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Abstract

We present a framework for automated planning based on plausibility models, as 
well as algorithms for computing plans in this framework. Our plausibility models 
include postconditions, as ontic effects are essential for most planning purposes. 
The framework presented extends a previously developed framework based on 
dynamic epistemic logic (DEL), without plausibilities/beliefs. In the pure epistemic 
framework, one can distinguish between strong and weak epistemic plans for 
achieving some, possibly epistemic, goal. By taking all possible outcomes of actions 
into account, a strong plan guarantees that the agent achieves this goal. Conversely, 
a weak plan promises only the possibility of leading to the goal. In real-life plan-
ning scenarios where the planning agent is faced with a high degree of uncertainty 
and an almost endless number of possible exogenous events, strong epistemic plan-
ning is not computationally feasible. Weak epistemic planning is not satisfactory 
either, as there is no way to qualify which of two weak plans is more likely to lead 
to the goal. This seriously limits the practical uses of weak planning, as the planning 
agent might for instance always choose a plan that relies on serendipity. In the 
present paper we introduce a planning framework with the potential of overcoming 
the problems of both weak and strong epistemic planning. This framework is based 
on plausibility models, allowing us to define different types of plausibility plan-
ning. The simplest type of plausibility plan is one in which the goal will be achieved 
when all actions in the plan turn out to have the outcomes found most plausible by 
the agent. This covers many cases of everyday planning by human agents, where we 
— to limit our computational efforts — only plan for the most plausible outcomes 
of our actions. 

1.  Introduction

Whenever an agent deliberates about the future with the purpose of achiev-
ing a goal, she is engaging in the act of planning. Automated Planning is a 
widely studied area of AI dealing with such issues under many different 
assumptions and restrictions. In this paper we consider planning under 
uncertainty [11] (nondeterminism and partial observability), where the 
agent has knowledge and beliefs about the environment and how her actions 
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affect it. We formulate scenarios using plausibility models obtained by 
merging the frameworks in [5, 19].

Example 1 (The Basement). A n agent is standing at the top of an unlit 
stairwell leading into her basement. If she walks down the steps in the dark, 
it’s likely that she will trip. On the other hand, if the lights are on, she is 
certain to descend unharmed. There is a light switch just next to her, though 
she doesn’t know whether the bulb is broken.

She wishes to find a plan that gets her safely to the bottom of the stairs. 
Planning in this scenario is contingent on the situation; e.g. is the bulb 
broken? Will she trip when attempting her descent? In planning terminology 
a plan that might achieve the goal is a weak solution, whereas one that guar-
antees it is a strong solution.

In this case, a weak solution is to simply descend the stairs in the dark, 
risking life and limb for a trip to the basement. On the other hand, there is no 
strong solution as the bulb might be broken (assuming it cannot be replaced). 
Intuitively, the best plan is to flick the switch (expecting the bulb to work) and 
then descend unharmed, something neither weak nor strong planning captures. 

Extending the approach in [1] to a logical framework incorporating beliefs 
via a plausibility ordering, we formalise plans which an agent considers 
most likely to achieve her goals. This notion is incorporated into algorithms 
developed for the framework in [1], allowing us to synthesise plans like the 
best one in Example 1.

In the following section we present the logical framework we consider 
throughout the paper. Section 3 formalises planning in this framework, and 
introduces the novel concept of plausibility solutions to planning problems. 
As planning is concerned with representing possible ways in which the future 
can unfold, it turns out we need a belief modality corresponding to a globally 
connected plausibility ordering, raising some technical challenges. Section 4 
introduces an algorithm for plan synthesis (i.e. generation of plans). Further 
we show that the algorithm is terminating, sound and complete. To prove 
termination, we must define bisimulations and bisimulation contractions.

2.  Dynamic Logic of Doxastic Ontic Actions

The framework we need for planning is based on a dynamic logic of doxas-
tic ontic actions. Actions can be epistemic (changing knowledge), doxastic 
(changing beliefs), ontic (changing facts) or any combination. The following 
formalisation builds on the dynamic logic of doxastic actions [5], adding 
postconditions to event models as in [19]. We consider only the single-agent 
case. Before the formal definitions are given, we present some intuition 
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behind the framework in the following example, which requires some 
familiarity with epistemic logic.

Example 2. C onsider an agent and a coin biased towards heads, with the 
coin lying on a table showing heads (h). She contemplates tossing the coin 
and realizes that it can land either face up, but (due to nature of the coin) 
believes it will land heads up. In either case, after the toss she knows 
exactly which face is showing.

The initial situation is represented by the plausibility model (defined later) 
M and the contemplation by M² (see Figure 1). The two worlds u1, u2 are 
epistemically distinguishable ( 1 2u u ) and represent the observable non-
deterministic outcome of the toss. The dashed directed edge signifies a 
(global) plausibility relation, where the direction indicates that she finds u2 
more plausible than u1 (we overline proposition symbols that are false). 

Example 3. C onsider again the agent and biased coin. She now reasons 
about shuffling the coin under a dice cup, leaving the dice cup on top to 
conceal the coin. She cannot observe which face is up, but due to the bias 
of the coin believes it to be heads. She then reasons further about lifting the 
dice cup in this situation, and realises that she will observe which face is 
showing. Due to her beliefs about the shuffle she finds it most plausible that 
heads is observed.

The initial situation is again M. Consider the model M¢, where the solid 
directed edge indicates a local plausibility relation, and the direction that 
v2 is believed over v1. By local we mean that the two worlds v1, v2 are 
(epistemically) indistinguishable ( 1 2v v ), implying that she is ignorant 
about whether h or hØ  is the case.1 Together this represents the concealed, 
biased coin. Her contemplations on lifting the cup is represented by the 
model M² as in the previous example. 

In Example 2 the agent reasons about a non-deterministic action whose 
outcomes are distinguishable but not equally plausible, which is different 
from the initial contemplation in Example 3 where the outcomes are not 
distinguishable (due to the dice cup). In Example 3 she subsequently rea-
sons about the observations made after a sensing action. In both examples 

1  In the remainder, we use (in)distinguishability without qualification to refer to epistemic 
(in)distinguishability.

Figure 1: T hree plausibility models.
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she reasons about the future, and in both cases the final result is the model 
M². In Example 8 we formally elaborate on the actions used here.

It is the nature of the agent’s ignorance that make M¢ and M² two inher-
ently different situations. Whereas in the former she is ignorant about h  
due to the coin being concealed, her ignorance in the latter stems from  
not having lifted the cup yet. In general we can model ignorance either as 
a consequence of epistemic indistinguishability, or as a result of not yet  
having acted. Neither type subsumes the other and both are necessary for 
reasoning about actions. We capture this distinction by defining both local 
and global plausibility relations. The end result is that local plausibility 
talks about belief in a particular epistemic equivalence class, and global 
plausibility talks about belief in the entire model. We now remedy the infor-
mality we allowed ourselves so far by introducing the necessary definitions 
for a more formal treatment.

Definition 4 (Dynamic Language).  Let a countable set of propositional 
symbols P be given. The language L(P) is given by the following BNF: 

	 [ ]:: | | | | | | ,= p K B X eff f f f f f f fØ Ù E

where p PÎ , E is an event model on L(P) as (simultaneously) defined 
below, and ( )e DÎ E . K is the local knowledge modality, Bf  the global 
conditional belief modality, X is a (non-standard) localisation modality 
(explained later) and [ ],eE  the dynamic modality.

