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The Dynamics of surprise
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1. Introduction

The phenomenon of surprise is ubiquitous in everyday life. people get sur-
prised all the time; for example, by an unexpected flash of light, or—more 
‘down to earth’—about the fact that their local grocery store has run out 
of milk (after all, the store is usually well-stocked!). The role of surprise in 
human life has been intensively studied in psychology from cognitive, 
social, developmental and educational perspectives. furthermore, computer 
scientists have implemented the psychological findings about human sur-
prise in artificial agents, and used logical models to describe these agent 
architectures. surprise even crops up in various philosophical debates, such 
as those concerning the role of surprising evidence in Bayesian epistemology, 
or concerning the so-called surprise examination paradox.1

The overarching goal of this paper is to provide a new analysis of the 
phenomenon of surprise in the framework of probabilistic dynamic epis-
temic logic. This account is based on the vast amount of experimental 
work on surprise in psychology, which should benefit its empirical ade-
quacy. The paper’s main thesis, however, is of a more conceptual nature: 
surprise is an essentially dynamic phenomenon, and any good formal anal-
ysis should represent this dynamics explicitly. i will argue that all current 
formalizations of surprise in artificial intelligence and logic fail to fully 
capture this dynamics, and show that the framework developed in this paper 
is able to capture it. As an additional benefit, this new framework can be 
used to analyze some aspects of surprise that could not be analyzed before.

* earlier versions of this paper were presented at the Lira seminar (iLLc, amsterdam, 
october 2012), the reasoning club phD conference (Brussels, september 2012), LofT 10 
(sevilla, June 2012) and a workshop on modal logic (Brussels, may 2012). i would like to 
thank the audiences of these talks for their helpful remarks and suggestions. in particular, i 
would like to thank alexandru Baltag, Johan van Benthem, Jan van eijck, Jan heylen, emiliano 
Lorini, alexandru marcoci, ahti-Veikko pietarinen, sonja smets, Jean paul Van Bendegem 
and two anonymous referees for their feedback on earlier versions of this paper. This research 
was supported by a phD fellowship of the research foundation – flanders (fWo).

1 These philosophical debates will not be directly addressed in this paper; for overviews, 
the reader can consult [45] and [5], respectively.
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This enterprise is motivated by a variety of interrelated issues. in the 
first place, a logical perspective on surprise can help to elucidate the basic 
properties of this notion. starting from the concrete empirical results about 
surprise, a complete axiomatization is proposed in which the observed 
behavioral patterns can be derived as theorems. in other words, the funda-
mental laws of surprise can be ‘reverse engineered’ out of the concrete 
behavior that they generate. secondly, the resulting logical system serves as 
a highly expressive language to formally specify agent architectures; it 
belongs to the general framework of (dynamic) epistemic logic, which is 
becoming a contemporary ‘lingua franca’ in multi-agent systems [52, 42]. 
Thirdly, and most importantly, this project constitutes a concrete illustration 
of the so-called dynamic turn in logic [48, 49]. according to this position, 
many theorems, phenomena, etc. which are usually expressed or analyzed 
in an entirely statical way, actually have a lot of dynamics going on, and 
could benefit significantly from analyses which explicitly represent this 
underlying dynamics. several illustrations of this dynamic turn stem from 
the field of game theory [10, 11, 47]. Considering the main conceptual thesis 
of this paper (as stated above), it should be clear that the paper offers a new 
illustration of the dynamic turn in logic (coming from cognitive science, 
rather than game theory).

The remainder of the paper is organized as follows. Section 2 briefly 
reviews the literature on surprise in cognitive science, multi-agent systems 
and logic. in section 3 i argue that two earlier formalizations do not ade-
quately represent the dynamic nature of surprise, and make some suggestions 
on how this can be achieved. in section 4, then, i show how these sugges-
tions can be developed into a full-fledged dynamic logic of surprise, which 
can capture several key aspects of surprise, such as its transitory (short-
lived) nature and its role in belief revision. finally, section 5 wraps things 
up, and discusses some potential lines of research which will be explored 
in future work.

2. Three Perspectives on Surprise

This section provides an overview of the literature on surprise in cognitive 
science, multi-agent systems, and logic, focusing on those topics and debates 
that are most relevant for our current purposes. for more comprehensive 
overviews, the reader can fruitfully consult [22, 28, 37].

2.1. Cognitive Science

The emotion of surprise is probably of old phylogenetic origin [36]. This 
short-lived state of mind is caused in an agent when she encounters an 
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event that she did not expect. surprise comes in degrees of intensity, which 
depend monotonically on the degree of unexpectedness of the surprise-
causing event [44]. Like most emotions, surprise has both phenomenal 
aspects (there is an experience of “what it is like to be surprised” [32, 38]) 
and physical (behavioral/physiological) manifestations, such as a character-
istic facial expression (raised eyebrows, opened mouth, etc.) and a decrease 
in heart rate [31, 43].

The cognitive-psychoevolutionary theory of surprise [30] claims that typ-
ically, an unexpected event elicits a sequence of four processes. first, the 
event is appraised as unexpected, i.e. as conflicting with a previously held 
belief.2 Secondly, if the degree of unexpectedness is sufficiently large, then 
ongoing processes are interrupted and attention is shifted to the unexpected 
event. Thirdly, the unexpected event is analyzed and evaluated, which can 
lead to the fourth process, viz. revision of the relevant beliefs.

The fact that this sequence ends in belief revision helps to explain the 
transitory (short-lived) character of surprise. When a surprising event occurs 
again and again, subjects tend to ‘get used’ to it, and after a few occurrences 
they do not find it surprising at all anymore [4, Experiment II]. Initially, the 
surprising event is unexpected: it conflicts with a previously held belief B. 
This leads to a process of belief revision, which removes B from the agent’s 
stock of beliefs (and perhaps replaces it with another belief). When the 
same event happens again, it is no longer surprising, because it no longer 
conflicts with a previously held belief (in particular, it does not conflict with 
B anymore).

The third step in the sequence of events triggered by an unexpected event 
involves analyzing that event. one of the features that is typically analyzed, 
is the event’s cause: does it have a ‘substantial’ cause, or should it be attrib-
uted to ‘mere chance’? surprise thus leads to ‘causal curiosity’: it motivates 
the agent to inquire about the event’s cause [30, 44].3 charlesworth has 
compared the motivational power of unexpected (surprising) data (which 
conflict with a previously held belief), expected data (which are in full 
agreement with previously held beliefs) and novel data (about which the 
agent had no previous beliefs at all), and his experiments show that surprising 
data have the highest motivational power, i.e. they trigger further inquiry 
most frequently [4].

i just mentioned charlesworth’s distinction between unexpected and 
novel data. For an event to be unexpected, it really has to conflict with a 

2 Building upon earlier work on schema theory [39, 41], the cognitive-pyschoevolutionary 
theory uses the notion of ‘schema’ rather than ‘belief’. This distinction is not relevant for 
our current purposes, so i will simply use the term ‘belief’.

