (),(), !, )jP , where ( , )Agj Î PACL P . 
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• Game-playing: players act alternatively. that is, each move immediately 
following a proponent’s move is an opponent’s move and each move 
immediately following an opponent’s move is a proponent’s move. 
moves cannot be repeated. 

• Proponent’s Restrictions: 
−  A propositional variable p ÎP  can be the argument of a proponent’s 

move in context ( ,())w  only if it has already been the argument of an 
opponent’s move in this same context in the dialog. that is, a move of 
the form ( , ,(), , )t pwP  can only appear in a dialog if a move of the 
form ( , ,(), , )t pw ¢O  has already appeared in the dialog. 

−  A non-empty sequence w can be used in a proponent’s move only if it 
has already been used in an opponent’s move in the dialog. that is, a 
move of the form ( , , , , )an tw l j×P  can only appear in a dialog if a 
move of the form ( , , , , )an tw l j× ¢ ¢ ¢O  has already appeared in the 
dialog, where anw ×  stand for the concatenation of an at the end of w. 

• Opponent’s Restriction: the opponent can react to the same move only 
once. 

• Terminal: A dialog is terminal if and only if there are no more allowed 
moves for it. 

• Winning: the proponent wins the game if and only if there is no new 
allowed moves for the opponent. 

We remark that proponent’s restrictions forbids the proponent to start the 
dialog with a formula consisting of a propositional variable p ÎP.

The second kind of rules, called particle rules, define which moves are 
allowed during a dialog. they depend on the arguments advanced by the 
players. for the sake of readability, we split them in several categories. the 
first category concerns boolean operators.3 

Definition 10 (particle rules for Boolean operators).

• Challenge of Negation (? Ø):
 if ( , , , , )tw l jØX  is in d, for { , }t Î Ø! ? ,
 then ( , , , , )w l jY ?  is allowed. 

• Challenge of Conjunction (? Ù):
 if ( , , , , )tw l j yÙX  is in d, for { , }t Î Ø! ? ,
 then both ( , , , , )w l jÙ ØY ?  and ( , , , , )w l yÙ ØY ?  are allowed. 

• Defense of Conjunction (! Ù): 
 −  if ( , , , , )w l jÙ ØY ?  is in d, 

then ( , , , , )w l jX !  is allowed. 

3 for the sake of simplicity, we drop the rules for disjunction and implication. 
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226 SéBAStien mAgnier And tiAgo de limA

 −  if ( , , , , )w l yÙ ØY ?  is in d, 
then ( , , , , )w l yX !  is allowed. 

in words, if player X advances argument j, it can be challenged by Y. if 
it is a negation, i.e., =j yØ , then Y can challenge it with y. if it is a con-
junction, i.e., 1 2=j y yÙ , then Y can either challenge the first conjunct, 
advancing argument 1yØ , or the second one, advancing argument 2yØ . the 
defense of X will have to be made advancing 1y  or 2y , respectively.

note that defenses can be challenged with rules ?Ø and ?Ù, and chal-
lenges of negation can also be counter-challenged with these rules. on the 
other hand, challenges of conjunction cannot be counter-challenged and can 
only be defended using !Ù.4 An exception to this is when the argument is 
a literal, i.e., a propositional variable p ÎP  or its negation Øp. note that 
there are no possible challenges or defenses against a move with argument 
p and also, due to the structural rule proponent’s restrictions, the proponent 
cannot challenge or defend a move with argument Øp if the opponent has 
not yet advanced argument p.

Also note that boolean particle rules do not use the context of moves. 
they are used only when epistemic operators or public announcements 
come to the picture (this will be the case latter).

At this point, we still do not have all the particle rules defined. But, to 
grasp the idea behind the dialogical approach, it may be worthwhile to see 
an example using only boolean particle rules now. then, let us consider 
the dialog in table 2. there, each line corresponds to a move. the numbers 
on the right identify the move and the numbers in parenthesis refer to the 
move(s) allowing the corresponding defense or challenge. in move 0, the 
proponent starts by defending the thesis ( )p pØ Ø Ù . Since it is a valid for-
mula, the proponent should be able to win the dialog. indeed. in move 1, the 
opponent challenges the negation in the argument of move 0. in move 2, 
the proponent counter-attacks by challenging the conjunction in the argu-
ment of move 1. the opponent then defends the challenge in move 3. 
note that the proponent cannot challenge the negation in the argument of 
move 3 because of the structural rule proponent’s restrictions. therefore, 
in move 4, the proponent decides to challenge the conjunction in the argu-
ment of move 1 again, but now advancing argument Øp. the opponent 
defends it with p in move 5. now, since argument p have been advanced 
by the opponent, the proponent can challenge the negation in the argument 
of move 3. it is done in move 6. note that move 6 cannot be challenged or 
defended. in addition, the opponent has already defended all other propo-
nent’s challenges and has challenged all other proponent’s moves that could 

4 In fact, we will define latter the rule ?U, that will be the only one allowed to counter-
challenge conjunctions. 
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be challenged. thus, the opponent does not have any move allowed. this 
means that the proponent is the winner.

the second category of particle rules concerns the knowledge operators 
Ka. these are normal modal box operators. thus, we decided to use rules 
that are close to the ones proposed in rahman & rückert [14] and in rah-
man & Keiff [13] to deal with them.

Definition 11 (particle rules for normal modal operators).

• Challenge of Knowledge Operator (?K):
 if ( , , , , )at Kw l jX  is in d, for { , }t Î Ø! ? ,
 then ( , , , , )an Kw l j× ØY ?  is allowed, for a fresh n Î . 

• Defense of Knowledge Operator (!K):
 if ( , , , , )Kw l jØY ?  is in d,
 then ( , , , , )w l jX !  is allowed. 

• Challenge of Accessibility Relation (?R):
 if ( , , , , ), ( , , , , )aan t t Kw l y w l j× ¢ ¢X X  is in d, for { , }t Î Ø! ? , any t¢, l¢  

and y,
 then ( , , , , )an Rw l j× ØY ?  is allowed. 

• Defense of Accessibility Relation (!R):
 if ( , , , , )Rw l jØY ?  is in d,
 then ( , , , , )w l jX !  is allowed. 

As explained before, the context ( , )w l  can be seen as the possible world w 
in the epistemic model updated by the sequence of public announcements 
l. now, assume that formula aK j is true in ( , )w l . then, the particle rules 
for normal modal operators correspond to the propagation of formula j 
from ( , )w l  to ( , )anw l× . the latter corresponds to another possible world 
in the same epistemic model that is indistinguishable from w by agent a. 
the rules ?K and !K create new possible worlds whereas rules ?R and !R 

table 2: dialog about a tautology

0. ( )
1. (0)
2. (1)
3. (2)
4. (3)
5. (4)
6. (3,5)

p p
p p

p
p
p

p
p

Ø Ø Ù
Ø Ø Ù
Ù ØØ

Ø
Ù Ø

Ø

P !
O ?
P ?
O !
P ?
O !
P ?
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propagate formulas to already existing possible worlds. thus, in the dialog, if 
player X advances the argument aK j  in context ( , )w l  then Y can challenge 
it by choosing a context ( , )anw l× , and then obliges X to defend j in it.

let us use another example to illustrate the use of the particle rules 
for normal modal operators. this time, consider the dialog in table 3. the 
thesis correspond to an instance of distribution of Ka over ® (also known 
as Axiom K, see table 3). Since it is a valid formula, the proponent should 
be able to win the dialog. indeed. the opponent uses rule ?K in move 7 to 
challenge the knowledge operator in the argument of move 6. the opponent 
introduces the new context a1 and advances argument Øq in it. the propo-
nent defends it only in move 20, because is necessary to wait until the 
opponent advances argument q in context a1, due to the structural rule 