We use the usual abbreviations for the other boolean connectives, as well 
as for the dual dynamic modality [ ], : ,=e ef fØ ØE E  and unconditional 
(or absolute) global belief :=B Bf f . The duals of K and Bf are denoted 
K  and Bf. 

Kf reads as “the (planning) agent knows f”, Byf as “conditional on y, the 
(planning) agent believes f”, and [ ],e fE  as “after all possible executions 
of ( , )eE , f holds”. Xf reads as “locally f”.

Definition 5  (Plausibility Models).  A plausibility model on a set of propo-
sitions P is a tuple ( , , , )= W V£M , where 

•	 W is a set of worlds, 
•	 W WÍ ´  is an equivalence relation called the epistemic relation, 
•	 W W£Í ´  is a connected well-preorder called the plausibility relation,2 
•	 : 2WV P®  is a valuation. 

2  A well-preorder is a reflexive, transitive binary relation s.t. every non-empty subset 
has minimal elements [6].
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( ) =D WM  denotes the domain of M. For w WÎ  we name (M, w) a pointed 
plausibility model, and refer to w as the actual world of (M, w). < denotes 
the strict plausibility relation, that is <w w¢ iff w w£ ¢ and w w£¢ .  
denotes equiplausibility, that is w w¢  iff w w£ ¢ and w w£¢ . 

In our model illustrations a directed edge from w to w¢ indicates w w£¢ . 
By extension, strict plausibility is implied by unidirected edges and  
equiplausibility by bidirected edges. For the models in Figure 1, we have 

1 2v v , 2 1<v v  in M¢ and 1 2u u , 2 1<u u  in M². The difference between 
these two models is in the epistemic relation, and is what gives rise to local 
(solid edges) and global (dashed edges) plausibility. In [5] the local plausi-
bility relation is defined as := Ç£ ; i.e. w w¢  iff w w¢  and w w£ ¢. 
 is a locally well-preordered relation, meaning that it is a union of mutu-
ally disjoint well-preorders. Given a plausibility model, the domain of each 
element in this union corresponds to an -equivalence class.

Our distinction between local and global is not unprecedented in the 
literature, but it can be a source of confusion. In [5], £ was indeed con-
nected (i.e. global), but in later versions of the framework [6] this was no 
longer required. The iterative development in [20] also discuss the distinc-
tion between local and global plausibility (named preference by the author). 
Relating the notions to the wording in [5], £ captures a priori beliefs about 
virtual situations, before obtaining any direct information about the actual 
situation. On the other hand,  captures a posteriori beliefs about an actual 
situation, that is, the agent’s beliefs after she obtains (or assumes) information 
about the actual world.
M² represents two distinguishable situations (v1 and v2) that are a result 

of reasoning about the future, with v2 being considered more plausible than 
v1. These situations are identified by restricting M² to its -equivalence 
classes; i.e. M²  1{ }v  and M²  2{ }v . Formally, given an epistemic model 
M, the information cells in M are the submodels of the form M   [ ]w



  
where ( )w DÎ M . We overload the term and name any -connected plau-
sibility model on P an information cell. This use is slightly different from 
the notion in [6], where an information cell is an -equivalence class rather 
than a restricted model. An immediate property of information cells is that 

=£ ; i.e. the local and global plausibility relations are identical. A partition 
of a plausibility model into its information cells corresponds to a localisa-
tion of the plausibility model, where each information cell represents a local 
situation. The (later defined) semantics of X enables reasoning about such 
localisations using formulas in the dynamic language.

Definition 6  (Event Models).  An event model on the language L(P) is a 
tuple = ( , , , , )E pre post£E , where 
•	 E is a finite set of (basic) events, 
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•	 E EÍ ´  is an equivalence relation called the epistemic relation, 
•	 E E£Í ´  is a connected well-preorder called the plausibility relation, 
•	 : ( )pre E L P®  assigns to each event a precondition, 
•	 : ( ( ))post E P L P® ®  assigns to each event a postcondition for each 

proposition. Each post(e) is required to be only finitely different from the 
identity. 

( ) =D EE  denotes the domain of E. For e EÎ  we name ( , )eE  a pointed 
event model, and refer to e as the actual event of ( , )eE . We use the same 
conventions for accessibility relations as in the case of plausibility models. 

Definition 7  (Product Update).  Let = ( , , , )W V£M  and E = (E, ¢, £¢, 
pre, post) be a plausibility model on P resp. event model on L(P). The 
product update of M with E is the plausibility model denoted M Ä E = 
( , , , )W V£¢ ¢¢ ¢¢ ¢ , where 

•	 = {( , ) | , ( )}W w e W E w pre eÎ ´¢ M  ,
•	 {(( , ), ( , )) | and }= w e v f W W w v e fÎ ´¢¢ ¢ ¢ ¢   ,
•	 {(( , ),( , )) | < or ( and )}= w e v f W W e f e f w v£ Î ´ £¢¢ ¢ ¢ ¢ ¢ ,
•	 ( ) {( , ) | , ( ) ( )}=V p w e W w post e pÎ¢ ¢ M   for each p PÎ .

The reader may consult [4, 5, 6, 19] for thorough motivations and explana-
tions of the product update. Note that the event model’s plausibilities take 
priority over those of the plausibility model (action-priority update).

Example 8.  Consider Figure 2, where the event model E represents the 
biased non-deterministic coin toss of Example 2, E ¢ shuffling the coin under 
a dice cup, and E² lifting the dice cup of Example 3. We indicate  and £ 
with edges as in our illustrations of plausibility models. Further we use 
the convention of labelling basic events e by < ( ), ( ) >pre e post e . We write 

( )post e  on the form 1 1{ , , }n np pf f 


, meaning that ( )( ) = iipost e p f  
for all i, and ( )( ) =post e q q for 1{ , , }nq p pÎ  .

Returning to Example 2 we see that M Ä E = M² where u1 =  (w,  e1), 
u2 =  (w,  e2). In E we have that e2 < e1, which encodes the bias of the coin, 

Figure 2: T hree event models.
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and 1 2e e  encoding the observability, which leads to u1 and u2 being 
distinguishable.

Regarding Example 3 we have that M Ä E ¢ = M¢ (modulo renaming). 
In contrast to E, we have that 1 2f f , representing the inability to see 
the face of the coin due to the dice cup. For the sensing action E², we 
have M Ä E ¢ Ä E² = M², illustrating how, when events are equiplausible 
( 1 2g g ), the plausibilities of M¢ carry over to M². 

We have shown examples of how the interplay between plausibility 
model and event model can encode changes in belief, and further how to 
model both ontic change and sensing. In [2] there is a more general treat-
ment of action types, but here such a classification is not our objective. 
Instead we simply encode actions as required for our exposition and leave 
these considerations as future work.