3 The process of searching for an explanation of an observed event is widely known as 
abduction. peirce, who coined this term, explicitly refers to surprising events when charac-
terizing abductive reasoning [34, paragraph 189].
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previously held belief; if the agent did not have any beliefs about that 
(type of) event(s), then the event is not unexpected, but rather novel. The most 
common perspective is that surprise can only be generated by unexpected 
data, not by novel data [4, 30, 44].4 however, some theorists maintain that 
an agent can also be surprised about events that she previously did not have 
any beliefs about. for example, ortony and partridge [33] distinguish 
between actively expected events and passively expected or assumed events, 
and claim that surprise can arise from active expectation failure as well as 
assumption failure.5 There is no real contradiction between both perspec-
tives, since ortony and partridge maintain that in the case of surprise caused 
by assumption failure, the agent still has a belief, albeit a ‘passive’ one (an 
assumption). for example, if the legs of my chair suddenly break and i fall, 
i am surprised, not because i actively believed that i would remain seated 
in the chair, but because i passively expected (i.e. assumed) that the chair’s 
legs are strong enough to support me. The tension between both perspec-
tives can thus be resolved by postulating implicit beliefs with which the 
novel event conflicts—hence, although the event does not conflict with any 
explicit (active) beliefs, it does conflict with the postulated implicit (pas-
sive) belief.6

2.2. Multi-Agent Systems

since surprise typically leads to processes of learning and belief revision in 
humans, it is a natural move to endow artificial agents with the capability 
of feeling surprise, which can guide them in their actions. in a recent series 
of papers, Macedo and Cardoso have done exactly this [25, 26, 27, 23, 24]. 
This work is based on the cognitive theories of surprise described in the 
previous subsection [30, 33], and can thus also be seen as a simulation of 
the human surprise mechanism (with various simplifications, obviously).

The agent’s goal is to explore an unknown and dynamic environment. 
The agent architecture is similar to the BDi (belief-desire-intention) archi-
tecture [52], and looks as follows. The agent’s perceptual system provides 

4 This perspective is also common among philosophers. Davidson, for example, claims 
that “I could not be surprised […] if I did not have beliefs in the first place. […] Surprise 
requires that i be aware of a contrast between what i did believe and what i come to believe” 
[6, p. 326].

5 Peirce, too, claims that surprise “has its Active and its Passive variety;—the former 
when what one perceives positively conflicts with expectation, the latter when having no 
positive expectation but only the absence of any suspicion of anything out of the common 
something quite unexpected occurs” [35, paragraph 315].

6 for example, novel events “can also be conceptualised as instances of expectancy 
disconfirmation: They disconfirm the implicit, schema-based belief that the unexpected event 
was unlikely to occur in the given situation.” [44, p. 6, my emphasis].
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(partial) information about the environment, and stores it in memory. When 
new (hypothetical) information comes in, the agent’s surprise-generating 
module calculates the intensity of the surprise caused by that piece of infor-
mation. finally, the decision-making module selects the agent’s next action 
by considering, for every available action a, how surprised the agent would 
be by the state of the world caused by a, and then selecting the action that 
maximizes the agent’s anticipated surprise. This module thus implements a 
utility-maximizing function, where the agent’s utility is assumed to coincide 
with her anticipated surprise (more sophisticated architectures also take 
other emotions into account).

in the simplest model [26], the anticipated intensity of surprise elicited 
by a piece of information j is calculated as follows:7

 ( ) : 1 ( ).=S Pj j-  (1)

The unexpectedness of j is represented by 1 ( )P j- . here, P(j) denotes 
the subjective probability of j, which is computed based on frequencies 
stored in the agent’s memory. Thus (1) clearly shows that the intensity of 
surprise about j is a monotone increasing function of the unexpectedness 
of j (cf. supra).

This work on surprise-based agent architectures fits in the broader field 
of emotion-based agent architectures [2, 14, 22]. There are also proposals 
to incorporate the dynamics of emotion [3, 13, 29], but none of them so far 
make use of the framework of (probabilistic) dynamic epistemic logic.

2.3. Logic

Lorini has argued that researchers attempting to incorporate surprise and 
other emotions into multi-agent systems can benefit from the accuracy of 
logical frameworks for the formal specification of emotions [21]. Together 
with castelfranchi, he has developed a logical framework for surprise [19, 20]. 
Just like macedo and cardoso’s, this framework is based on the cognitive 
theories of surprise described in subsection 2.1 [30, 33], and can thus be 
seen as a formal-logical model of human surprise.

i will now discuss the main features of this framework.8 The base logic 
is a system of probabilistic epistemic logic with a belief operator B and 

7 There exist more complex (and realistic) proposals for defining surprise in terms of 
unexpectedness (probability) [23]. however, the experimental data do not seem to single out 
one of these complex definitions over the other ones. Furthermore, the main conceptual 
points of this paper (regarding the dynamic nature of surprise) can perfectly be made using 
(1). Therefore, I will stick to the simpler definition.

8 in this subsection in particular, i will not be able to do justice to all details of the 
framework under discussion. for example, i will only reason ‘within’ the logic, and not say 
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formulas about (linear combinations of) probabilities, such as ( ) 0.5P j ³  
and ( ) 2 ( ) 0.7P Pj y+ ³  [15]. This system is extended with pDL-style 
dynamic operators [17], and two unary operators Test and Datum. The  
formulas ( )Test j  and ( )Datum j  are to be read as “the agent is currently  
scrutinizing j” and “the agent has perceptual datum j”, respectively. fur-
thermore, there are actions ( )observe j  and ( )retrieve j , which represent 
observing that j is the case and retrieving (from memory) that j. each of 
these actions give rise to a pDL-style dynamic operator. The two most 
important axioms are:

 [ ( )] ( ),observe Datumj j  (2)
 [ ( )] ( ).retrieve Testj j  (3)

axiom (2) says that after the agent observes that j, this becomes a percep-
tual datum; analogously, axiom (3) says that after the agent has retrieved 
j, this becomes an item under scrutiny.

With these resources, the notion of mismatch-based surprise can be 
defined. This emotion arises when there is a conflict between a perceptual 
datum y and a currently scrutinized belief j; ‘conflict’ here means that the 
agent believes that j and y cannot be jointly true. furthermore, the inten-
sity of a mismatch-based surprise is defined as the probability that the agent 
assigns to the scrutinized belief j. Hence, the more confident the agent is 
in her belief that j, the more intensely she will be surprised upon receiving 
a perceptual datum that conflicts with j (this captures exactly the idea that 
the intensity of surprise is a monotone function of the degree of unexpected-
ness). formally:

 ( , ) : ( ) ( ) ( ),MismatchS Datum Test By j y j y jÙ Ù ® Øº  (4)
 ( , ) = : ( , ) ( ) = .IntensityS c MismatchS P cy j y j jÙº  (5)

3. Surprise as a Dynamic Phenomenon

in this section i will argue that neither macedo and cardoso’s computational 
nor Lorini and castelfranchi’s logical models of surprise adequately capture 
the dynamic nature of surprise. afterwards i will suggest how the dynamics 
of surprise can adequately be formalized.

anything about its formal semantics. Furthermore, Lorini and Castelfranchi define two types 
of surprise, mismatch-based surprise and astonishment, but I will only discuss the first one, 
because it is better suited to illustrate the main claims of the next section. (however, one 
might argue that the notion of surprise defined in Section 4 is actually closer to astonishment 
than to mismatch-based surprise.)
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3.1. Quasi-Static Analyses of Surprise

Let’s first fix some terminology. Surprise is caused by an unexpected event. 
any mental state (beliefs, desires, emotions, etc.) that the agent had (just) 
before perceiving the unexpected event will be called ‘prior’; any such 
state that she has (just) after perceiving the event will be called ‘posterior’.9 
a statement that involves only prior notions or only posterior notions will 
be called ‘temporally coherent’; a statement that involves both prior and 
posterior notions will be called ‘temporally incoherent’.

consider macedo and cardoso’s analysis of surprise, and recall their 
Definition (1) of surprise intensity as unexpectedness: 

 ( ) = 1 ( ).S Pj j-

The left side contains a posterior notion: the intensity of the surprise felt by 
the agent after the unexpected event. The right side, however, contains a 
prior notion: the agent’s subjective probability before the unexpected event. 
Hence, Definition (1) is a temporally incoherent statement.