0. ( ( ) ( ))
1. ( ) ( ) (0)
2. ( ) (1)
3. (2)
4. (3)
5. (4)
6. (5)
7. 1 (6)
8. (3)
9. (8)
10. 1 (9,7)
11. 1 (10)
12. (

a a a

a a a

a a

a a

a

a

a

a

a

a

K p q K p K q
K p q K p K q

K p K q
K p K q

K q
K q

K q
a K q

K p
K p

a R p
a p

K p q

Ø Ø ÙØ Ù ÙØ
Ø Ø ÙØ Ù ÙØ
Ù Ø ÙØ

ÙØ
Ù ØØ

Ø
Ø

Ø
Ù Ø

Ø

Ù Ø Ø ÙØ

P !
O ?
P ?
O !
P ?
O !
P ?
O ?
P ?
O !
P ?
O !
P ? ) (1)

13. ( ) (12)
14. 1 ( ) (13,7)
15. 1 ( ) (14)
16. 1 (15)
17. 1 (16)
18. 1 (17)
19. 1 (18)
20. 1 (7,19)

aK p q
a R p q
a p q
a p q
a q
a q
a q
a q

Ø Ø ÙØ
ØØ ÙØ
Ø ÙØ

Ø ÙØ
Ù ØØ

Ø
Ø

O ?
P ?
O !
P ?
O ?
P !
O ?
P !

table 3: dialog about an instance of distribution of Ka over ®
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proponent’s restrictions. in this dialog, the proponent also uses rule ?R in 
move 10. note that the proponent must use the same context a1 used in 
move 7 by the opponent, again, because of the structural rule proponent’s 
restrictions. A similar situation happens in move 14. finally, also note that 
the opponent cannot challenge move 16 again, due to the structural rule 
opponent’s restriction.

the rules ?K, !K, ?R and !R introduced above work fine for normal 
modal operators. that is, operators respecting Axiom K and necessitation. 
in our case, however, we want that these operators respect, in addition, 
the common properties of knowledge, i.e., truth, positive and negative 
introspection.5 We deal with this by redefining the rules ?R and !R below. 
Note that these two particle rules subsume the old ones of Definition 11.

Definition 12 (particle rules for Knowledge properties). 

• Challenge of Accessibility Relation for Knowledge (?RK):
 if 1 1( , , , , ), ( , , , , )ak kan an t K an an tw l j w l y¢× × ¢ ¢ ¢ ¢X X   is in d,
 for any { , }t Î Ø! ? , any t¢, l¢, y and any finite (possibly empty) sequences 

1 kn n  and 1 kn n ¢¢ ¢ ,
 then 1( , , , , )kan an RKw l j¢× Ø¢ ¢Y ?  is allowed. 

• Defense of Accessibility Relation for Knowledge (!RK):
 if ( , , , , )RKw l jØY ?  is in d,
 then ( , , , , )w l jX !  is allowed. 

We show examples of the use of rules ?RK and !RK in tables 3, 4 and 5. 
 

0. ( )
1. (0)
2. (1)
3. (2)
4. (3)
5. (4)
6. (1)
7. (6)
8. (7,5)

a

a

a

a

K p p
K p p

K p
K p

RK p
p

p
p

p

Ø ÙØ
Ø ÙØ
Ù Ø

Ø

Ù ØØ
Ø

Ø

P !
O ?
P ?
O !
P ?
O !
P ?
O !
P ?

table 4: dialog about an instance of truth

5 We are well aware that some works do not consider that knowledge respects all these 
properties. We do not intend to discuss such properties here and prefer to use this well accepted 
definition of knowledge. For more on this, please see the third paragraph of Section 5. 
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the dialog in table 4 starts with an instance of truth (also known as 
Axiom t, see table 1). the rule ?RK is used in move 4 instantiating both 
sequences 1 kan an  and 1 kan an ¢¢ ¢  with the empty sequence. thus, both 
sequences are considered as being the same. intuitively, this corresponds to 
the appeal to reflexivity of accessibility relations in epistemic models. Reflex-
ivity is the property responsible for the validity of Axiom t in epistemic logic.

the dialog in table 5 starts with an instance of positive introspection 
(also known as Axiom 4, see table 1). the rule ?RK is used in move 10 
instantiating sequence 1 kan an  with the empty sequence and 1 kan an ¢¢ ¢  
with the sequence a1a2. Thus, the first sequence is a proper subsequence 
of the second one with all agents in it being the same agent a. intuitively, 
this corresponds to the appeal to transitivity of accessibility relations in 
epistemic models. transitivity is the property responsible for the validity of 
Axiom 4 in epistemic logic.

the dialog in table 6 starts with an instance of negative introspection 
(also known as Axiom 5, see table 1). the rule ?RK is used in move 8 
instantiating both sequences 1 kan an  and 1 kan an ¢¢ ¢  with a1. this is 
exactly as if the rule ?R (from Definition 11) have been used. Here, the 
interesting use of rule ?RK is the one made in move 14, instantiating the 
sequence 1 kan an  with a1 and the sequence 1 kan an ¢¢ ¢  with a2. thus, both 
sequences are different but all agents in them are the same agent a. intui-
tively, this corresponds to the appeal to euclidicity of accessibility relations 
in epistemic models. euclidicity is the property responsible for the validity 
of Axiom 5 in epistemic logic.

0. ( )
1. (0)
2. (1)
3. (2)
4. (3)
5. 1 (4)
6. 1 (5)
7. 1 2 (6)
8. (1)
9. (8)
10. 1 2 (9,7)
11. 1 2 (10)
12. 1 2 (7,11)

a a a

a a a

a a

a a

a a

a

a

a

a

K p K K p
K p K K p

K K p
K K p

K K p
a K K p
a K p
a a K p

K p
K p

a a RK p
a a p
a a p

Ø ÙØ
Ø ÙØ
Ù ØØ

Ø
Ø

Ø

Ø
Ù Ø

Ø

P !
O ?
P ?
O !
P ?
O ?
P !
O ?
P ?
O !
P ?
O !
P !

table 5: dialog about an instance of positive introspection
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the third category of particle rules contains the ones for shared and com-
mon knowledge operators.

Definition 13 (particle rules for Shared and Common Knowledge oper-
ators).

• Challenge of Shared Knowledge Operator (?E):
 if ( , , , , )Gt Ew l jX  is in d, for { , }t Î Ø! ? ,
 then ( , , , , )an Ew l j× ØY ? , for a fresh n and any a Î G. 

• Defense of Shared Knowledge Operator (!E):
 if ( , , , , )Ew l jØY ?  is in d,
 then ( , , , , )w l jX !  is allowed. 

• Challenge of Accessibility Relation for Shared Knowledge Operator 
(?RE):

 if 1 1( , , , , ), ( , , , , )Gk kan an t E an an tw l j w l y¢× × ¢ ¢ ¢ ¢X X   is in d,
 for any { , }t Î Ø! ? , any t¢, l¢, y, any a Î G, and any finite (possibly empty) 

sequence 1 kn n  and 1 kn n ¢¢ ¢ ,
 then 1( , , , , )kan an REw l j¢× Ø¢ ¢Y ?  is allowed. 

table 6: dialog about an instance of negative introspection

0. ( )
1. (0)
2. (1)
3. (2)
4. (3)
5. 1 (4)
6. 1 (5)
7. 1 (6)
8. 1 (7)
9. 1 (8)
10. (1)
11. (10)
12. (11)
13. 2 (12

a a a

a a a

a a

a a

a a

a

a

a

a

a

a

K p K K p
K p K K p

K K p
K K p

K K p
a K K p
a K p
a K p
a RK p
a p

K p
K p

K p
a K p

Ø Ø ÙØ Ø
Ø Ø ÙØ Ø
Ù ØØ Ø

Ø Ø
Ø Ø

ØØ
Ø

Ø
Ø

Ù ØØ
Ø

Ø
Ø

P !
O ?
P ?
O !
P ?
O ?
P !
O ?
P ?
O !
P ?
O !
P ?
O ? )

14. 2 (7,13)
15. 2 (14)
16. 2 (13,15)

a RK p
a p
a p

ØP ?
O !
P !
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• Defense of Accessibility Relation for Shared Knowledge Operator (!RE):
 if ( , , , , )REw l jØY ?  is in d,
 then ( , , , , )w l jX !  is allowed. 