Among the possible worlds, £ gives an ordering defining what is believed. 
Given a plausibility model = ( , , , )W V£M , any non-empty subset of W 
will have one or more minimal worlds with respect to £, since £ is a well-
preorder. For S WÍ , the set of £-minimal worlds, denoted Min S£ , is 
defined as: 

= { | : }.Min S s S s S s s£ Î " Î £¢ ¢

The worlds in Min S£  are called the most plausible worlds in S. The worlds 
of ( )Min D£ M  are referred to as the most plausible of M. With belief 
defined via minimal worlds (see the definition below), the agent has the same 
beliefs for any ( )w DÎ M . Analogous to most plausible worlds, an infor- 
mation cell M¢ of  M is called most plausible if D(M¢) ( )Min D£Ç ¹ÆM  
(M¢ contains at least one of the most plausible worlds of M).

Definition 9 (Satisfaction Relation).  Let a plausibility model = ( , , , )W V£M  
on P be given. The satisfaction relation is given by, for all w WÎ : 

,w pM   	 iff ( )w V pÎ  
,w fØM   	 iff ,not w fM   
,w f yÙM   	 iff , and ,w wf yM  M   
,w KfM   	 iff , for allv w vf M   
,w ByfM   	 iff , for all { | , }v v Min u W uf y£Î ÎM  M   
,w XfM   	 iff [ ] ,w w f



M   
[ ], ,w e fM  E  	 iff , ( ) implies ,( , )w pre e w e fÄM  M E 

where , ( )L Pf yÎ  and ( , )eE  is a pointed event model. We write fM  to 
mean ,w fM   for all ( )w DÎ M . Satisfaction of the dynamic modality 
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for non-pointed event models E is introduced by abbreviation, viz. [E]f := 
[ ]( ) ,e e fÎÙ  E E . Furthermore, [ ]:=f fØ ØE E .3 

The reader may notice that the semantic clause for ,w XfM   is equiv-
alent to the clause for , [ , ]w e fM  E  when [ , ]eE  is a public announcement 
of a characteristic formula [17] being true exactly at the worlds in [ ]w



 
(and any other world modally equivalent to one of these). In this sense, the 
X operator can be thought of as a public announcement operator, but a 
special one that always announces the current information cell. In the spe-
cial case where M is an information cell, we have for all ( )w DÎ M  that 

,w XfM   iff ,w fM  .

3.  Plausibility Planning

The previous covered a framework for dealing with knowledge and belief in 
a dynamic setting. In the following, we will detail how a rational agent would 
adapt these concepts to model her own reasoning about how her actions affect 
the future. Specifically, we will show how an agent can predict whether or 
not a particular plan leads to a desired goal. This requires reasoning about 
the conceivable consequences of actions without actually performing them.

Two main concepts are required for our formulation of planning, both of 
which build on notions from the logic introduced in the previous section. 
One is that of states, a representation of the planning agent’s view of the 
world at a particular time. Our states are plausibility models. The other concept 
is that of actions. These represent the agent’s view of everything that can 
happen when she does something. Actions are event models, changing 
states into other states via product update.

In our case, the agent has knowledge and beliefs about the initial situa-
tion, knowledge and beliefs about actions, and therefore also knowledge 
and beliefs about the result of actions.

All of what follows regards planning in the internal perspective. Section 3.1 
shows how plausibility models represent states, Section 3.2 how event models 
represent actions and Section 3.3 how these ideas can formalise planning 
problems with various kinds of solutions.

3.1.  The Internal Perspective On States

In the internal perspective, an agent using plausibility models to represent 
her own view will, generally, not be able to point out the actual world. 

3 H ence, M, w  áñ f Û M, w  Ø [] Øf Û M, w  Ø (ÙeÎ() [, e] Øf) Û M, w  
ÚeÎ() Ø [, e] Øf Û M, w  ÚeÎ() á, eñ f.
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Consider again the model M in Figure 1, that has two indistinguishable 
worlds w1 and w2. If M is the agent’s view of the situation, she will of 
course not be able to say which is the actual world. If she was, then the 
model could not represent the situation where the two worlds are indistin-
guishable. By requiring the agent to reason from non-pointed plausibility 
models only (a similar argument makes the case for non-pointed event models), 
we enforce the internal perspective.

3.2.  Reasoning About Actions

Example 10  (Friday Beer).  Nearing the end of the month, an agent is 
going to have an end-of-week beer with her coworkers. Wanting to save the 
cash she has on hand for the bus fare, she would like to buy the beer using 
her debit card. Though she isn’t certain, she believes that there’s no money 
(m) on the associated account. Figure 10 shows this initial situation as M, 
where t  signifies that the transaction hasn’t been completed. In this small 
example her goal is to make t true. 

When attempting to complete the transaction (using a normal debit card 
reader), a number of different things can happen, captured by E in Figure 10. 
If there is money on the account, the transaction will go through (e2), and 
if there isn’t, it won’t (e1). This is how the card reader operates most of the 
time and why e1 and e2 are the most plausible events. Less plausible, but 
still possible, is that the reader malfunctions for some other reason (e3). The 
only feedback the agent will receive is whether the transaction was com-
pleted, not the reasons why it did or didn’t ( 1 3 2 )e e e  . That the agent 
finds out whether the transaction was successful is why we do not collapse 
e1 and e2 to one event e¢ with ( ) =pre e¢  and ( )( ) =post e t m¢ .

ÄM E  expresses the agent’s view on the possible outcomes of attempting 
the transaction. The model M¢ is the bisimulation contraction of ÄM E, 

Figure 3: T he situation before and after attempting to pay with a debit card, plus 
the event model depicting the attempt. This illustrates that the most plausible 

information cell can contain the least plausible world.
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according to the definition in Section 4.1 (the world 1 3( , )w e  having been 
removed, as it is bisimilar to 1 1( , )w e ).
M¢ consists of two information cells, corresponding to whether or not 

the transaction was successful. What she believes will happen is given 
by the global plausibility relation. When actually attempting the trans- 
action the result will be one of the information cells of M¢, namely 

1 1 2 3{( , ),( , )}=t w e w e¢M M   or 2 2= {( , )}t w e¢M M  , in which she will 
know tØ  and t respectively. As 1 1( , )w e  is the most plausible, we can say 
that she expects to end up in 1 1( , )w e , and, by extension, in the information 
cell tM : She expects to end up in a situation where she knows tØ , but is 
ignorant concerning m. If, unexpectedly, the transaction is successful, she 
will know that the balance is sufficient (m). The most plausible information 
cell(s) in a model are those the agent expects. That 2 3( , )w e  is in the expected 
information cell, when the globally more plausible world 2 2( , )w e  is not, 
might seem odd. It isn’t. The partitioning of M into the information cells 

tM  and Mt suggests that she will sense the value of t ( tØ  holds everywhere 
in the former, t everywhere in the latter). As she expects to find out that t 
does not to hold, she expects to be able to rule out all the worlds in which 
t does hold. Therefore, she expects to be able to rule out 2 2( , )w e  and  
not 2 3( , )w e  (or 1 1,w e ). This gives ( )BX K t B m KmØ Ù Ø Ù¢M  : She expects 
to come to know that the transaction has failed and that she will believe 
there’s no money on the account (though she does consider it possible that 
there is). 

Under the definition of planning that is to follow in Section 3.3, an agent 
has a number of actions available to construct plans. She needs a notion of 
which actions can be considered at different stages of the planning process. 
As in the planning literature, we call this notion applicability.

Definition 11  (Applicability).  An event model E is said to be applicable 
in a plausibility model M if M  E . 