To see this more clearly, note that there are two ways of reading (1) as 
a temporally coherent statement: (i) by considering both S and P to be 
prior notions, and (ii) by considering both S and P to be posterior notions. 
for interpretation (i), consider a case where the agent assigns a low (prior) 
probability to j; Definition (1) then says that she should experience a 
highly intensive surprise about j. under interpretation (i), this surprise is 
prior; in other words, the agent is highly surprised about an event before 
she has even perceived it—which is clearly absurd. For interpretation (ii), 
consider a case where the agent is highly surprised after perceiving an 
occurrence of j; Definition (1) then says that she assigns a low probability 
to j. under interpretation (ii), this probability is posterior; in other words, 
even after the agent has observed an occurrence of j, she still assigns a low 
probability to it—which clearly contradicts the common assumption that 
agents process new information via Bayesian updating.10

I now turn to Lorini and Castelfranchi’s analysis of surprise. Let’s first 
consider the qualitative notion of mismatch-based surprise—ignoring, for 
the moment, surprise intensity. Recall their Definition (4):

 ( , ) ( ) ( ) ( ).MismatchS Datum Test By j y j y jº Ù Ù ® Ø

9 This terminology is analogous to the use of ‘priors’ and ‘posteriors’ in Bayesian frame-
works. However, it should be emphasized that in this paper, ‘prior’ and ‘posterior’ are defined 
in terms of (being before or after) perceiving the unexpected event, while in Bayesian frameworks 
they are defined in terms of (being before or after) the probabilistic update (‘probability 
revision’) triggered by that event.

10 and ( | ) = 1P j j , so after the occurrence of j, the agent should assign probability 1 
to it.
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The left side contains a posterior notion: the agent’s mismatch-based sur-
prise after the unexpected event. The right side is more complicated. The first 
conjunct is posterior: y is only a perceptual datum after it has been observed 
by the agent; this dynamics was explicitly represented in (2). The second 
conjunct is both prior and posterior: j was under scrutiny before the observa-
tion of the unexpected event, and remains so afterwards. The third and final 
conjunct is prior: the agent believed that y and j cannot be jointly true before 
the unexpected event; typically, she will drop this belief as a result of her 
surprise (recall from subsection 2.1 that surprise typically leads to a process 
of belief revision). Thus, in total, Definition (4) is temporally incoherent.11

finally, let’s consider the quantitative aspects of Lorini and castelfran-
chi’s system. Recall their Definition (5) of surprise intensity:

 ( , ) ( , ) ( ) .= =IntensityS c MismatchS P cy j y j jº Ù

The left side contains a posterior notion: the intensity of the agent’s mis-
match-based surprise after she has perceived the unexpected event. The 
right side is, again, more complicated. The first conjunct—which was also 
the left side of (4)—is posterior: the agent experiences mismatch-based 
surprise only after perceiving the unexpected event. The second conjunct, 
however, involves a prior notion, viz. the probability that the agent assigns 
to the scrutinized item j before perceiving the unexpected event. hence, 
Definition (5) is temporally incoherent as well.12

an intuitively right principle about surprise should look somewhat like 
this: if the agent has a (prior) belief that y and j are incompatible, and 
assigns (prior) probability c to j, then after retrieving j and observing an 
occurrence of y, she will experience a (posterior) mismatch-based surprise 
with intensity c. formally, this looks as follows:13 

( ( ) ( ) = ) [ ( ); ( )] ( , ) = .B P c retrieve observe IntensityS cy j j j y y j® Ø Ù ®
(6)

11 again, there are two ways of reading (4) as a temporally coherent statement: by con-
sidering all notions that appear in it to be prior, or by considering all those notions to be 
posterior. it is easy to see, however, that both interpretations quickly lead to counterintuitive 
consequences. similar remarks apply to (5), which will be discussed next.

12 it should be emphasized that the assessment of Lorini and castelfranchi’s analysis as 
temporally incoherent is only valid on the assumption that the terms ‘prior’ and ‘posterior’ 
are defined relative to the moment of perceiving the unexpected event, as specified at the 
beginning of this subsection (also recall footnote 3.1). in particular, if these terms are 
defined relative to the moment of recognizing the mismatch between the datum and the 
scrutinized expectation—which is the viewpoint taken by Lorini and Castelfranchi them-
selves—, then this analysis is temporally coherent. Thanks to an anonymous referee for 
some helpful discussion about this.

13 As usual, ‘;’ denotes ordinary PDL sequential composition [17]; this operation on 
actions is allowed in Lorini and castelfranchi’s system.
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however, to derive (6) in castelfranchi and Lorini’s system, one needs 
principles such as (7) and (8), which link the agent’s prior and posterior 
states by claiming that her observation of the occurrence of y does not 
change her relevant beliefs and probabilities in any way. This is highly 
counterintuitive: both (7) and (8) run entirely against the idea that surprise 
triggers a process of belief revision; additionally, (8) clearly contradicts the 
common assumption that agents process new information via Bayesian con-
ditionalization.

 ( ) [ ( )] ( ),B observe By j y y j® Ø ® ® Ø  (7)
 ( ) = [ ( )] ( ) = .P c observe P cj y j®  (8)

3.2. Towards a Fully Dynamic Analysis of Surprise

I have shown that both Macedo and Cardoso’s definition of surprise intensity 
(1) and Lorini and Castelfranchi’s definitions of mismatch-based surprise 
and its intensity (4–5) are temporally incoherent (but recall footnote 3.1). 
There is a uniform explanation for this: surprise is an essentially dynamic 
phenomenon, but none of these authors explicitly represents this dynamics, 
so they have to ‘smuggle’ it into their systems—which thus end up being 
temporally incoherent.14

Before moving on, we need to clarify the relationship between the sys-
tems discussed above and the system that will be developed in this paper. 
The problem of temporal incoherence is situated at the conceptual, rather 
than at the empirical level, and is therefore largely independent of the 
original motivations behind the systems discussed above. for example, 
Lorini and Castelfranchi’s goal is first and foremost to propose a cogni-
tively realistic model of surprise; although their analysis is largely static, it 
certainly achieves its main goal, since it is highly successful at capturing 
various experimentally observed properties of surprise. in contrast, the main 
motivation behind this paper is to propose a temporally coherent model of 
surprise (using the framework of dynamic epistemic logic). Looking ahead, 
this means that the major advantage of the new account of surprise that will 
be developed in section 4 will not be so much its level of empirical ade-
quacy—which, I will argue, is more or less comparable to those of the other 
accounts—, but rather the fact that it is temporally coherent, and thus better 
able to capture the dynamic nature of surprise.

Now that this methodological issue has been clarified, we are ready to 
move on. To obtain a temporally coherent definition of surprise, which 
respects the different ‘stages’ (before vs. after perceiving the unexpected 

14 a similar story can be told about the role of dynamics in aumann’s celebrated ‘agree-
ing to disagree’ theorem in game theory [10, 11].
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event), the dynamics of surprise needs to be represented explicitly. i will 
use a public announcement operator [! ]j  for this purpose (technical details 
will be discussed in the next section). Whether a certain notion is to be 
interpreted as prior or as posterior, is now encoded directly in the syntax of 
the language: if the notion is within the scope of a dynamic operator, it is 
posterior, otherwise it is prior. for example, ( ) = 0.2P j  means that the 
agent’s prior probability of j is 0.2, while [! ] ( ) = 0.2Pj j  means that her 
posterior probability of j is 0.2.