• Challenge of Common Knowledge Operator (?C):
 if ( , , , , )Gt Cw l jX  is in d, for any { , }t Î Ø! ? ,
 then 1 1( , , , , )k ka n a n Cw l j× ØY ?  for fresh 1, , kn n Î  , and any 

1, , ka a GÎ . 

• Defense of Common Knowledge Operator (!C):
 if ( , , , , )Cw l jØY ?  is in d
 then ( , , , , )w l jX ! . 

0 ( ( ))
1 ( ) 0
2 (

.
. ( )
.

P !
O ?
P ?

¬ ∧¬ ∧
¬ ∧¬ ∧
∧ ¬¬

C p K p K K p
C p K p K K p

K

ab a b a

ab a b a

aa b a

a b a

a b a

a

p K K p
K p K K p

K p K K p
K p

∧
¬ ∧

¬ ∧
∧ ¬

) 1
3 ( ) 2
4 3
5

( )
. ( )
. ( )
.

O !
P ?
O ? (( )

. ( )

. ( )

. ( )

. ( )
.

4
6 5
7 1 6
8 1
9 8
10 1

P !
O ?
P ?
O !
P ?

K p
a K p

C p
C p

a R

a

ab

ab

¬
∧ ¬

CC p
a p
a p

K K p
K K

a b

a

¬

∧ ¬

( , )
. ( )
. ( , )
. ( )
.

9 7
11 1 10
12 1 7 11
13 4
14

O !
P !
O ?
P ! bb

b

b

p
a K K p
a K p
a b K p
a

( )
. ( )
. ( )
. ( )
.

13
15 1 14
16 1 15
17 1 2 16
18

O ?
P !
O ?
P

¬

¬
11 2 9 17

19 1 2 18
20 1 2 17 19

b RC p
a b p
a b p

?
O !
P !

¬ ( , )
. ( )
. ( , )

table 7: dialog about common knowledge
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• Challenge of Accessibility Relation for Common Knowledge Operator 
(?RC):

 if 1 1( , , , , )k k Ga n a n t Cw l j×X   and 1 1( , , , , )k ka n a n tw l y¢ ¢× ¢ ¢ ¢ ¢ ¢ ¢X   are in d,
 for any { , }t Î Ø! ? , any t¢, l¢, y, any finite (possibly empty) sequences 

1 kn n Î  and 1 kn n ¢ Î¢ ¢  , and 1 1, , , ,k ka a a a G¢ Î¢ ¢  ,
 then 1 1 1( , , , , )ka n a n RCw l j¢× Ø¢ ¢Y ?  is allowed. 

• Defense of Accessibility Relation for Common Knowledge (!RC):
 if ( , , , , )RCw l jØY ?  is in d,
 then ( , , , , )w l jX !  is allowed. 

the intuitive meaning of these rules should be obvious. if X advances argu-
ment GE j , then Y can challenge it by choosing an agent a Î G and then 
oblige X to defend j. Similarly, if X advances argument GC j , then Y can 
challenge it by choosing an arbitrarily long sequence 1 1, , k ka n a n  and then 
oblige X to defend j in that context. the rules for common knowledge are 
used in moves 10 and 18.

finally, we turn our attention to the rules for public announcements. 
they are given in the sequel.

Definition 14 (particle rules for public Announcements). 

• Challenge of Public Announcement Operator (  á ñ? ):
 if ( , , , , )tw l j yá ñX  is in d, for { , }t Î Ø! ? ,
 then both ( , , ,  , )w l já ñ ØY ?  and ( , , ,  , )w l j y× á ñ ØY ?  are allowed. 

• Defense of Public Announcement Operator (  á ñ! ): 
 −  if ( , , ,  , )w l já ñ ØY ?  is in d, 

then ( , , , , )w l jX !  is allowed. 
 −  if ( , , ,  , )w l j y× á ñ ØY ?  is in d, 

then ( , , , , )w l j y×X !  is allowed. 

• Challenge of Propositional Permanence (?P):
 if ( , , , , )t pw l j×X  is in d, for { , }t Î Ø! ? , and any ,t y¢ ,
 then ( , , , , )P pw l ØY ?  is allowed. 

• Defense of Propositional Permanence (!P):
 if ( , , , , )P pw l ØY ?  is in d, then ( , , , , )pw lX !  is allowed. 

• Challenge of Update (?U):
 if ( , , , , )an tw l j y× ×X  is in d, for { , , , , , , , , ,t K RK E RE C RCÎ Ø Ù! ? ? ? ? ? ? ? ?  

? ?〈 〉 , }P  and any y, 
 then ( , , , , )an Uw l j× ØY ?  is allowed. 

• Defense of Update (!U):
 if ( , , , , )an Uw l j× ØY ?  is in d,
 then ( , , , , )anw l j×X !  is allowed. 
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234 SéBAStien mAgnier And tiAgo de limA

the intuitive meaning of rules ?áñ and !áñ is the following. if X advances 
argument j yá ñ  in context ( , )w l , then Y can challenge it either by advancing 
Øj in ( , )w l , meaning that the possible world w “does not survive” 
the public announcement of j, or by advancing Øy in ( , )w l j× , meaning that 
y is not true in the possible world w of the epistemic model updated by l j× . 
then, X must either defend Øj in ( , )w l  or y in ( , )w l j× , respectively.

the use of rules ?áñ and !áñ is illustrated in the dialog on table 8. it starts 
with thesis p pØá ñØ . this is a valid formula, since public announcements 
do not change truth values of propositional variables p ÎP . therefore, the 
proponent should be able to win the dialog. indeed. note that the rule ?áñ 
is used by the proponent in move 2 to force the opponent to defend p in the 
empty context. this argument is used against the opponent in move 6. the 
proponent also uses rule ?áñ in move 4.

the intuitive meaning of rules ?P and !P is the following. if X advances 
argument p in ( , )w l j×  then Y can challenge it by advancing argument Øp 
in ( , )w l . it then obliges X to defend p in ( , )w l . technically, this appeals 
to the fact that the truth values of propositional variables p ÎP  are not 
changed by public announcements. that is, if p is true in the possible world 
w in the epistemic model updated by l j× , then p is also true in w in the 
epistemic model updated by l.

the intuitive meaning of rules ?U and !U is more subtle. if X advances 
some argument in ( , )anw l j× ×  then Y can challenge it by advancing argu-
ment Øj in ( , )anw l× , which then obliges X to defend j in ( , )anw l× . 
technically, this appeals to the fact that anw ×  must “survive” the update 
by j to be able to be used by X in a context with l j× .

the use of rules ?P, !P, ?U and !U is illustrated in the dialog of table 9. 
this ends the set of particle rules. We have no less than 21 of such rules 

defined! For the comfort of the reader, we schematically summarize them 
in Appendix A (page 249).

Now, we are finally at the point to define the semantics of PAC accord-
ing to the dialogical approach.