Unfolding the definition of E , we see what applicability means: 

( ) : ,w D wÛ " Î ÛM E M M  E 

( )( ) : , ,e Dw D w eÎ" Î Ú ÛEM M  E 

( ), ( ) : , ,w D e D w e" Î $ Î ÛM E M  E 

( ), ( ) : , ( ) and ,( , )w e D w pre e w eD" Î $ Î Ä ÛM E M  M E 

( ), ( ) : , ( ).w D e D w pre e" Î $ ÎM E M 

This says that no matter which is the actual world (it must be one of  
those considered possible), the action defines an outcome. This concept of 
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applicability is equivalent to the one in [2]. The discussion in [10, sect. 6.6] 
also notes this aspect, insisting that actions must be meaningful. The same 
sentiment is expressed by our notion of applicability.

Proposition 12.  Given a plausibility model M and an applicable event 
model E, we have ( ) ØD Ä ¹M E . 

The product update ÄM E  expresses the outcome(s) of doing E in the 
situation M, in the planning literature called applying E in M. The dynamic 
modality [E] expresses reasoning about what holds after applying E. 

Lemma 13.  Let M be a plausibility model and E an event model. Then 
[ ]fM E  iff fÄM E  . 

Proof.  [ ]fM E  Û ( ) : , [ ]w w f" Î M M  E  Û

( )( ) : , [ , ]ew w e fÎ" Î Ù  E M M  E  Û

( , ) ( ) ( ) : , [ , ]w e w e f" Î ´ M  E M E  Û

( , ) ( ) ( ) : , ( )w e w pre e" Î ´ M  E M   implies , ( , )w e fÄM E   Û

( , ) ( ) : ,( , )w e D w e f" Î Ä ÄM E M E   Û fÄM E  .� 

Here we are looking at global satisfaction, by evaluating [ ]fE  in all of M, 
rather than a specific world. The reason is that evaluation in planning must 
happen from the perspective of the planning agent and its “information 
state”. Though one of the worlds of M is the actual world, the planning 
agent is ignorant about which it is. Whatever plan it comes up with, it must 
work in all of the worlds which are indistinguishable to the agent, that is, 
in the entire model. A similar point, and a similar solution, is found in [13].

Example 14.  We now return to the agent from Example 1. Her view of the 
initial situation (M0) and her available actions (flick and desc) are seen 
in Figure 4. The propositional letters mean t: “top of stairs”, l: “light on”, 
b: “bulb working”, s: “switch on” and u: “unharmed”. Initially, in M0, she 
believes that the bulb is working, and knows that she is at the top of the stairs, 
unharmed and that the switch and light is off: 0 ( )Bb K t u l sÙ Ù ÙØ ÙØM  .

flick and desc represent flicking the light switch and trying to descend 
the stairs, respectively. Both require being at the top of the stairs (t). f1 of 
flick expresses that if the bulb is working, turning on the switch will turn 
on the light, and f2 that if the bulb is broken or the switch is currently on, 
the light will be off. The events are epistemically distinguishable, as the 
agent will be able to tell whether the light is on or off. desc describes 
descending the stairs, with or without the light on. e1 covers the agent 

98348_LogiqueAnalyse_230_02.indd   155 25/03/2016   14:48:19



156	 m. birkegaard andersen, t. bolander & m. holm jensen

descending the stairs unharmed, and can happen regardless of there being 
light or not. The more plausible event e2 represents the agent stumbling, 
though this can only happen in the dark. If the light is on, she will descend 
safely. Definition 11 and Lemma 13 let us express the action sequences 
possible in this scenario. 

•	 0 ÙM   flick desc . The agent can initially do either flick or desc. 
•	 [ ]0 flick descM  . After doing flick, she can do desc. 
•	 [ ]0 ( )Ø ÙØdesc flick descM    . Nothing can be done after desc.

Figure 14 shows the plausibility models arising from doing flick and desc 
in M0. Via Lemma 13 she can now conclude: 

•	 [ ]0 ( )Kb K bÚ ØflickM  : Flicking the light switch gives knowledge of 
whether the bulb works or not. 

•	 [ ]0 BKbflickM  . She expects to come to know that it works.
•	 [ ]0 ( )K t B uØ Ù ØdescM  . Descending the stairs in the dark will definitely 

get her to the bottom, though she believes she will end up hurting herself. 

3.3.  Planning

We now turn to formalising planning and then proceed to answer two ques-
tions of particular interest: How do we verify that a given plan achieves a 

Figure 4: A n information cell, M0, and two event models, flick and desc.

Figure 5: T he models resulting from applying the actions flick and desc in M0. 
Reflexive edges are not shown and the transitive closure is left implicit.
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goal? And can we compute such plans? This section deals with the first 
question, plan verification, while the second, plan synthesis, is detailed in 
Section 4.

Definition 15  (Plan Language).  Given a finite set A of event models on 
L(P), the plan language L(P, A) is given by:

:: | | | ;=p f p p p pskip if then elseE

where ÎAE  and ( )L PfÎ . We name members p of this language plans, 
and use f pif then  as shorthand for f pif then else skip . 

The reading of the plan constructs are “do E”, “do nothing”, “if f then 
p, else p¢”, and “first p then p¢” respectively. In the translations provided 
in Definition 16, the condition of the if-then-else construct becomes a K-for-
mula, ensuring that branching depends only on worlds which are distin-
guishable to the agent. The idea is similar to the meaningful plans of [10], 
where branching is allowed on epistemically interpretable formulas only.

Definition 16  (Translation).  Let a be one of s, w, sp or wp. We define an 
a-translation as a function [ ] : ( , ) ( ( ) ( ))P L P L Pa× ® ®AL : 

[ ]

[ ]



[ ]

[ ]

if =

if =
:= if =

if =

XK s

K XK w
BXK sp

BXK wp

a

f a

f a
f

f a

f a

ìïïïïïïÙíïïïïïïî

E

E
E E 

E

E

[ ] :=a f fskip

[ ] : ( [ ] ) ( [ ] )= K Ka aaf p p f f p f f p f® Ù Ø ®¢ ¢ ¢ ¢ ¢if then else

[ ; ] : [ ] ([ ] )=a a ap p f p p f¢ ¢

We call [ ]s×  the strong translation, [ ]w×  the weak translation, [ ]sp×  the strong 
plausibility translation and [ ]wp×  the weak plausibility translation. 

The translations are constructed specifically to make the following lemma 
hold, providing a semantic interpretation of plans (leaving out skip and 

1 2;p p ). 

Lemma 17.  Let M be an information cell, E  an event model and f a for-
mula of L(P). Then: 

1.	 [ ]sfM E  iff á ñM E  and for each information cell M¢ of M Ä E  : 
M¢  f.
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2.	 [ ]wfM E  iff á ñM E  and for some information cell M¢ of M Ä E  : 
M¢  f.

3.	 [ ]spfM E  iff á ñM E  and for each most plausible information cell 
M¢ of M Ä E  : M¢  f.

4.	 [ ]wpfM E  iff á ñM E  and for some most plausible information cell 
M¢ of M Ä E  : M¢  f.

5.	 [ ]af p p f¢ ¢if then elseM  iff 
	 ( f¢M  implies [ ] )ap fM  and ( f¢M   implies [ ] )ap f¢M . 