We will work with a simple measure of surprise intensity S, based on macedo 
and cardoso’s (1).15 When the surprise dynamics is explicitly represented, 
(1) is transformed into the following:

 [! ] ( ) = ( ) = 1 .S c P cj j j« -  (9)

This principle says that the agent assigns probability 1 c-  to j before the 
unexpected event iff after that event she is surprised with intensity c. it thus 
says exactly the same as (1), but now in a temporally coherent way: both 
sides of (9) are prior statements.16 furthermore, note that the right-to- 
left direction of (9) is similar in spirit to (6), which was very intuitive, but 
which was only derivable using additional implausible principles such as 
(7–8).

4. Modeling Surprise in Probabilistic DEL

in the previous section, i made some suggestions on how the dynamics of 
surprise can be represented explicitly. in this section, these suggestions will 
be developed into a full-fledged logical system. I will also show how this 
system can naturally capture several important properties of surprise.

4.1. The Logical System

Given the dynamic nature of surprise, and its connection with epistemic 
states and processes (beliefs, unexpectedness, belief revision, etc.), it is 
natural to work in the general framework of dynamic epistemic logic. This 
framework is rapidly becoming a ‘lingua franca’ or ‘universal toolbox’, 
which has been applied to problems in game theory, philosophy, artificial 
intelligence, etc. [10, 8, 9, 15, 18, 50].

15 recall footnote 2.2.
16 The left formula as a whole is prior; the subformula ( ) =S cj  occurs inside the scope 

of the [! ]j -operator, and is thus posterior. in other words, principle (9) is able to express a 
connection between the agent’s prior probability and her posterior surprise intensity in a 
temporally coherent way, by making use of the dynamic [! ]j -operator.
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fix a countable set Prop of proposition letters. in this paper i will only 
work with a single agent, so it is not necessary to introduce agent indices. 
The formal language  is given by the following Backus-naur form:

 :: | | | | ( ) | ( ) | ( ) | [! ] ,= ip K c P c S c S cj j j j j j j j j jØ Ù ³ ³ £å

where p PropÎ  and ,ic c Î . as usual, Kj means that the agent knows 
that j. similarly, ( )P cj ³  means that the agent assigns probability (degree 
of belief) at least c to j. arbitrary linear combinations of probability terms 
are allowed mainly for technical reasons that need not concern us here [15]. 
Because of this generality, any type of (in)equality of probabilities is express-
ible [18, Def. 2]. The formula ( )S cj ³  says that the agent is surprised about 
j with intensity at least c. here, full expressivity is not allowed, and so the 
³- and £-forms are both taken as primitive. One can then define ( ) <S cj  
as ( ( ) )S cjØ ³ , etc.

finally, [! ]j y  should be read as: “after a public announcement of j, it 
will be the case that y”. its dual is ! : [! ]=j y j yá ñ Ø Ø . public announcement 
is usually explicated in terms of rational communication, but actually, 
almost any public event can be modeled using public announcements; for 
example, a strike of lightning can be modeled as a public announcement of 
the proposition ‘lightning occurs (at time t and location )’.17 it thus makes 
perfect sense to represent an unexpected event (whatever its exact nature) 
as a public announcement.18

We now turn to the models on which this language will be interpreted:

Definition 1. a surprise model is a tuple : , , , ,= W R Vm sá ñM , where W is 
a non-empty and finite set of states, R is an equivalence relation on W, and 

: ( )V Prop W®Ã  is a valuation function. furthermore, m assigns to every 
state w WÎ  a probability mass function ( ) : [0,1]w Wm ®  that satisfies two 
conditions: (i) if ( , )w v RÏ  then ( ) ( ) = 0w vm , and (ii) ( ) ( ) > 0w wm . finally, 
s assigns to every state w WÎ  a surprise measure, i.e. a partial function 

( ) : ( ) [0,1]w Ws Ã  .

17 Van Benthem, Gerbrandy and Kooi make a similar comment: “While much of the 
theory has been developed with conversation and communication in mind, it is important 
[…] to stress that we are not doing some sort of formal linguistics. The formal systems we 
will be dealing with apply just as well to observation, experimentation, learning, or any sort 
of information-carrying scenario.” [46, p. 71].

18 This also resolves a terminological tension in the literature on surprise. agents are 
surprised about some propositional content (a piece of information), but their surprise is 
caused by some (non-propositional) event. in the new system, the propositional content of 
the surprise is formalized as the proposition j, while its cause is formalized as the public 
announcement of that proposition. in short: j is a proposition, but !j is an event.
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Definition 2. The class of all surprise models will be denoted CS. further-
more, *

SC  is the class of all surprise models whose surprise measures are 
entirely undefined, i.e. such that ( ) ( )w Xs  is undefined for all w WÎ  and 
X WÍ . 

A surprise model is thus just an ordinary finite19 Kripke model , ,W R Vá ñ 
with additional components m and s. first of all, ( )( ) =w v cm  means that at 
state w, the agent assigns probability c to v being the actual state. similarly, 

( ) ( ) =w X cs  means that at state w, the agent experiences surprise with 
intensity c about X (i.e. about one of the states in X being the actual state). 
note the following differences between ( )wm  and ( )ws  (for any state 
w WÎ ):

• ( )wm  is a total function, so ( ) ( )w vm  is defined for every state v WÎ ; on 
the other hand, ( )ws  is a partial function, so it is allowed that ( )( )w Xs  
is undefined for some sets X WÍ , 

• ( )wm  is required to satisfy conditions (i) and (ii), whose motivation is 
discussed extensively in [10, 11, 8, 9]; on the other hand, ( )ws  is not 
required to satisfy any additional conditions whatsoever, 

• ( )wm  is defined on individual states, and can additively be lifted to sets of 
states: ( )( ) = ( )( )x Xw X w xm mÎå  (this essentially reflects the finite addi-
tivity of probabilities); on the other hand, ( )ws  is defined directly on sets 
of states, so it might happen that ( ) ({ , }) ( ) ({ }) ( ) ({ })w x y w x w ys s s¹ + . 

These differences show that unlike the well-behaved epistemological notion 
of probability (degree of belief), the psychological notion of (degree of) 
surprise satisfies no static regularities whatsoever. This is a clear manifestion 
of the essentially dynamic nature of surprise in the definition of surprise 
models.20

i now turn to the logic’s semantics. This is entirely as expected; the for-
mal clauses are stated in Definition 3. Given a formula jÎ  and a sur-
prise model M, i use [[ ]]j M to denote the set { | , }w W w jÎ M  . The clause 

19 The assumption that surprise models are finite ensures that probabilities can be repre-
sented using simple probability mass functions. This assumption can be dropped; the general 
case uses s-algebras to represent probabilities [9, 40]. however, the main points of this 
paper are of a more conceptual nature, and can perfectly be made using the less sophisticated 
setup.