0.
1. (0)
2.  (1)
3. (2)
4.  (1)
5. (4)
6. (5)

p p
p p
p

p
p p
p p
p p

Øá ñØ
Ø á ñØ
áñ Ø

áñ ØØ
Ø

Ø

P !
O ?
P ?
O !
P ?
O !
P ?

table 8: dialog about the formula ØápñØp 

98348_LogiqueAnalyse_230_04.indd   234 25/03/2016   14:49:51



 A SoundneSS And CompleteneSS proof on diAlogS 235

Definition 15 (Validity). A formula ( , )Agj Î PACL P  is valid in (the dia-
logical approach of) PAC, which is noted jD , if and only if the proponent 
wins all dialogs with thesis j. 

therefore, when the thesis is not valid in this approach, the opponent may 
win the dialog. We illustrate such situation in table 10. there, we choose a 
formula involving the moore Sentence ap K pÙØ . in van ditmarsch [19], an 
interesting understanding of such sentences is presented. the special feature 
of moore Sentences is that they are unsuccessful. that is, such sentences are 
false after their own announcement. thus, the proponent may not win the 
dialog starting with thesis ( )a ap K p p K pØá ÙØ ñØ ÙØ  (which states that the 
formula ap K pÙØ  is successful). it is indeed what happens in table 10.

note, however, that if the opponent does not play well, the proponent 
may win a dialog starting with such thesis. for instance, assume that, in 
move 9, the opponent does not change the context, i.e., the argument Øp is 
also advanced in the empty context. then, the proponent can reuse the argu-
ment of opponent’s move 5 and defend itself against move 9 with argument p. 
in this case, the opponent cannot move anymore.

the remainder of this article is devoted to show that the dialogical approach 
to PAC coincides with the model-theoretical approach. 

3.  Soundness

in this section, we show that the dialogical approach is sound with respect 
to the model-theoretical approach. in other words, we show that jD  
implies j. in fact, we use its contrapositive, i.e., we show that j  implies 

0.
1. (0)
2.  (1)
3. (2)
4. (3)
5. 1 (4)
6. 1 (5)
7. 1 (6)
8. 1 (5)
9. 1 (8)
10. 1 (7,9)

a

a

a

a

a

p K p
p K p

p K p
p K p
p K p

a p K p
a p p
a P p
a U p
a p
a p

Øá ñØ
Ø á ñØ
áñ ØØ

Ø
Ø

Ø

Ø
Ø

P !
O ?
P ?
O !
P ?
O ?
P !
O ?
P ?
O !
P !

table 9: dialog about the formula ØápñØKa p
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jD . in words, this means that, if there exists a pointed epistemic model 
satisfying Øj (i.e., a counter-model for j) then the proponent does not win 
all dialogs with thesis j. First, however, we need some definitions and two 
lemmas.

Definition 16  (Satisfiable Dialog). the dialog d is satisfiable if and only 
if there exists an epistemic model = ( ,{ } ,a a AgÎ ñM W R V  and a function 

: ( )f Ag * ® W  such that ( ( ), ( )) af fw w Î¢ R , for all moves ( , ,aw w× × ¢¢X  
λ ϕ, , )t  in d, where = aw w w× ×¢ ¢¢, for any t, and: 

• ( , ( ))f w lM   or ( , ( ))fl w jM  , for all moves ( , , , , )tw l jP  in d, for 
any t; 

• ( , ( ))f w lM   and ( , ( ))fl w jM  , for all moves ( , , , , )tw l jO  in d, for 
any t. 

0. ( )
1. ( ) (0)
2.  ( ) (1)
3. (2)
4. (3)
5. (4)
6. (3)
7. (6)
8. (7)
9. 1 (8)
10.  ( ) (1)
11. ( ) (10)
12.

a a

a a

a

a

a

a

a

a a

a a

p K p p K p
p K p p K p

p K p
p K p

p
p

K p
K p

K p
a K p

p K p p K p
p K p p K p
p

Øá ÙØ ñØ ÙØ
Ø á ÙØ ñØ ÙØ
áñ Ø ÙØ

ÙØ
Ù Ø

Ù ØØ
Ø

Ø
Ø

ÙØ áñ ØØ ÙØ
ÙØ Ø ÙØ

P !
O ?
P ?
O !
P ?
O !
P ?
O !
P ?
O ?
P ?
O !
P (11)

13. (12)
14. (13)
15. (14)
16. 1 (15,9)
17. 1 ( ) (16)
18. 1 (17)
19. 1 (18)

a a

a a

a a

a a

a

a

a

K p p K p
p K p K p
p K p K p
p K p K p

a p K p R p
a U p K p
a p K p
a p

ÙØ Ø ÙØ
ÙØ Ù ØØ
ÙØ Ø
ÙØ Ø
ÙØ Ø

Ø ÙØ
ÙØ

Ù Ø

?
O ?
P !
O ?
P ?
O ?
P !
O ?

table 10: dialog involving a moore Sentence

98348_LogiqueAnalyse_230_04.indd   236 25/03/2016   14:49:52



 A SoundneSS And CompleteneSS proof on diAlogS 237

Lemma 1. Let d be a dialog. If d is satisfiable and there is a particle rule 
that is applicable in d then its application generates a dialog d ¢ that is 
satisfiable. 

Proof. Assume that the pointed epistemic model ( , ( ))f wM  satisfies d and 
that there is a particle rule that is applicable in d. this means that there is 
at least one move = ( , , , , )tm w l jX  in d allowing the application of such 
particle rule. the application of such rule generates the dialog d¢. there 
are several cases to be considered, depending on which particle rule is 
applicable: 

 1. defenses: there are three cases to be considered: 
(a) Assume ( , , , , )tw l jØO  in d, for some challenge t. then, the appli-

cation of the defense rule generates d ¢ with ( , , , , )w l jP ! . By 
assumption, we have ( , ( ))f w lM   and ( , ( ))fl w jØM  , iff 
( , ( ))f w lM   and ( , ( ))fl w jM  . therefore, d ¢ is satisfiable. 

(b) Assume ( , ,(), , )tw jØP  in d, for some challenge t. then, the appli-
cation of the rule generates d ¢ with ( , , (), , )w jO ! . By assumption, 
we have ( , ( ))f w jØM  , iff ( , ( ))f w jM  . therefore, d ¢ is sat-
isfiable. 

(c) Assume ( , , , , )tw l c j× Ø¢P  in d, for some challenge t. in this 
case, rule ?U is also applicable. then, the application of one of 
the two rules generates either 1d ¢ with ( , , , , )Uw l cØ¢O ?  or 2d ¢  
with ( , , , , )w l c j×¢O ! . By assumption, we have ( , ( ))f w l c×¢M   or 
( , ( ))fcl w j×¢ ØM  , iff ( , ( ))f w l c×¢M   or ( , ( ))fcl w j×¢M  . 
therefore, d ¢ is satisfiable. 

 2. Challenge of negation: it is shown exactly as for the case defenses 
above. 

 3. Challenge of Conjunction: there are three cases to be considered: 
(a) Assume ( , , , , )tw l j yÙO  in d, for { , }t Î Ø! ? . then, the applica- 

tion of this rule generates d ¢ with both ( , , , , )w l jÙ ØP ?  and 
( , , , , )w l yÙ ØP ? . By assumption, we have ( , ( ))f w lM   and 
( , ( ))fl w j yÙM  , iff ( , ( ))f w lM   and ( , ( ))fl w jØM   and 
( , ( ))fl w yØM  . therefore, d ¢ is satisfiable. 