Proof.  We only prove 4 and 5, as 1-4 are very similar. For 4 we have: 

[ ] [ ] lemma 13
wp BXKf fÛ Ù ÛM E M E E

and BXKfÄ ÛM E M E 


Prop.12and ( , ) ( ) : ,( , )w e D w e BXKf" Î Ä Ä ÛM E M E M E 

and ( , ) ( ) : ,( , )w e Min D w e XKf£$ Î Ä Ä ÛM E M E M E 

and ( , ) ( ) : [( , )] ,( , )w e Min D w e w e Kf£$ Î Ä Ä Û


M E M E M E 

and ( , ) ( ) : [( , )]w e Min D w e f£$ Î Ä Ä Û


M E M E M E 

M E  and in some most plausible information cell M¢ of M Ä E, M¢  f. 

For if-then-else, first note that: 

[ ] ( ): , [ ]K w D w K aaf p f f p fØ ® Û " Î Ø ® Û¢ ¢M M M 
is an info. cell( ) : , implies , [ ]w D w K w af p f" Î Ø Û¢ MM M  M 

( ) : if , for some ( ) then , [ ]w D v v D w af p f" Î Ø Î Û¢M M  M M 

if , for some ( ) then ( ): , [ ]v v D w D w af p fØ Î " Î Û¢M  M M M 

implies [ ] .af p f¢ ¢M  M

Similarly, we can prove: 

[ ] implies [ ] .K Ka af p f f p f® Û¢ ¢ ¢M M M

Using these facts, we get: 

[ ] ( [ ] ) ( [ ] )K Ka a af p p f f p f f p fÛ ® Ù Ø ® Û¢ ¢ ¢ ¢ ¢if then elseM M

[ ] and [ ]K Ka af p f f p f® Ø ® Û¢ ¢ ¢M M

( implies [ ] ) and ( implies [ ] ).a af p f f p f¢ ¢ ¢M M M  M � 
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Using XK (as is done in all translations) means that reasoning after an 
action is relative to a particular information cell (as ,w XKfM   Û 

[ ] ,w w Kf


M   Û [ ]w f


M  ).

Definition 18  (Planning Problems and Solutions).  Let P be a finite set of 
propositional symbols. A planning problem on P is a triple 0( , , )= gfAP M  
where 

•	M0 is a finite information cell on P called the initial state. 
•	 A is a finite set of event models on L(P) called the action library. 
•	 ( )g L Pf Î  is the goal (formula). 

A plan ( , )PpÎ AL  is an a-solution to P if 0 [ ] gap fM  . For a specific 
choice of a = s / w / sp / wp, we will call p a strong/weak/strong plausibility/
weak plausibility-solution respectively. 

Given a p, we wish to check whether p is an a-solution (for some par-
ticular a) to P. This can be done via model checking the dynamic formula 
given by the translation [ ] gap f  in the initial state of P.

A strong solution p is one that guarantees that fg will hold after execut-
ing it (“p achieves fg”). If p is a weak solution, it achieves fg for at least 
one particular sequence of outcomes. Strong and weak plausibility-solutions 
are as strong- and weak-solutions, except that they need only achieve fg for 
all of/some of the most plausible outcomes.

Example 19.  The basement scenario (Example 1) can be formalised as the 
planning problem 0( ,{ , }, )= gB fflick descP M  with M0, flick and desc being 
defined in Figure 4 and =g t uf Ø Ù . Let 1 =p desc . We then have that: 

[ ] 

is applicable
0 0( ) ( )w t u K XK t uØ Ù Û Ù Ø Ù Ûdescdesc desc descM  M  



0 0 0( ) ( ) : , ( ).K XK t u w D w XK t uØ Ù Û$ Î Ø Ùdesc descM  M M 

Picking w1, we have 

0 1 0 1 1, ( ) ,( , ) ( )w XK t u w e XK t uØ Ù Û Ä Ø Ù Ûdesc descM  M 

0 1 1[( , )] ( )w e t uÄ Ø Ùdesc


M  

Figure 6: E vent model for replacing a broken bulb.
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which holds as seen in Figure 14. Thus, p1 is a weak solution. Further, 
Lemma 17 tells us that p1 is not a s / wp / sp solution, as u does not hold in 
the (most plausible) information cell 1 2 2 2{( , ),( , )}w e w eÄdescM  .

The plan p2 = flick; desc is a strong plausibility solution, as can be veri-
fied by [ ]20 ( )sp t up Ø ÙM  . Without an action for replacing the lightbulb, 
there are no strong solutions. Let replace be the action in Figure 19, where 

1( ) ( ) =post r u sØ  signifies that if the power is on, the agent will hurt her- 
self, and define a new problem 0{ ,{ , , }, )= gB f¢ flick desc replaceP M . Then 

3 ;( ; ; );= lp Øflick if then flick replace flick desc is a strong solution (we leave 
verification to the reader): If the light comes on after flicking the switch (as 
expected) she can safely walk down the stairs. If it does not, she turns off 
the power, replaces the broken bulb, turns the power on again (this time 
knowing that the light will come on), and then proceeds as before. 

Besides being an sp-solution, p2 is also a w- and a wp-solution, indicating 
a hierarchy of strengths of solutions. This should come as no surprise, given 
both the formal and intuitive meaning of planning and actions presented 
so far. In fact, this hierarchy exists for any planning problem, as shown by the 
following result which is a consequence of Lemma 17 (stated without proof). 

Lemma 20.  Let 0= ( , , )gfAP M  be a planning problem. Then:

•	 Any strong solution to P is also a strong plausibility solution:

	
[ ] [ ]0 0g gs spp f p fÞM  M  .

•	 Any strong plausibility solution to P is also a weak plausibility solution: 

	
[ ] [ ]0 0g gsp wpp f p fÞM  M  .

•	 Any weak plausibility solution to P is also a weak solution:

	
[ ] [ ]0 0g gwp wp f p fÞM  M  .

4.  Plan Synthesis

In this section we show how to synthesise conditional plans for solving plan-
ning problems. Before we can give the concrete algorithms, we establish 
some technical results which are stepping stones to proving termination of 
our planning algorithm, and hence decidability of plan existence in our 
framework.

4.1.  Bisimulations, contractions and modal equivalence

We now define bisimulations on plausibility models. For our purpose it 
is sufficient to define bisimulations on -connected models, that is, on 
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information cells.4 First we define a normal plausibility relation which will 
form the basis of our bisimulation definition.

Definition 21 (Normality).  Given is an information cell = ( , , , )W V£M  
on P. By slight abuse of language, two worlds ,w w WÎ¢  are said to have 
the same valuation if for all p PÎ : ( ) ( )w V p w V pÎ Û Î¢ . Define an 
equivalence relation on W: w w» ¢ iff w and w¢  has the same valuation. 
Now define w w¢  iff ([ ] ) ([ ] )Min w Min w££ » »£ ¢ . This defines the normal 
plausibility relation. M is called normal if =£ . The normalisation of 

= ( , , , )W V£M  is ( , , , )= W V¢ M  . 

Definition 22 (Bisimulation). Let = ( , , , )W V£M  and = ( , , , )W V£¢ ¢ ¢ ¢ ¢M  
be information cells on P. A non-empty relation W WÍ ´ ¢R  is a bisimu-
lation between M and M¢ (and M, M¢ are called bisimilar) if for all 
( , )w w Î¢ R:

[atom] For all p PÎ : ( )w V pÎ  iff ( )w V pÎ¢ ¢ . 
[forth] If v WÎ  and v w  then there is a v WÎ¢ ¢ s.t. v w¢ ¢ ¢  and ( , )v v Î¢ R. 
[back] If v WÎ¢ ¢ and v w¢ ¢  then there is a v WÎ  s.t. v w  and ( , )v v Î¢ R. 