20 one might consider adding the requirements that if X Y WÍ Í , then ( )( ) ( )( )w X w Ys s³  
and ( ) ( ) = 1 ( )( )w W X w Xs s- - , in analogy to the well-known Kolmogorov axioms for 
probability. however, the only motivation for such requirements seems to be the observation 
that “surprise is inversely correlated with probability”, which is only plausible if ‘surprise’ 
is read as posterior and ‘probability’ as prior. i will return to this suggestion after the dynamics 
has been formally introduced (cf. Lemma 9). Thanks to an anonymous referee for some 
useful discussion about this.
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for surprise formulas holds for { , }Î ³ £ ; i will return to it later (see 
Lemma 7). Note that to interpret a formula of the form [! ]j y at a surprise 
model M, the subformula y has to be interpreted at the updated model 

jM , which is well-defined because of Definition 4 and Lemma 6. Finally, 
Definition 5 states the usual definition of semantic validity. 

Definition 3. consider a surprise model M and state w in M. Then:

, w pM    iff ( )w V pÎ  (for p PropÎ ),
, w jØM    iff , w jM  ,
, w j yÙM    iff , w jM   and , w yM  ,
, w KjM    iff for all :v WÎ  if wRv then , v jM  ,
, ( )i iw c P cj ³åM   iff ( )([[ ]] )i ic w cm j ³å M ,

, ( )w S cjM    iff ( ) ([[ ]] ) if ( )([[ ]] ) is defined
= 0 otherwise,
w c w

c
s j s jìïïíïïî

M M  

, [! ]w j yM    iff  if , w jM  then , wj y M .

Definition 4. consider an arbitrary surprise model = , , , ,W R Vm sá ñM  and 
formula jÎ , and suppose that , w jM  for some w WÎ . Then the 
updated model : , , , ,= W R Vj j j j jj m sá ñM  is defined as follows: 

• : [[ ]] = { | , }=W w W wj j jÎ M M ,
• : ([[ ]] [[ ]] )=R Rj j jÇ ´M M ,
• ( )( )

( )([[ ]] )
( )( ) := w v

w
w v mj

m j
m M  for all ,w v W jÎ ,

• ( )( ) : 1 ( )( )=w X w Xjs m-  for all ,w W X Wj jÎ Í ,
• ( ) : ( ) [[ ]]=V p V pj jÇ M for every p PropÎ .

Definition 5. for any formula jÎ  and class of models C, we say that 
jC   iff , w jM  for all models Î SCM  and states w in M. 

Lemma 6. The class CS is closed under public announcements, i.e. if 
SÎ CM , then also SjÎ CM  (for any formula jÎ  ). This does not hold 

for *
SC . 

Proof. The CS case is trivial: for the non-surprise components, see [10, 
Lemma 9], and since Definition 1 does not require the surprise measures to 
satisfy any additional requirements, there is nothing else to prove. for 

*
SC , note that by Definition 4, the updated surprise measures are total func-

tions, even if the original surprise measures were entirely undefined. 
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The public announcement of j in a model M deletes all Øj-states from 
that model; this is a standard idea [50]. The probability functions are 
changed by Bayesian conditionalization on the announced proposition j 
[8, 10, 9, 18]. To see this more clearly, note that the definition of the 
updated probability function can be rewritten using conditional probabilities: 

( )( ) = ( )( | [[ ]] )w v w vjm m j M . most importantly, the updated surprise measure 
( )wjs  is defined in terms of the original probability function m(w). This is 

the only substantial property of surprise that is assumed in the logic’s 
semantic setup; it is clearly of a dynamic nature (linking the original and 
the updated model).

even though the surprise measures s(w) are allowed to be partial, Lemma 7 
below shows that this does not lead to any truth value gaps in the semantics. 
When we are modeling concrete scenarios, we typically want to assume that 
the agent initially (i.e. before any unexpected events have taken place) 
experiences no surprise. Lemma 7 therefore justifies the following heuristic 
rule (heur):

When modeling a scenario, it can be assumed that the ‘initial’ model M (which 
represents the situation before any unexpected events have taken place) leaves 
all surprise measures undefined, i.e. that *

SÎ CM . 

Lemma 7. Consider an arbitrary surprise model = , , , ,W R Vm sá ñM  and 
formula jÎ , and suppose that ( )([[ ]] )ws j M  is undefined. Then M, w  

( ) = 0S j . 

Proof. since ( )([[ ]] )ws j M  is undefined, it follows by the semantic clause 
for ( )S cj ³  that , ( ) 0w S j ³M  (and , ( )w S cj ³M  for all 0c ¹ ). 
entirely analogously, , ( ) 0w S j £M  (and , ( )w S cj £M  for all 0c ¹ ).



The following lemma states that the language  contains no redundancies. 
In particular, the surprise operator cannot be defined in terms of the other 
available operators.

Lemma 8. There exists no formula { }SjÎ -  such that ( ) 0.5S pj « ³ . 

Proof. consider the surprise models M1 and M2, defined as follows: 

• 1 1 1 1 1 1 1 1 1 1 1 1 1= , , , , , = { }, = {( , )}, ( ) ( ) = 1,W R V W w R w w w wm s má ñM  
1 1( )( ) = 0.6w Xs  for all 1X WÍ , and 1 1( ) =V p W , 

• 2 2 2 2 2 2 2 2 2 2 2 2 2 2= , , , , , = { }, = {( , )}, ( )( ) = 1,W R V W w R w w w wm s má ñM  
2 2( ) ( ) = 0.4w Xs  for all 2X WÍ , and 2 2( ) =V p W .

one can show by induction on the complexity of j that
 1 1 2 2for all { }: , iff , .S w wj j jÎ -  M M
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But it also holds that 1 1, ( ) 0.5w S p ³M , while 2 2, ( ) 0.5w S p ³M . 

The distinction between the original and the updated model corresponds 
exactly to the distinction between prior and posterior notions that was intro-
duced in the previous section. Hence, the definition ( )( ) = 1 ( )( )w X w Xjs m-  
defines posterior surprise in terms of prior probability. as a consequence, 
all the properties of probability are manifested in the posterior surprise 
measure (recall footnote 4.1):

Lemma 9. Consider an arbitrary surprise model = , , , ,W R Vm sá ñM   
and formula jÎ , and suppose that ,w jM  for some w WÎ . For all 
w W jÎ  and X Y W jÍ Í , it holds that ( )( ) ( )( )w X w Yj js s³  and that 

( )( ) = 1 ( )( )w W X w Xj js s- - . 

Proof. Both items follow immediately from the definition of js  and the 
fact that ( )wm  is a probability mass function. for example, if X YÍ , then 

( )( ) ( )( )w X w Ym m£ , and hence ( )( ) = 1 ( )( ) 1 ( )( ) =w X w X w Yjs m m- ³ -
σϕ( )( ).w Y  

Before moving to the logic’s proof theory, i will illustrate and justify its 
semantics by discussing a simple example in full detail.