(b) Assume ( , ,(), , )tw j yÙP  in d, for { , }t Î Ø! ? . then, the application 
of this rule generates either 1d ¢ with ( , , , , )w l jÙ ØO ?  or 2d ¢  with 
( , , , , )w l yÙ ØO ? . By assumption, we have ( , ( ))f w j yÙM  , iff 
( , ( ))f w jØM   or ( , ( ))f w yØM  . therefore, d ¢ is satisfiable. 

(c) Assume ( , , , , )tw l c j y× Ù¢P  in d, for { , }t Î Ø! ? . in this case, 
rule ?U is also applicable. then, the application of one of these 
rules generates either 1d ¢ with ( , , , , )Uw l cØ¢O ?  or 2d ¢  with 
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238 SéBAStien mAgnier And tiAgo de limA

( , , , , )w l c j× Ù Ø¢O ?  or 3d ¢ with ( , , , , )w l c y× Ù Ø¢O ? . By assump- 
tion, we have ( , ( ))f w l c×¢M   or ( , ( ))fcl w j y×¢ ÙM  , iff 
( , ( ))f w l c×¢M   or ( , ( ))fcl w j×¢ ØM   or ( , ( ))fcl w y×¢ ØM  . 
therefore, d ¢ is satisfiable. 

 4. Challenge of Knowledge operator: note that this rule is allowed only 
for the opponent. there are two cases to be considered: 
(a) Assume ( , ,(), , )at Kw jP  in d, for { , }t Î Ø! ? . then, the application of 

this rule generates d¢ with ( , , (), , )an Kw c× ØO ? , for a fresh n Î. 
By assumption, we have ( , ( )) af Kw jM  , iff ( , ( ))f anw j× ØM  , 
for some anw ×  in d. therefore, d ¢ is satisfiable. 

(b) Assume ( , , , , )at Kw l c j×¢P  in d, for { , }t Î Ø! ? . in this case, rule 
?U is also applicable. then, the application of one of these rules 
generates either 1d ¢ with ( , , , , )Uw l cØ¢O ?  or 2d ¢  with ( , ,O w ×an  

, , )Kl c c× Ø¢ ? , By assumption, we have ( , ( ))f w l c×¢M   or 
( , ( )) af Kcl w j×¢M  , iff ( , ( ))f w l c×¢M   or ( , ( ))f anw ×M 
′ ⋅λ χ  and ( , ( ))f ancl w j×¢ × ØM  , for some anw ×  in d. therefore, 

d ¢ is satisfiable. 
 5. Challenge of Accessibility relation for Knowledge: there are three 

cases to be considered: 
(a) Assume 1( , , , , )akan an t Kw l j×O   in d, for { , }t Î Ø! ? . then, suc-

cessive applications of this rule generate d ¢ with 1( ,, kan anw ¢× ¢ ¢P 

λ ϕ, , )?RK ¬ , for all 1 kan anw ¢× ¢ ¢  in d. By assumption, we have 
1( , ( ))kf an anw l× M   and 1( , ( )) akf an an Kl w j× M  , iff 
1( , ( ))kf an anw l¢× ¢ ¢M   or 1( , ( ))kf an anl w j¢× Ø¢ ¢M  , for all 

1 kan anw ¢¢ ¢  in d. therefore, d ¢ is satisfiable. 
(b) Assume 1( , ,(), , )akan an t Kw j×P   in d, for { , }t Î Ø! ? . then, the 

application of this rule generates d¢ with 1( , , (), ,kan an RKw ¢× ¢ ¢O ?

Øj), for some 1 kan anw ¢× ¢ ¢  in d. (recall that the opponent can 
apply it only once, due to the structural rule opponent’s restric-
tion.) By assumption, we have 1( , ( )) akf an an Kw j× M  , iff 

1( , ( ))kf an anw j¢× Ø¢ ¢M  , for some 1 kan anw ¢¢ ¢  in d. therefore, 
d ¢ is satisfiable. 

(c) Assume 1( , , , , )akan an t Kw l c j× ×¢P   in d, for { , }t Î Ø! ? . in this 
case, rule ?U is also applicable. then, the application of this 
rule generates either 1d ¢ with 1( , , , , )kan an Uw l c¢× Ø¢ ¢ ¢O ?  or 2d ¢  
with 1( , , , , )kan an RKw l c j¢× × Ø¢ ¢ ¢O ? , for some 1 kan anw ¢× ¢ ¢  in d. 
(recall that the opponent can apply it only once, due to the  
structural rule opponent’s restriction.) By assumption, we have 

1( , ( ))kf an anw l c× ×¢M   or 1( , ( )) akf an an Kcl w j×¢ × M  , iff 
1( , ( ))kf an anw l c× ×¢M   or 1( , ( ))kf an anw l c¢× ×¢ ¢ ¢M   and 

1( , ( ))kf an ancl w j×¢
¢× Ø¢ ¢M  , for some 1 kan anw ¢¢ ¢  in d. there-

fore, d ¢ is satisfiable. 
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 6. Challenge of Shared Knowledge operator: Similar to the case Chal-
lenge of Knowledge operator above. 

 7. Challenge of Accessibility relation for Shared Knowledge operator: 
Similar to the case Challenge of Accessibility relation for Knowledge 
operator above. 

 8. Challenge of Common Knowledge operator: Similar to the case Chal-
lenge of Knowledge operator above. 

 9. Challenge of Accessibility relation for Common Knowledge operator: 
Similar to the case Challenge of Accessibility relation for Knowledge 
operator above. 

10. Challenge of public Announcement operator: there are three cases to 
be considered: 
(a) Assume ( , , , , )tw l j yá ñO  in d, for { , }t Î Ø! ? . then, the applica- 

tion of this rule generates d ¢ with both ( , , ,  , )w l já ñ ØP ?  and 
( , , ,  , )w l j y× á ñ ØP ? . By assumption, we have ( , ( ))f w lM   and 
( , ( ))fl w j yá ñM  , iff ( , ( ))f w lM   and ( , ( ))fl w jØM   and 
( , ( ))fl j w y× ØM  . therefore, d ¢ is satisfiable. 

(b) Assume ( , ,(), , )tw j yá ñP  in d, for { , }t Î Ø! ? . then, the application 
of this rule generates either 1d ¢ with ( , , (),  , )w jáñ ØO ?  or 2d ¢  with 
( , , ,  , )w j yáñ ØO ? . By assumption, we have ( , ( ))f w j yá ñM  , iff 
( , ( ))f w jØM   or ( , ( ))fj w yØM  . therefore, d ¢ is satisfiable. 

(c) Assume ( , , , , )tw l c j y× á ñ¢P  in d, for { , }t Î Ø! ? . in this case, rule 
?U is applicable. then, the application of this rule generates 
either 1d ¢ with ( , , , , )Uw l cØ¢O ?  or 2d ¢  with ( , , ,  , )w l c j× áñ Ø¢O ?  
or 3d ¢ with ( , , ,  , )w l c j y× × áñ Ø¢O ? . By assumption, we have 
( , ( ))f w l c×¢M   or ( , ( ))fcl w j y×¢ á ñM  , iff ( , ( ))f w l c×¢M   
or ( , ( ))fcl w j×¢ ØM   or ( , ( ))fl c j w y× ×¢ ØM  . therefore, d ¢ is sat-
isfiable. 

11. Challenge of propositional permanence: there are two cases to be con-
sidered: 
(a) Assume ( , , , , )t pw l c×¢O  in d, for { , }t Î Ø! ? . then, the applica- 

tion of this rule generates d ¢ with ( , , , , )P pw l Ø¢P ? . By assump- 
tion, we have ( , ( ))f w l c×¢M   and ( , ( ))f pl c w×¢M  . then, 
( , ( ))f w l¢M   and ( , ( ))f pl w¢ ØM  . therefore d ¢ is satisfiable. 