If R has domain W and codomain W ¢, it is called total. If = ¢M M , it is 
called an autobisimulation (on M). Two worlds w and w¢ of an informa- 
tion cell = ( , , , )W V£M  are called bisimilar if there exists an auto- 
bisimulation R on M with ( , )w w Î¢ R . 

We are here only interested in total bisimulations, so, unless otherwise 
stated, we assume this in the following. Note that our definition of bisimu-
lation immediately implies that there exists a (total) bisimulation between 
any information cell and its normalisation. Note also that for normal mod-
els, the bisimulation definition becomes the standard modal logic one.5 

Lemma 23.  If two worlds of an information cell have the same valuation 
they are bisimilar. 

Proof. A ssume worlds w and w¢ of an information cell = ( , , , )W V£M  
have the same valuation. Let R be the relation that relates each world of M 
to itself and additionally relates w to w¢. We want to show that R is a 

4 T he proper notion of bisimulation for plausibility structures is explored in more detail 
by Andersen, Bolander, van Ditmarsch and Jensen in ongoing research. A similar notion for 
slightly different types of plausibility structures is given in [21]. Surprisingly, Demey does 
not consider our notion of bisimulation in his thorough survey [9] on different notions of 
bisimulation for plausibility structures.

5  We didn’t include a condition for the epistemic relation, , in [back] and [forth], simply 
because we are here only concerned with -connected models.
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bisimulation. This amounts to showing [atom], [forth] and [back] for the 
pair ( , )w w Î¢ R. [atom] holds trivially since w w» ¢. For [forth], assume 
v WÎ  and v w . We need to find a v WÎ¢  s.t. v w¢ ¢  and ( , )v v Î¢ R .  
Letting =v v¢ , it suffices to prove v w¢ . Since w w» ¢ this is immediate:

([ ] ) ([ ] ) ([ ] ) ([ ] )
w w

v w Min v Min w Min v Min w v w
» ¢

£ £ £ £» »» »Û £ Û £ Û¢ ¢  . 
[back] is proved similarly.� 

Unions of autobisimulations are autobisimulations. We can then in the 
standard way define the (bisimulation) contraction of a normal information 
cell as its quotient with respect to the union of all autobisimulations [8].6 
The contraction of a non-normal model is taken to be the contraction of 
its normalisation. In a contracted model, no two worlds are bisimilar, by 
construction. Hence, by Lemma 23, no two worlds have the same valuation. 
Thus, the contraction of an information cell on a finite set of proposition 
symbols P contains at most 2 P  worlds. Since any information cell is bisim-
ilar to its contraction [8], this shows that there can only exist finitely many 
non-bisimilar information cells on any given finite set P.

Two information cells M and M¢ are called modally equivalent, written 
º ¢M M , if for all formulas f in L(P): f fÛ ¢M M  . Otherwise, they 

are called modally inequivalent. We now have the following standard result 
(the result is standard for standard modal languages and bisimulations, but 
it is not trivial that it also holds here). 

Theorem 24.  If two information cells are (totally) bisimilar they are modally 
equivalent. 

Proof.  We need to show that if R is a total bisimulation between informa-
tion cells M and M¢, then for all formulas f of L(P): f fÛ ¢M M  . 
First we show that we only have to consider formulas f of the static sub-
language of L(P), that is, the language without the [ ], eE  modalities. In [5], 
reduction axioms from the dynamic to the static language are given for a 
language similar to L(P). The differences in language are our addition of 
postconditions and the fact that our belief modality is defined from the 
global plausibility relation rather than being localised to epistemic equiv-
alence classes. The latter difference is irrelevant when only considering 
information cells as we do here. The former difference of course means that 
the reduction axioms presented in [5] will not suffice for our purpose. [19] 
shows that adding postconditions to the language without the doxastic 

6  More precisely, let M be a normal information cell and let R be the union of all 
autobisimulations on M. Then the contraction ( , , , )= W V£¢ ¢ ¢ ¢ ¢M  of M has as worlds 
the equivalence classes [ ] { | ( , ) }=w w w w Î¢ ¢R R  and has [ ] [ ]w w£¢ ¢ RR  iff v v£ ¢ for some 

[ ]v wÎ R and [ ]v wÎ¢ ¢ R.
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modalities only requires changing the reduction axiom for [ ],e pE , where p 
is a propositional symbol. Thus, if we take the reduction axioms of [5] and 
replace the reduction axiom for [ ],e pE  by the one in [19], we get reduction 
axioms for our framework. We leave out the details.

We now need to show that if R is a total bisimulation between informa-
tion cells M and M¢, then for all [ ],eE -free formulas f of L(P): fÛM
M¢  f. Since R is total, it is sufficient to prove that for all [ ],eE -free  
formulas f of L(P) and all ( , )w w Î¢ R : , ,w wf fÛ ¢ ¢M M  . The proof 
is by induction on f. In the induction step we are going to need the induc-
tion hypothesis for several different choices of R, w and w¢, so what we 
will actually prove by induction on f is this: For all formulas f of L(P), if 
R is a total bisimulation between information cells M and M¢ on P and 
( , )w w Î¢ R , then , ,w wf fÛ ¢ ¢M  M  .

The base case is when f is propositional. Then the required follows 
immediately from [atom], using that ( , )w w Î¢ R . For the induction step, 
we have the following cases of f: , , , ,X K Bgy y g y y yØ Ù . The first 
two cases are trivial. So is Xy, as Xy y«  holds on any information cell. 
For Ky  we reason as follows. Let R be a total bisimulation between 
information cells M and M¢ with ( , )w w Î¢ R . Using that R is total and 
that M and M¢ are both -connected we get: M, w  Ky Û "v Î W:

i.h.
, : , ,v v W v w Ky y yÛ " Î Û¢ ¢ ¢ ¢ ¢M  M  M  .
The case of Bgy  is more involved. Let , , ,w¢MM R  and w¢  be as 

above. By symmetry, it suffices to prove , ,w B w Bg gy yÞ ¢ ¢M  M  . So 
assume ,w BgyM  , that is, ,v yM   for all { | , }v Min u W u g£Î Î M  . 
We need to prove ,v y¢ ¢M   for all { | , }v Min u W u g£¢Î Î¢ ¢ ¢ ¢ ¢M  . So let 

{ | , }v Min u W u g£¢Î Î¢ ¢ ¢ ¢ ¢M  . By definition of Min£¢ this means that: 

	 for all , if , then .u W u v ugÎ £¢ ¢ ¢ ¢ ¢ ¢ ¢M  � (1)

Choose an { | and ( , ) }x Min u W u u u v£Î Î » Î¢ ¢ ¢ R . We want to use (1) to 
show that the following holds: 

	 for all , if , then .u W u x ugÎ £M  � (2)