Example 10. consider the following scenario. mary does not know 
whether it is currently snowing. in fact, it is indeed currently snowing, but 
since mary does not yet know about this, she experiences no surprise about 
it whatsoever. furthermore, since it is July and mary knows that snow 
in July is very rare at her current location, she considers it very unlikely 
that it is currently snowing. This example can be formalized using the fol-
lowing surprise model: = , , , , , { , }, = , ( )( ) ==W R V W w v R W W w wm s má ñ ´M
m(v)(w) = 0.05, m(w)(v) = m(v)(v) = 0.95, ( ) = { }V p w , and ( )( )w Xs  and 

( )( )v Xs  undefined for all X WÍ . (note that we have followed the heu- 
ristic rule heur discussed above.) The proposition letter p represents ‘it is 
snowing’; the state w represents the actual world. This model is a faithful 
representation of the scenario described above; for example:

 , ( ) = 0.05 ( ) = 0.95 ( ) = 0.w Kp K p P p P p S pØ ÙØ Ø Ù Ù Ø ÙM

now suppose that mary goes outside and sees that it is actually snowing. This 
can be modeled as a public announcement of p (recall footnote 4.1). applying 
Definition 4, we obtain the updated model pM , with = { }, ={( , )},pW w R w w

 ( )( ) ( )( )( )([[ ]] ) = ( )( ) = = = 1,
( )( )( )([[ ]] )

pp p w w w ww p w w
w ww p

m m
m m

mm
M

M

 ( )([[ ]] ) = ( )({ }) = 1 ( ) ({ }) = 1 0.05 = 0.95.p p pw p w w w ws s m- -M
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using this updated model pM , we find that

 , [! ]( ( ) = 1 ( ) = 0 ( ) = 0.95).w p Kp P p P p S pÙ Ù Ø ÙM

so after going outside, mary comes to know that it is in fact snowing. 
she also adjusts her probabilities: she is now certain that it is snowing; i.e. 
she assigns probability 1 to p being true and probability 0 to p being false. 
These are the main cognitive effects of mary’s observation that it is snowing. 
however, on the emotional side, she is also highly surprised to find out 
that it is snowing, because she initially considered this highly unlikely. These 
are the results that one would intuitively expect, so the semantic setup 
introduced above seems to yield an adequate representation of (the inter- 
actions between) the cognitive (epistemic and probabilistic) and emotional 
(surprise) effects of a public announcement. 

i now turn to the logic’s proof theory. Reduction axioms are equiva-
lences which allow us to push the public announcement operator through 
any of the other connectives, thus yielding an effective procedure to rewrite 
any formula as an equivalent formula that doesn’t contain any dynamic 
operators. The reduction axioms for all operators of { }S-  are well-known 
[10, 11, 18, 50], cf. items 1-5 of Definition 11 below. What about reduction 
axioms for S? Recall that in Subsection 3.2 I suggested a dynamified 
(and temporally coherent!) version (9) of macedo and cardoso’s original 
(1). With only minor modifications,21 this suggestion can be turned into 
reduction axioms for S; cf. items 6-7 below.

Definition 11. The reduction axioms for public announcement:

1.  [! ] pj  « pj ®  (for p PropÎ )
2.  [! ]j yØ  « [! ]j j y®Ø

3.  1 2[! ] ( )j y yÙ  « 1 2[! ] [! ]j y j yÙ

4.  [! ]Kj y  « [! ]Kj j y®

5.  [! ] ( )i ic P cj y ³å  « ( ! ) ( )ic cPj j y j® á ñ ³å
6.  [! ] ( )S cj y ³  « ( ! ) 1P cj j y® á ñ £ -  
7.  [! ] ( )S cj y £  « ( ! ) 1P cj j y® á ñ ³ -

We are now ready to axiomatize the logic of surprise.

21 Trivial modifications are that the statement about = needs to be ‘split out’ into state-
ments about £ and ³, and that in the reduction axioms the argument of S should be an 
arbitrary formula y, and not just j itself. A more serious modification is that the right sides 
of the reduction axioms should not contain simply P(y), but rather ( ! )P j yá ñ , to ‘pre-encode’ 
the effect of the public announcement of j on y.
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Definition 12. SURPRISE is the logic axiomatized as follows: 
• all of propositional logic, 
• S5 for the knowledge operator K, 
• the Kolmogorov axioms for the probability operator P [10, 8, 7, 9, 15, 18]: 

− ( ) 0P j ³ ,
− ( ) = 1P  , 
− ( ) ( ) = ( )P P Pj y j y jÙ + ÙØ , 
− if j y«  then ( ) = ( )P Pj y  

• some auxiliary axioms for linear inequalities (described in [8, 9, 15, 18]), 
• the axioms ( ) = 1K Pj j®  and ( ) > 0Pj j®
 (these correspond to conditions (i) and (ii) in Definition 1 [10, 11, 8, 9]), 
• some auxiliary axioms and rules for the surprise operator S: 

− ( ) 0S j ³ , 
− ( ) 1S j £ , 
− ( ( ) ( ) )S k S kj jØ £ Ù ³ ¢  for all <k k ¢, 
− ( ) ( )S k S kj j³ Ú £ , 
− if j y«  then ( ) ( )S c S cj y«    (for { , }Î ³ £ ), 

• necessitation for public announcement: if y , then [! ]j y , 
• the reduction axioms for public announcement described in Definition 11. 

note that the static axioms for surprise are all concerned with the technical 
details of this particular formalization of surprise (such as the totality of ³), 
rather than with any substantial properties of surprise itself. The only sub-
stantial axioms for surprise are thus its reduction axioms (items 6-7 of Def-
inition 11), which together constitute a dynamified version of Macedo and 
Cardoso’s original definition (1). I take this to be a clear manifestion of the 
essentially dynamic nature of surprise in the axiomatization of the logic.

I will finish this subsection by showing that the logic’s semantics and 
axiomatization are in perfect harmony: the axiom system is sound and com-
plete with respect to the semantics.

Theorem 13. SURPRISE is (weakly) sound and complete with respect 
to CS. 

Proof. as usual, soundness is proved by induction on derivation length. it is 
easy to check that all axioms of SURPRISE are semantically valid on CS, 
and that all of its rules are CS-validity-preserving (for the public announce-
ment necessitation rule, recall Lemma 6).
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completeness can also be proved using standard techniques. first of  
all, because the reduction axioms allow us to rewrite any formula as an 
equivalent formula without any dynamic operators, it suffices to prove com-
pleteness for the static fragment of the logic. This is done using a filtration 
of a canonical model over a set of formulas S which is finite and closed 
under subformulas. These methods are well-known in probabilistic epis-
temic logic [15], so i will only discuss the surprise component.

The following can easily be proved for maximally consistent sets :GÍS

• for all cÎS, there exists a number , [0,1]caG Î Ç such that the formula 
,( ) =S cc aG  is consistent with G, 

• for all ,c c ÎS¢ , if c c« ¢ , one can always choose , ,=c ca aG G ¢. 

The canonical model cM  has states { | is maximally consistent};=cW G ÍS G
its surprise function is defined as follows: for all cWGÎ  and cX WÍ , put 

 , if : = { | },( )( ) :=
0 otherwise.

c
c X WX ca c c

s Gì $ ÎS D Î Î DïïG íïïî

The truth lemma can now easily be extended to the case of surprise formulas. 
suppose, for example, that the formula ( )S cc ³  belongs to S; then c itself 
also belongs to S, and by the definition of cs , showing that , ( )c S ccG ³M   
iff ( )S cc ³ Î G boils down to showing that , ccaG ³  iff ( )S cc ³ Î G. 
The latter follows from the fact that the formula ,( ) =S cc aG  is consistent 
with G. 

Corollary 14. SURPRISE has the finite model property. 

Proof. Trivial, since surprise models are, by definition, finite. 

4.2. Some Interesting Results

i will now show that the logical system developed in the previous sub- 
section is able to capture several properties of surprise. however, there is 
one technical caveat. recall that j can only be publicly announced if j is 
true before the announcement. it is natural to assume that j will still be true 
after the announcement. however, because public announcements take into 
account higher-order information, it might happen that j, simply by being 
announced, becomes false. a typical example is = p Kpj Ù Ø . if no such 
‘self-falsifying’ effects occur, j is called successful:

Definition 15. a formula jÎ  is called successful iff [! ]j j .
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When modeling ‘real-life’ scenarios in a single-agent setting, formulas typi-
cally do not involve higher-order information,22 so at least from this modeling 
perspective, the assumption of successfulness in many of the propositions 
below is quite harmless.23 I now turn to the first concrete result.