(b) Assume ( , , , , )t pw l c×¢P  in d, for { , }t Î Ø! ? . in this case, rule ?U 
is also applicable. then, the application of one of these rules gener-
ates 1d ¢ with ( , , , , )Uw l cØ¢O ?  or 2d ¢  with ( , , , , )P pw l Ø¢O ? . By 
assumption, we have ( , ( ))f w l c×¢M   or ( , ( ))f pcl w×¢M  . then, 
( , ( ))f w l c×¢M   or ( , ( ))f pl w¢ ØM  . therefore, d¢ is satisfiable. 

12. Challenge of update: it has been treated in the cases above.
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Lemma 2. The proponent wins the dialog d if and only if d is finite and 
contains a move = ( , ,(), , )t pm wP , for some , tw  and p ÎP . 

Proof. for the implication from the left to the right, if the proponent wins 
the dialog d then, by definition, there are no more allowed moves for the 
opponent. this means that the opponent cannot make a move, which means 
that the proponent cannot make a move as well, due to the structural rule 
game-playing. therefore, d is finite. By assumption, and due to the struc-
tural rule Winning, the last move in d is a proponent’s move. let the update 
of such move be l and its argument be j. towards a contradiction, assume 
that either l is not empty or j is not a propositional variable p ÎP . in 
either case, there is at least one particle rule that is applicable. this means 
that such move is not the last one, which is a contradiction. therefore, l is 
the empty sequence and j is equal to some p ÎP .

for the implication from the right to the left, let | ( )|d P  denote the num-
ber of proponent’s move in d up till move m. note that | ( )| | ( )|d d£O P , due 
to structural rules Starting and game-playing. towards a contradiction, 
assume that the opponent has some move m ¢ allowed after m. move m ¢ can-
not challenge m nor it can be a defense against it. thus, m ¢ is a reaction 
to one of the other | ( )| 1d -P  proponent’s moves in d. But, at this point, 
there is already | ( )| 1d -O  opponent’s moves in d. All of these moves are 
reactions to previous proponent’s moves. then, due to structural rule game-
playing, which forbids repetitions, m ¢ is not an allowed move. this means 
that m is the last move in d. therefore, the proponent wins d. 

We finally can show soundness of the dialogical approach with respect 
to the model-theoretical approach to PAC.

Theorem 1 (Soundness). If jD  then j . 

Proof. We show its contrapositive. that is, we show that j  implies jD . 
towards a contradiction, assume j  and jD . then, there exists a 
pointed epistemic model ( , )wM  satisfying jØ  and the proponent wins all 
terminal dialogs with thesis j. let d be one of such dialogs. By lemma 2, 
the last move in d is of the form ( , , (), , )t pwP , for some w and t. due to the 
structural rule proponent’s restrictions, the argument p must have been 
advanced by the opponent in d, i.e., d also contains a move of the form 
( , ,(), , )t pw ¢O , for some t¢. now, by the assumption and also by lemma 1, 
d is satisfiable. Thus, we have ( , ( ))f pwM   and ( , ( ))f pwM  , which 
is a contradiction. therefore, we have that jD . 

4.  Completeness

in this section, we show that the dialogical approach is complete with 
respect to the model-theoretical approach. in other words, we show that  j 
implies D j. in fact, we use its contrapositive, i.e., we show that D j 
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implies  j. in words, this means that, if the proponent does not win all 
dialogs with thesis j then there exists a pointed epistemic model satisfying 
Øj (i.e., a counter-model for j). First, however, we need two definitions 
and an auxiliary lemma.

Definition 17 (length of formulas). the length of a formula ( , ),Agj Î PACL P
given by the expression ( )len j , is inductively defined as follows: 

 ( ) = 1len p
 ( ) = 1 ( )len lenj jØ +
 ( ) = 1 ( ) ( )len len lenj y j yÙ + +
 ( ) = 2 ( )alen K lenj j+
 ( ) = 1 | | ( )Glen E G lenj j+ +
 ( ) = 1 | | ( )Glen C G lenj j+ +
 ( ) = 2 ( ) ( )len len lenj y j yá ñ + +

Definition 18 (length of Sequences of formulas). the length of a sequence 
of formulas l, given by the expression ( )len l , is the number of formulas 
in l, i.e., it is inductively defined by: 

 () = 0len
 ( ) = 1 ( )len lenl j l× +

Lemma 3.  If there is a terminal dialog with thesis j that is not won by the 
proponent then there is a pointed epistemic model satisfying Øj. 

Proof. let d be a terminal dialog with thesis j that is not won by the  
proponent. We show the following claim: there exists an epistemic model 
M such that we have both: 

• ( , )w lM   or ( , )l w yM  , for all moves ( , , , , )tw l yP  in d, for any t; 
• ( , )w lM   and ( , )l w yM  , for all moves ( , , , , )tw l yO  is in d, for any t. 

Since d starts with the move ( , (),(), , )jP ! , the above claim permits us to 
conclude that the pointed epistemic model ( , ())fM  satisfies Øj.

it remains to prove the claim. to that end, we construct the epis- 
temic model M using the moves in the dialog d, as follows. let M = 

= ,{ } ,a a AgÎá ñM W R V , where: 

• = { : ( , , , , ) is in ,for some , , }t d tw w l y l yOW ; 
• Ra = the reflexive, transitive and symmetric closure of the set:  

 {( , ) : = and ( , , , , ) is in , for some , , }a t d tw w w w w w l y l y× ×¢ ¢ ¢¢ ¢O ; 
• = { : ( , , , , ) is in , for some , }p t p d tw w l lOV . 
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Assume that move ( , , , , )tw l yX  is in d. the remainder of the proof is an 
induction on ( ) ( )len lenl y+ .

in the induction base, l is the empty sequence and = py , for some 
p ÎP . let X = P. then, by lemma 2, the proponent wins the dialog, 
which contradicts the assumption. therefore, X = O. then, ( ) pf w ÎV  (by 
assumption), iff ( , )l w yM   (by the definition of M).

now, assume that the claim is true for all l and y such that 
( ) ( )len len xl y+ £ . We show that it is true for all l and y such that 
( ) ( ) = 1len len xl y+ + .

first, assume that ( ) > 0len l , i.e., =l l c×¢ , for some c: 

• if X = P then ( , , , , )Uw l cØ¢O ?  is in d (because d is terminal). then, 
( , )w l¢M   and ( , )l w c¢ ØM   (by the induction hypothesis). then, 
( , )w lM  . 

• if X = O then both ( , , , , )Uw l cØ¢P ?  and ( , , , , )w l c¢O !  are in d (because 
d is terminal). then, ( , )w l¢M   and ( , )l w c¢ ØM   (by the induction 
hypothesis). then, ( , )w lM  . 

now, assume that ( , )w lM  . there are seven cases to be considered: 

1. let = py . note that we have =l l c×¢ , for some c (otherwise this would 
be the induction base): 
• if X = P then ( , , , , )P pw l Ø¢O ? , (because d is terminal). then, 

( , ) pl w¢ ØM   (by the induction hypothesis). then, ( , ) pl w¢M  , iff 
( , ) pl wM   (by definition). 

• if X = O then ( , , , , )P pw l Ø¢P ? , (because d is terminal). then, 
( , ) pl w¢ ØM   (by the induction hypothesis). then, ( , ) pl w¢M  , iff 
( , ) pl wM   (by definition). 

2. let =y yØ ¢: 
• if X = P then ( , , , , )tw l y¢O  is in d, for some { , }t Î Ø! ? , (because d is 

terminal). then, ( , )l w yM   (by the induction hypothesis). then, 
( , )l w yØM  . 