To prove (2), let u WÎ  with , u gM  . Choose u¢ with ( , )u u Î¢ R. The induc-
tion hypothesis implies , u g¢ ¢M  . We now prove that ([ ] )v Min u£¢ »£¢ ¢ ¢ . 
To this end, let [ ]u u »Î¢¢ ¢ . We need to prove v u£¢ ¢ ¢¢. Since u u»¢¢ ¢, 
Lemma 23 implies that u¢ and u² are bisimilar. By induction hypothesis 
we then get , u g¢ ¢¢M  .7 Using (1) we now get v u£¢ ¢ ¢¢, as required. This 
show ([ ] )v Min u£ »¢£¢ ¢ ¢ . We now have ([ ] ) ([ ] )Min v v Min u£ £ »»¢ ¢£ £¢ ¢ ¢ ¢ ¢ , 

7 N ote that we here use the induction hypothesis for the autobisimulation on M¢ linking 
u¢ and u², not the bisimulation R between M and M¢.
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and hence v u¢ ¢ . By [back] there is then a v s.t. ( , )v v Î¢ R  and v u . 
By choice of x, ([ ] )x Min v£ »£ . Using v u , we now finally get: x £ 

([ ] ) ([ ] )Min v Min u u£ £» »£ £ . This shows that (2) holds.
From (2) we can now conclude { | , }x Min u W u g£Î Î M   and hence, 

by original assumption, , x yM  . By choice of x there is an x x»¢  with 
( , )x v Î¢ ¢ R . Since , x yM   and x x»¢ , we can again use Lemma 23 and 
the induction hypothesis to conclude , x y¢M  . Since ( , )x v Î¢ ¢ R, another 
instance of the induction hypothesis gives us , v y¢ ¢M  , and we are done.

�  

Previously we proved that there can only be finitely many non-bisimilar infor-
mation cells on any finite set P. Since we have now shown that bisimilarity 
implies modal equivalence, we immediately get the following result, which 
will be essential to our proof of termination of our planning algorithms. 

Corollary 25.  Given any finite set P, there are only finitely many modally 
inequivalent information cells on P. 

4.2.  Planning Trees

When synthesising plans, we explicitly construct the search space of the 
problem as a labelled and-or tree, a familiar model for planning under 
uncertainty [11]. Our and-or trees are called planning trees. 

Definition 26 (Planning Tree).  A planning tree is a finite, labelled and-or 
tree in which each node n is labelled by a plausibility model M(n), and each 
edge (n, m) leaving an or-node is labelled by an event model E (n, m).

Planning trees for planning problems 0= ( , , )gfAP M  are constructed as 
follows: Let the initial planning tree T0 consist of just one or-node root (T0) 
with 0 0( ( )) =root TM M  (the root labels the initial state). A planning tree 
for P is then any tree that can be constructed from T0 by repeated applica-
tions of the following non-deterministic tree expansion rule. 

Definition 27 (Tree Expansion Rule).  Let T be a planning tree for a planning 
problem 0= ( , , )gfAP M . The tree expansion rule is defined as follows. 
Pick an or-node n in T and an event model Î AE  applicable in M(n) with 
the proviso that E does not label any existing outgoing edges from n. Then: 

1.	A dd a new and-node m to T with ( ) = ( )m n ÄM M E , and add an edge 
(n, m) with E (n, m)  =  E. 

2.	F or each information cell M¢ in M(m), add an or-node m¢ with ( ) =m¢ ¢M M  
and add the edge (m, m¢). 
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The tree expansion rule is similar in structure to — and inspired by — 
the expansion rules used in tableau calculi, e.g. for modal and description 
logics [12]. Note that the expansion rule applies only to or-nodes, and that 
an applicable event model can only be used once at each node.

Considering single-agent planning a two-player game, a useful analogy 
for planning trees are game trees. At an or-node n, the agent gets to pick 
any applicable action E it pleases, winning if it ever reaches an information 
model in which the goal formula holds (see the definition of solved nodes 
further below). At an and-node m, the environment responds by picking 
one of the information cells of M(m) — which of the distinguishable out-
comes is realised when performing the action.

Without restrictions on the tree expansion rule, even very simple plan-
ning problems might be infinitely expanded (e.g. by repeatedly choosing a 
no-op action). Finiteness of trees (and therefore termination) is ensured by 
the following blocking condition. 
B  The tree expansion rule may not be applied to an or-node n for 

which there exists an ancestor or-node m with ( ) ( )m nºM M .8 

Lemma 28 (Termination).  Any planning tree built by repeated application 
of the tree expansion rule under condition B is finite. 

Proof.  Planning trees built by repeated application of the tree expansion 
rule are finitely branching: the action library is finite, and every plausibility 
model has only finitely many information cells (the initial state and all 
event models in the action library are assumed to be finite, and taking the 
product update of a finite information cell with a finite event model always 
produces a finite result). Furthermore, condition B ensures that no branch has 
infinite length: there only exists finitely many modally inequivalent informa-
tion cells over any language L(P) with finite P (Corollary 25). König’s 
Lemma now implies finiteness of the planning tree.� 

Example 29.  Let’s consider a planning tree in relation to our basement scenario 
(cf. Example 19). Here the planning problem is 0( ,{ , }, )=B gfflick descP M  
with M0, flick and desc being defined in Figure 4 and =g t uf Ø Ù . We  
have illustrated the planning tree T in Figure 7. The root n0 is an or-node 
(representing the initial state M0), to which the tree expansion rule of  
Definition 27 has been applied twice, once with action = flickE  and once 
with = descE .

The result of the two tree expansions on n0 is two and-nodes (children 
of n0) and four or-nodes (grandchildren of n0). We end our exposition of 

8  Modal equivalence between information cells can be decided by taking their respective 
bisimulation contractions and then compare for isomorphism, cf. Section 4.1.
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the tree expansion rule here, and note that the tree has been fully expanded 
under the blocking condition B, the dotted edge indicating a leaf having a 
modally equivalent ancestor. Without the blocking condition, this branch 
could have been expanded ad infinitum. 

Let T denote a planning tree containing an and-node n with a child m. 
The node m is called a most plausible child of n if M(m) is among the most 
plausible information cells of M(n).

Definition 30 (Solved Nodes).  Let T be any planning tree for a planning 
problem 0( , , )= gfAP M . Let a be one of s, w, sp or wp. By recursive defini-
tion, a node n in T is called a-solved if one of the following holds: 

•	 ( ) gn fM   (the node satisfies the goal formula). 
•	 n is an or-node having at least one a-solved child. 
•	 n is an and-node and: 

−	 If a = s then all children of n are a-solved. 
−	 If a = w then at least one child of n is a-solved. 

Figure 7: A  planning tree T for PB. Each node contains a (visually compacted) 
plausibility model. Most plausible children of and-nodes are gray, doubly drawn 
or-nodes satisfy the goal formula, and below solved nodes we have indicated their 

strength.
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−	 If a = sp then all most plausible children of n are a-solved. 
−	 If a = wp then at least one of the most plausible children of n is a-solved. 

Let T denote any planning tree for a planning problem 0( , , )= gfAP M . 
Below we show that when an or-node n of T is a-solved, it is possible to 
construct an a-solution to the planning problem ( ( ), , )gn fAM . In particular, 
if the root node is a-solved, an a-solution to P can be constructed. As it is 
never necessary to expand an a-solved node, nor any of its descendants, 
we can augment the blocking condition B in the following way (parameter-
ised by a where a is one of s, w, sp or wp). 