Proposition 16. The following formula is satisfiable:

j Ù KjØ  Ù ( ) = 0.2P j  Ù ( ) = 0S j  
 Ù ! (Kj já ñ  Ù ( ) = 1P j  Ù  ( ) = 0.8)S j  
 Ù ! ! (Kj j já ñá ñ  Ù  ( ) = 1P j  Ù ( ) = 0).S j

Proof. consider : , , , ,= W R Vs má ñM , with ={ , }, = , ( ) ={ },W w v R W W V p w´  
( )( ) = 0.2, ( )( ) = 0.8w w w vm m  and ( )( )w Xs  and ( )( )v Xs  undefined for all 

X wÍ  (all components which have not been mentioned are irrelevant, 
and can thus be assigned values at random). one can easily check that 
this is indeed a surprise model, and that the formula stated above (with j 
instantiated to p) is indeed true at ,wM . finally, note that *

SÎM C , i.e. we 
have followed the heuristic rule heur. 

proposition 16 shows that the logic is capable of doing what it was designed 
to do, viz. explicitly representing surprise dynamics. it describes the fol-
lowing scenario. initially, j is true, but the agent does not know this. further-
more, she assigns rather low prior probability to it (and thus does not expect 
its announcement). however, because she does not yet know that j is actually 
true, she experiences no surprise about it whatsoever. next, the unexpected 
announcement of j occurs, and three things happen: (i) the agent comes 
to know that j, (ii) she processes this new information by Bayesian condi-
tionalization and thus assigns probability 1 to it, and (iii) she experiences a 
very high degree of surprise about j (inversely correlated to the low prob-
ability that she initially assigned to it). after another announcement of j, 
the agent’s knowledge and probabilities are not changed; however, because 
this second announcement was no longer unexpected (after all, in the mean-
while she has come to know that j), her surprise about j drops again to 0. 
The formula in proposition 16 captures this scenario in a very natural way, 
using nested public announcement operators to explicitly represent the suc-
cessive layers of surprise dynamics.

22 in a single-agent setting one is typically surprised about ‘facts of nature’, not about 
one’s epistemic attitudes about such facts. in a multi-agent setting, however, it would be natu-
ral to have scenarios like “Alice was surprised when finding out that Bob knows that j”.

23 next to the ‘standard’ unsuccessful formulas involving knowledge ( p KpÙØ , [50]) 
and probability ( ( ) < 1p P pÙ , [18]), one can also define unsuccessful formulas involving 
the surprise operator S, e.g. ( ) > 0 ( ) 1P p S pÙ ³ . clearly, these formulas all have the same 
underlying syntactic structure.
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at this point, it should be pointed out that not all scenarios described by 
satisfiable formulas are equally plausible. In particular, it is easy to check 
that formulas of the form ( ) > 0 ( ) < 1S Pj jÙ  are satisfiable, although 
the scenario described by such formulas sounds highly counterintuitive: the 
first conjunct says that the agent experiences some surprise about j, which 
normally only happens after a public announcement of j; however, this 
announcement should also have led the agent to become certain about j 
(i.e. to assign probability 1 to it), which contradicts the second conjunct. To 
rule out such scenarios, one might consider adding an axiom of the form 

( ) > 0 ( ) = 1S Pj j®  to the SURPRISE system. however, this ignores the 
fact that there exist formulas j to which the agent does not assign probabil-
ity 1 after they have been announced.24 furthermore, even if such formulas 
are excluded—for example, by only considering (Boolean combinations of) 
propositional atoms—, then it is still the case that ( ) > 0 ( ) = 1.S S p P p®C 
however, it does hold that * ( ) > 0 ( ) = 1S S p P p®C  . in other words, even 
though the formula ( ) > 0 ( ) < 1S p P pÙ  is satisfiable in a SC -model, it is not 
satisfiable in a *

SC -model. hence, when we are modeling concrete scenarios 
(and following the heuristic rule heur), the entire problem does not arise.25

We now turn to Proposition 17 below. This says that an occurrence of j 
can lead to surprise about j itself, but also about all of its consequences. 
for example, it follows from items 1 and 2 that if an agent assigns probabil-
ity 0.2 to p qÙ , then after the announcement of this conjunction, she is 
surprised with intensity 0.8 about p qÙ , but also about p and q individually. 
items 3 and 4 are trivial consequences of 1 and 2; they are mentioned to 
highlight the subtleties of unsuccessful formulas: if j is not assumed to be 
successful, then 4 continues to hold, but 3 doesn’t.

Proposition 17. Assume that jÎ  is successful, and that j y® . Then: 

1. ( ) [! ] ( ) 1P c S cj j y³ ® £ - , 

2. ( ) [! ] ( ) 1P c S cj j y£ ® ³ - , 

3. ( ) [! ] ( ) 1P c S cj j j³ ® £ - , 

4. ( ) [! ] ( ) 1P c S cj j j£ ® ³ - . 

Proof. straightforward applications of the semantics. 

The fact that an occurrence of j can lead to surprise about its consequences 
presupposes that the agent is actually able to draw those consequences (if 

24 for example, let : ( ) = 0.05= p P pj Ù , and let M be the surprise model defined in 
example 10; it is now easy to check that , [! ] ( ) = 0w Pj j jÙM  .

25 Thanks to an anonymous referee for extensive discussion about this.
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the agent did not realize that y is a logical consequence of j, then an 
unexpected occurrence of j would cause her to be surprised about j, but 
not about y). In other words, Proposition 17 shows that the logical system 
assumes the agent to be logically omniscient.26 an even clearer illustration 
of this assumption is provided by item 1 of proposition 18 below, which 
says that the agent is never surprised about semantic validities. similarly, 
items 2 and 3 say that if an agent already knows j, or assigns probability 1 
to it, then she will not be surprised about it. These principles are clearly 
false for actual human beings, which are not logically omniscient, and 
can thus e.g. be genuinely surprised upon learning (that some formula is 
actually) a semantic validity; rather, the main importance of item 1 is that 
it elucidates Wittgenstein’s famous anti-psychologistic claim that “there can 
never be surprises in logic” [51, proposition 6.1251].

Proposition 18. Assume jÎ   is successful. Then: 

1. if j , then [! ] ( ) = 0Sj j , 
2. ( ) = 1 [! ] ( ) = 0P Sj j j® , 
3. [! ] ( ) = 0K Sj j j® . 

Proof. straightforward applications of the semantics. 

I will finish this subsection by proving two more substantial results, both 
of which illustrate how important empirical properties of surprise can be 
obtained as semantic validities of the logical system.

Proposition 19. Assume jÎ is successful. Then for all 2n ³ , we have:27 

 [! ] ( ) = 0.nSj j

Proof. first of all, note that since j is successful, it holds that ! ;j j j«á ñ
call this principle (†). consider an arbitrary surprise model M = 

, , , ,W R Vm sá ñ and state w, and assume that ,w jM . for any 0n ³ , we 
abbreviate 

 
times

, , , , = : ( ( ) ) .=nn n n n

n

W R V nm s j j já ñ


 M M   

26 This also illustrates the thoroughly epistemic character of surprise: the problem of 
logical omniscience originally is a problem for epistemic logic, but it automatically carries 
over into the surprise component.