• if X = O: 
− if = py¢  and l is the empty sequence then ( , , , , )t pw l ¢O  is not in 

d, because, if it were the case, we would have ( , , , , )t pw l ¢¢P  is in d 
(because the dialog is terminal), which means that the proponent 
wins the dialog (by lemma 2) and thus, contradicting the assump-
tion. therefore, ( ) pf w Î V  (by definition). Then, ( , ) pl w ØM  . 

− else, ( , , , , )tw l y¢P  is in d, for some { , }t Î Ø! ? , (because d is ter-
minal). then, ( , )l w yM   (by the induction hypothesis). then, 
( , )l w yØM  . 
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3. let 1 2=y y yÙ : 
• if X = P then either 1( , , , , )w l yÙ ØO ?  or 2( , , , , )w l yÙ ØO ?  is in d. 

(because d is terminal and due to opponent’s restriction). then, either 
1( , )l w yØM   or 2( , )l w yØM   (by the induction hypothesis). then, 

( , )l w yM  . 
• if X = O then both 1( , , , , )w l yÙ ØP ?  and 2( , , , , )w l yÙ ØP ?  are in d 

(because d is terminal). then, 1( , )l w yØM   and 2( , )l w yØM   (by 
the induction hypothesis). then, ( , )l w yM  . 

4. let = aKy y¢ and let 1= kan anw w ×¢  : 
• if X = P then 1( , , , , )kan an tw l y¢× Ø¢ ¢ ¢ ¢O   is in d, for some { , }t K RÎ ? ?  

and some sequence 1 kan an ¢¢ ¢  (because d is terminal and due to  
opponent’s restriction). then, 1( , )kan anl w y¢× Ø¢ ¢ ¢ ¢M   for some 
sequence 1 kan an ¢¢ ¢  (by the induction hypothesis). then, ( , )l wM  
Kay, because, by definition, 1( , ) akan anw w ¢× Î¢ ¢ ¢ R . 

• if X = O then 1( , , , , )kan an tw l y¢× Ø¢ ¢ ¢ ¢P   is in d, for some { , }t K RÎ ? ?  
and all sequences 1 kan an ¢¢ ¢  in d (because d is terminal), iff 

1( , )kan anl w y¢× Ø¢ ¢ ¢ ¢M   for all sequences 1 kan an ¢¢ ¢  in d (by the 
induction hypothesis). then, ( , ) aKl w yM  , because, by definition, 

1( , ) akan anw w ¢× Î¢ ¢ ¢ R , for all sequences 1 kan an ¢¢ ¢  in d. 

5. let = GEy y¢: 
• if X = P then 1( , , , , )kan an tw l y¢× Ø¢ ¢ ¢ ¢O   is in d, for some { , }t E REÎ ? ?  

and some sequence 1 kan an ¢¢ ¢  (because d is terminal and due to 
opponent’s restriction). then, 1( , )kan anl w y¢× Ø¢ ¢ ¢ ¢M   for some 
sequence 1 kan an ¢¢ ¢  (by the induction hypothesis). then, ( , )l wM  
EGy, because, by definition, 1( , ) akan anw w ¢× Î¢ ¢ ¢ R . 

• if X = O then 1( , , , , )kan an tw l y¢× Ø¢ ¢ ¢ ¢P   is in d, for some { , }t E REÎ ? ?  
and all sequences 1 kan an ¢¢ ¢  in d (because d is terminal), iff 

1( , )kan anl w y¢× Ø¢ ¢ ¢ ¢M   for all sequences 1 kan an ¢¢ ¢  in d (by the 
induction hypothesis). then, ( , ) GEl w yM  , because, by definition, 

1( , ) ak a Gan anw w ¢ Î× Î¢ ¢ ¢



R , for all sequences 1 kan an ¢¢ ¢  in d. 

6. let = GCy y¢: 
• if X = P then 1 1( , , , , )k ka n a n tw l y¢× Ø¢ ¢ ¢ ¢O   is in d, for some 

{ , }t C RCÎ ? ?  and some sequence 1 1 k ka n a n¢ ¢¢ ¢  (because d is terminal 
and due to opponent’s restriction). then, 1( , )kan anl w y¢× Ø¢ ¢ ¢ ¢M   
for some sequence 1 1 k ka n a n¢ ¢¢ ¢  (by the induction hypothesis). then, 
( , ) GCl w yM  , because, by definition, ( )1 1( , ) .ak k a Ga n a nw w *

¢ ¢ Î× Î¢ ¢ ¢



R
• if X = O then 1 1( , , , , )k ka n a n tw l y¢ ¢× Ø¢ ¢ ¢ ¢P   is in d, for some 

{ , }t C RCÎ ? ?  and all sequences 1 1 k ka n a n¢ ¢¢ ¢  in d (because d is ter- 
minal), iff 1 1( , )k ka n a nl w y¢ ¢× Ø¢ ¢ ¢ ¢M   for all sequences 1 1 k ka n a n¢ ¢¢ ¢  
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in d (by the induction hypothesis). then, ( , ) GCl w yM  , because, 
by definition, ( )1 1( , ) ak k a Ga n a nw w *

¢ ¢ Î× Î¢ ¢ ¢



R , for all sequences 
1 1 k ka n a n¢ ¢¢ ¢  in d. 

7. let 1 2=y y yá ñ : 
• if X = P then either 1( , , ,  , )w l yá ñ ØO ?  or 1 2( , , ,  , )w l y y× á ñ ØO ?  is in d 

(because d is terminal and due to opponent’s restriction). then, either 
1( , )l w yØM   or 1( , )l w yM   and 1

2( , )l y w y× ØM   (by the induc- 
tion hypothesis). then, 1 2( , )l w y yá ñM  . 

• if X = O then both 1( , , ,  , )w l yá ñ ØP ?  and 1 2( , , ,  , )w l y y× á ñ ØP ?  are in 
d (because d is terminal). then, 1( , )l w yØM  , 1( , )l w yM   and 

1
2( , )l y w y× ØM   (by the induction hypothesis). then, 1 2( , ) .l w y yá ñM 



Theorem 2 (Completeness). If j  then jD . 

Proof. We show its contrapositive. that is, we show that if jD  then 
j . Assume that jD . then, there is a terminal dialog with thesis j that 

is not won by the proponent. By lemma 3, there is a pointed epistemic 
model ( , )wM  satisfying Øj. By definition, ( , )wM  does not satisfy j. 
therefore, j is not valid. 

5.  Discussion and Conclusion

in this paper we presented a novel approach to PAL and PAC, namely, one 
based on the dialogical framework. the main result is the proof of sound-
ness and completeness with respect to the model-theoretical approach. in this 
section, we discuss some similar approaches and alternatives as well as 
possibilities for future work. 

The Standard Particle Rule  for Conjunction. the reader familiar with 
dialogical logic may find our particle rule Challenge of Conjunction awkward. 
the difference from the standard approach is that our rule, when challeng-
ing a conjunction j yÙ , advances an argument Øj or Øy, instead of simply 
indicate which of the conjuncts is challenged. We find that this change, 
apart from being harmless to the correction of the approach, is more elegant. 
first, because we end up with a dialogical system in which all arguments 
are formulas. that is, we do not need to add to the language a new special 
symbol to indicate which conjunct is being challenged. Second, our dialogs 
respect a so-called “sub-formula and negation of sub-formula property”. 
that is, all arguments are either a sub-formula of the thesis or a negation 
of a sub-formula of the thesis. 
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Other Knowledge Operators. We would like to note that simple changes 
on the rules ?RK, ?RE and ?RC can be made to make this approach work 
for other kinds of knowledge operators as well. We have already presented 
rule ?R (Definition 11), which can deal with knowledge operators that do not 
respect truth, positive and negative introspection. Another example is the fol-
lowing version of ?RK¢, which deals with a knowledge operator respecting 
truth and positive introspection but not respecting negative introspection. 

• Challenge of Accessibility Relation for Knowledge (?RK¢):
if 1( , , , , ), ( , , , , )a kt K an an tw l j w l y× × ¢ ¢X X  is in d,
for any { , }t Î Ø! ? , any t¢ , l¢, y and any (possibly empty) sequence 

1, , kan an ,
then 1( , , , , )kan an RKw l j× Ø¢Y ?  is allowed. 

Analogous changes are done to rules ?RE and ?RC to make these operators 
reflect the corresponding operators for shared and common knowledge. 

Dialogs without Defensive Moves. We would like to note that it is pos-
sible to propose an alternative dialogical system without particle rules for 
defense. this alternative system would have only challenges and counter-
challenges. first of all, it is easy to see that all rules for defense are the 
same: they simply advance argument j in reaction to a challenge that 
advances argument Øj. Second, note that it is exactly the same behavior 
as the one of particle rule Challenge of negation. therefore, a dialogical 
system without defensive moves is very simple to achieve: Just drop all the 
rules for defense and allow the current particle rule Challenge of negation 
to challenge all the other challenges. it is easy to see that the resulting 
system is sound and complete.

According to our view, a dialogical system without defensive rules is 
more elegant. it also seems to give a better account to the dynamics of a 
debate: the proponent utters the thesis, then the opponent disagrees and 
attacks it, then the proponent counter-attacks the opponent’s argument, and 
so on. note that it also permits to better explain the particularity of an atomic 
argument (i.e., one consisting of propositional variable p ÎP ). it it is the 
only kind of argument that does not admit attacks. this is so because, in such 
games, we only focus on the structure of arguments and not on their contents. 

Logical Consequences.  With a small modification, the dialogical approach 
to PAC presented here can also handle logical consequence, which is 
defined as follows. 

Definition 19.  A formula j is a logical consequence of a set of formulas G, 
which is noted jG  , if and only if all pointed epistemic models ( , )wM  
that satisfy all formulas in G also satisfy j. 
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The only modification necessary is on the structural rule Starting. In this 
alternative system, we permit the opponent to start by uttering the set  
of formulas G and then the proponent utters the thesis. in this case, each 
formula in G are also available during the dialog, i.e., they can also be chal-
lenged and/or used by the players during the dialog. 

Comparison with Tableaux.  the dialogical approach to PAL may also be 
thought as a reasoning method for it. Since it is sound and complete with 
respect to the model-theoretical approach, it can be used to check weather 
a formula is valid, satisfiable, etc. Indeed, the dialogical approach is some-
what similar to the tableau method proposed in Balbiani et al. [1]. for 
example, consider the development of the tableau for the formula ap K pØá ñØ  
in table 116. it displays exactly the same formulas as the ones advanced as 
arguments by the opponent in table 9.

in fact, we strongly believe the dialogical approach could present the 
same computational complexity as the tableau method, if it were equipped 
with some kind of “inclusion test” to guarantee termination, as in the  
tableaux method. We do not develop such technique here though, leaving 
it for future work. the advantage being that the dialogical approach offers 
the possibility to study announcement logics through an argumentative  
process which had lead us to bridge link between this type of logic and 
conditional precedent in law. 

Future Work. We believe that different dialogical approaches to PAL 
and PAC might be interesting to explore. for instance, we intend to study 
the consequences of decreasing the strategic power of the player in order 
to get closer to real argumentative contexts. in such dialogs, the players 
could, for example, “forget” to use an argument and then permit the adver-
sary to win the dialog even if the point of view defended is inconsistent. 

6 note that we always use the negation of the input formula in the tableau. 

1. ,0,
2. ,0, (  :1)

ˆ3. ,1, ,0,1 ( : 2)
ˆ4. ,1, ( : 2)

5. ,1, ( : 4)
closed

a

a

p K p
p K p R

p a S RK

p p RK
p RSB

e

e

e

á á ñØ ñ
á Ø ñ á ñ

á ñ á ñÎ

á Ø ñ
á Ø ñ

table 11: tableau for the formula ØápñØKap 

98348_LogiqueAnalyse_230_04.indd   246 25/03/2016   14:49:59



 A SoundneSS And CompleteneSS proof on diAlogS 247

other possibilities are the proposition of different rules in order to study 
different kinds of announcement operators.
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A.  Summary of Particle Rules

X Utterance Y Challenge X Defense Conditions

Boolean Operators 

w, l,  t, Øj w, l, ?Ø, j  — t  Î {!, ?Ø}

w, l,  t, j Ù y w, l, ?Ù, Øj  
w, l, ?Ù, Øy  

w, l, !, j  
w, l, !, y  t  Î {!, ?Ø} 

Knowledge Operators 

w, l, t, Kaj w · an, l, ?K, Øj w · an, l, !, j t  Î {!, ?Ø} and 
fresh n

1 , , , akan an t Kw l j× 

1 , , ,kan an tw l y× ¢ ¢ ¢ ¢  
1 , , ,kan an RKw l j× Ø¢ ¢ ?  1 , , ,kan anw l j× ¢ ¢ !  

t  Î {!, ?Ø} and any 
t¢, l¢, y and any 
finite (possibly 

empty) sequence 
n1 … nk and n¢1 … n¢k 

Shared and Common Knowledge Operators 

, , , Gt Ew l j , , , ,t Ew l jØ? , , ,anw l j× !
t  Î {!, ?Ø} for a 
fresh s and any 

a Î G

1 , , ,  Gkan an t Ew l j× 

1 , , ,kan an tw l y× ¢ ¢ ¢ ¢  
1 , , ,kan an REw l j× Ø¢ ¢ ? 1 , , ,kan anw l j× ¢ ¢ !  

t  Î {!, ?Ø}, for any 
l¢, t¢, y, any a Î G, 

and any finite 
(possibly empty) 
sequence n1 … nk 

and n¢1 … n¢k

, , , Gt Cw l j 1 1 , , ,k ka n a n Cw l j× Ø? 1, , , , ,kn nw l j× !

t  Î {!, ?Ø}, for a 
fresh 1, , kn n Î  , 
and 1, , ka a GÎ  

1 1 , , , Gk ka n a n t Cw l j× 

1 1 , ,k ka n a n tw l y¢ ¢× ¢ ¢ ¢ ¢ ¢ ¢

1 1 , , ,k ka n a n RCw l j¢ ¢× Ø¢ ¢ ¢ ¢ ? 1 1 , , ,k ka n a nw l j× ¢ ¢ !

t  Î {!, ?Ø}, any 
t¢, l¢, y and any 
finite (possibly 

empty) sequence 
n1 … nk and n¢1 … n¢k 

and 1 1, ka a n ¢¢  

Announcement Operators 

, , ,tw l j yá ñ  , ,  ,w l já ñ Ø?

 , ,  ,w l j y× á ñ Ø?
 , , ,w l j!

 , , ,w l j y× ! t  Î {!, ?Ø} 

, , ,t pw l j×  , , ,P pw l Ø?  , , , pw l ! t  Î {!, ?Ø} 

, , ,an tw l j y× × , , ,an Uw l j× Ø? , , ,anw l j× !
 { , , ,t KÎ Ø Ù! ? ? ?

 , , , ,RK E RE C? ? ? ?
 ,  , }RC Pá ñ? ? ?  and 

any y 
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