27
 [! ]nj  is defined inductively: 0[! ] :=j y y , and 1[! ] : [! ][! ]= nnj y j j y+ .
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Let’s now show that 1, [! ] ( ) = 1nw Pj j+M   for all 0n ³ . This follows 
directly from the following calculation:

11( ) ([[ ]] )nn wm j ++ M  = 1( ) ([[ ! ]] )n nwm j j+ á ñ M

 = 1( ) ([[ ]] )n nwm j+ M  (†) 
 = ( ) ([[ ]] | [[ ]] ) = 1n n nwm j jM M  . (Definition 4)

We now use this to justify the (‡)-labeled step in the following calculation:
2 2( ) ([[ ]] )n nws j+ +M  = 2 1( )([[ ! ]] )n nws j j+ +á ñ M

 = 2 1( ) ([[ ]] )n nws j+ +M  (†) 
 = 111 ( )([[ ]] )nn wm j ++- M  (Definition 4) 
 = 1 1 = 0- . (‡)

This shows that 2, [! ] ( ) = 0nw Sj j+M   for all 0n ³ . 

informally speaking, proposition 19 says that after two public announce-
ments of j, the agent is no longer surprised about j. it thus nicely captures 
the transitory nature of surprise, which was discussed in subsection 2.1. 
furthermore, the proof closely resembles the informal explanation which 
was given there: the first announcement of j causes the agent to update 
her probabilities and to assign probability 1 to j, so that the second (and 
subsequent) announcement is no longer unexpected, and thus no longer 
surprising.28

finally, proposition 20 says that if an occurrence of (a public announce-
ment of) j leads an agent to change her probability of y from a to b in a 
non-trivial29 fashion, then she will experience at least some surprise about y. 
in other words: surprise is a necessary condition for belief revision (in the 

28 The fact that surprise intensity drops to 0 after only two announcements is no problem 
for proposition 19, even though for most real subjects this drop happens more gradually and 
requires several more repetitions [4]. The more gradual decrease in surprise intensity is the 
consequence of personal and coincidental factors, such as intelligence and fatigue. Both the 
informal explanation in subsection 2.1 and proposition 19 make abstraction of such factors, 
and predict that the drop in surprise intensity will already happen after the second repetition.

29 This non-triviality requirement is captured by the condition that [! ]y j yØ ® Ø , i.e. 
the public announcement of j should not turn any yØ -states into y-states. in other words, 
the change of P(y) from a to b is non-trivial if [[ ]]y M  does not grow. (if [[ ]]y M  grows, then 
it is trivial that the value of P(y) might change: if A BÍ , then ( ) ( )P A P B£ .) intuitively, 
exactly the same argument can be made about [[ ]]y M  shrinking rather than growing (i.e. 
about the requirement that [! ]y j y® ), but it turns out that this second requirement is 
technically speaking not necessary for proposition 20 to hold. This disanalogy is similar to 
the disanalogy between items 3 and 4 of Proposition 17.
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current framework: probability revision).30 This is perfectly in line with 
the cognitive-psychoevolutionary theory of surprise described in subsec- 
tion 2.1, which holds that surprise is part of a sequence of processes trig-
gered by an unexpected event; the final stage of this sequence is typically 
a process of belief revision.

Proposition 20. Consider ,j yÎ  and suppose that [! ]y j yØ ® Ø . Then 

 ( ( ) = [! ] ( ) = ) [! ] ( ) > 0.P a P b a b Sy j y j yÙ Ù ¹ ®

Proof. consider an arbitrary surprise model = , , , ,W R Vm sá ñM  and state w, 
and assume that the antecedent of the formula above is true at ,wM . for a 
reductio, assume that , [! ] ( ) > 0w Sj yM  . Then it follows that 

 0 = ( )([[ ]] ) = ( )([[ ! ]] ) = 1 ( )([[ ! ]] ),w w wj jjs y s j y m j yá ñ - á ñM MM

and thus ( ) ([[ ! ]] ) = 1wm j yá ñ M . from the assumption that [! ]y j yØ ® Ø  
in the statement of the proposition, it follows that [[ ! ]] [[ ]]j y yá ñ ÍM M, and 
thus 

 1 = ( )([[ ! ]] ) ( ) ([[ ]] ) = ,w w am j y m yá ñ £M M

so = 1a . since !j y já ñ ® , we similarly get that ( ) ([[ ]] ) = 1wm j M , and 
hence

 
( ) ([[ ! ]] ) 1= ( )([[ ]] ) = ( )([[ ! ]] ) = 1.= =

1( )([[ ]] )
wb w w

w
jjj m j y

m y m j y
m j

á ñ
á ñ

M
M M

M


We thus have = 1 =a b, which contradicts the assumption that a b¹ . 

Corollary 21. For any jÎ , it holds that 

 ( ( ) = [! ] ( ) = ) [! ] ( ) > 0.P a P b a b Sj j j j jÙ Ù ¹ ®

Proof. it always holds that [! ]j j jØ ® Ø , so by putting =y j, the condi-
tion of Proposition 20 is always satisfied. 

5. Conclusion

in this paper i have presented a new analysis of surprise in the framework 
of probabilistic dynamic epistemic logic. This analysis is based on current 

30 i use the term ‘belief revision’ in a strictly technical sense here (i.e. as synonymous to 
‘probability revision’), and do not mean to suggest any connection with aGm-style theories 
of belief revision [1, 16].
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psychological theories, and as a result, several experimentally observed 
aspects of surprise can be derived as theorems within the logical system 
(recall, for example, proposition 20 on the role of surprise in belief revision). 
furthermore, being based on the contemporary ‘lingua franca’ of (dynamic) 
epistemic logic, it offers a natural, well-understood and highly expressive 
language for the formal description of agent architectures (cf. proposition 16).

most importantly, however, the analysis naturally captures the dynamic 
nature of surprise. This is clearly manifested in the logic’s semantics (the 
surprise measures ( )ws  are not required to satisfy any static properties) as 
well as in its proof theory (the only substantial axioms for surprise are its 
reduction axioms). These reduction axioms jointly constitute a temporally 
coherent definition of surprise, in contrast to earlier, temporally incoherent 
formalizations such as macedo and cardoso’s and Lorini and castel- 
franchi’s. This temporal coherence has several advantages. first and fore-
most, by explicitly distinguishing between prior and posterior notions, the 
proposed analysis is able to reach a high level of conceptual hygiene (recall the 
methodological remark at the beginning of subsection 3.2). This conceptual 
advantage also yields additional empirical benefits: the new analysis can 
capture important aspects of surprise that are not covered by earlier frame-
works, such as its transitory nature (cf. proposition 19).31

several questions are left for further research. for example, i intend to 
explore what happens with the propositions mentioned in subsection 4.2 
when the assumption of successfulness is lifted (unsuccessful formulas 
require higher-order information, and thus seem to arise most naturally in 
multi-agent scenarios; cf. footnote 4.2). another topic involves adding 
awareness to the logic, which would greatly increase its empirical adequacy 
(cf. proposition 18). finally, one might wonder whether the quantitative 
notion of surprise intensity can be used to define a qualitative notion of 
surprise, just like in the epistemic realm one can use probabilities (degrees 
of belief) to define a qualitative notion of belief.32 These questions, however, 
will be addressed in another paper. 

Lorenz Demey
institute of philosophy - cLaW

KuLeuven
lorenz.demey@hiw.kuleuven.be 

31 unsurprisingly, the aspect of transitoriness is itself of a highly dynamic character, 
involving repeated occurrences of the unexpected event.

32 in philosophy this move is often called the ‘Lockean thesis’; it yields a probabilistic 
notion of belief which has exactly the same dynamics under public announcement as a 
‘primitively qualitative’ notion of belief [12].
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