Ba  The tree expansion rule may not be applied to an or-node n if one of 
the following holds: 1) n is a-solved; 2) n has an a-solved ancestor; 
3) n has an ancestor or-node m with ( ) ( )m nºM M . 

A planning tree that has been built according to Ba is called an a-planning 
tree. Since Ba is more strict than B, Lemma 28 immediately gives finiteness 
of a-planning trees — and hence termination of any algorithm building such 
trees by repeated application of the tree expansion rule. Note that a conse-
quence of Ba is that in any a-planning tree an a-solved or-node is either 
a leaf or has exactly one a-solved child. We make use of this in the follow-
ing definition. 

Definition 31 (Plans for Solved Nodes).  Let T be any a-planning tree for 
0= ( , , )gfAP M . For each a-solved node n in T, a plan ( )np  is defined 

recursively by: 

•	 if ( ) gn fM  , then p(n) = skip. 
•	 if n is an or-node and m its a-solved child, then ( ) = ( , ); ( )n n m mp pE . 
•	 if n is an and-node and 1, , km m  its a-solved children, then 

−	 If k = 1 then p(n) = p(m1). 
−	 If k > 1 then for all 1, ,=i k  let imd  denote a formula true in M(mi) 

but not in any of the ( ) ( )j im mºM M  and let p(n) =
	 21 1 2( ) ( ) ( ).km m m km m md p d p d pif then else if then else if then  

Note that the plan p(n) of a a-solved node n is only uniquely defined up 
to the choice of d-formulas in the if-then-else construct. This ambiguity in 
the definition of p(n) will not cause any troubles in what follows, as it only 
depends on formulas satisfying the stated property. We need, however, to 
be sure that such formulas always exist and can be computed. To prove 
this, assume n is an and-node and 1, , km m  its a-solved children. Choose 

{1, , }i kÎ  , and let 
1
, , ln nm m  denote the subsequence of 1, , km m  for 

which ( ) ( )jn im mºM M . We need to prove the existence of a formula 
imd  such that ( ) imim dM   but ( )j imnm dM   for all 1, ,=j l . Since 
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( ) ( )jn im mºM M  for all 1, ,=j l , there exists formulas d j such that 
( ) jim dM   but ( )jn jm dM  . We then get that 1 2 ld d dÙ Ù Ù  is true in 
( )imM  but none of the ( )jnmM . Such formulas can definitely be computed, 

either by brute force search through all formulas ordered by length or more 
efficiently and systematically by using characterising formulas as in [1] 
(however, characterising formulas for the present formalism are consider-
ably more complex than in the purely epistemic framework of the cited 
paper).

Let n be a node of a planning tree T. We say that n is solved if it is 
a-solved for some a. If n is s-solved then it is also sp-solved, if sp-solved 
then wp-solved, and if wp-solved then w-solved. This gives a natural order-
ing s > sp > wp > w. Note the relation to Lemma 20. We say that a solved 
node n has strength a, if it is a-solved but not b-solved for any b > a, using 
the aforementioned ordering.

Example 32.  Consider again the planning tree T in Figure 7 for the planning 
problem 0= ( ,{ , }, )B gfflick descP M  with =g t uf Ø Ù . Each solved node 
has been labelled by its strength. The reader is encouraged to check that 
each node has been labelled correctly according to Definition 30. The leafs 
satisfying the goal formula fg have strength s, by definition. The strength 
of the root node is sp, as its uppermost child has strength sp. The reason 
this child has strength sp is that its most plausible child has strength s.

We see that T is an sp-planning tree, as it is possible to achieve T from 
n0 by applying tree expansions in an order that respects Bsp. However, it is 
not the smallest sp-planning tree for the problem, as e.g. the lower subtree 
is not required for n0 to be sp-solved. Moreover, T is not a w-planning tree, 
as Bw would have blocked further expansion once either of the three solved 
leafs were expanded.

In our soundness result below, we show that plans of a-solved roots are 
always a-solutions to their corresponding planning problems. Applying 
Definition 31 to the sp-planning tree T gives an sp-solution to the basement 
planning problem, viz. 0( ) = ; ;np flick desc skip. This is the solution we 
referred to as the best in Example 1: Assuming all actions result in their 
most plausible outcomes, the best plan is to flick the switch and then 
descend. After having executed the first action of the plan, flick, the agent 
will know whether the bulb is broken or not. This is signified by the two 
distinct information cells resulting from the flick action, see Figure 7. An 
agent capable of replanning could thus choose to revise her plan and/or goal 
if the bulb turns out to be broken. 

Theorem 33 (Soundness).  Let a be one of s, w, sp or wp. Let T be an a-plan-
ning tree for a problem 0( , , )= gfAP M  such that root(T) is a-solved. Then 
p(root(T )) is an a-solution to P. p(root(T ))
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Proof.  We need to prove that p(root(T )) is an a-solution to P, that is,  
[ ]0 ( ( )) groot T ap fM  . Since M0 is the label of the root, this can be restated 

as [ ]( ( )) ( ( )) groot T root T ap fM  . To prove this fact, we will prove the 
following stronger claim: 

	F or each a-solved or-node n in T, M(n)  [p(n)]a fg.

We prove this by induction on the height of n. The base case is when n is 
a leaf (height 0). Since n is a-solved, we must have ( ) gn fM  . In this case 

( ) =np skip. From ( ) gn fM   we can conclude [ ]( ) gn afskipM  , that is, 
[ ]( ) ( ) gn n ap fM  . This covers the base case. For the induction step, let n 

be an arbitrary a-solved or-node n of height h > 0. Let m denote the 
a-solved child of n, and 1, , lm m  denote the children of m. Let 1, , kn nm m  
denote the subsequence of 1, , lm m  consisting of the a-solved children 
of m. Then, by Definition 31, 

•	I f k = 1 then 
1

( ) = ( , ); ( )nn n m mp pE . 
•	I f k > 1 then ( ) = ( , ); ( )n n m mp pE  where p(m) =
	

1 221
( ) ( ) ( ).n nn kkm mm n n nm m md p d p d pif then else if then else if then

We here consider only the (more complex) case k > 1. Our goal is to prove 
[ ]( ) ( ) gn n ap fM  , that is, [ ]( ) ( , ); ( ) gn n m m ap fM  E . By the induction 

hypothesis we have [ ]( ) ( )i in n gm m ap fM   for all 1, ,=i k  (the 
inm  are of 

lower height than n). 

Claim 1.  [ ]( ) ( )in gm m ap fM   for all 1, ,=i k . 

Proof of claim. L et i be given. We need to prove 
	

11
( ) ( ) ( ) .n ni kkm mn n n gm m m

a
d p d p fé ùë ûif then else if thenM 

Note that by using item 5 of Lemma 17 it suffices to prove that for all 
1, ,=j k , 

	 ( ) implies ( ) ( ) .ni i jjmn n n gm m m
a

d p fé ùë ûM  M  � (3)

Let {1, , }j kÎ   be chosen arbitrarily. Assume first j = i. By induction hypo- 
thesis we have ( ) ( )jj nn gm m

a
p fé ùë ûM  , and hence ( ) ( )ji nn gm m

a
p fé ùë ûM  . 

From this (3) immediately follows. Assume now j i¹ . By the construc-
tion of the d-formulas, either ( ) ( )

j in nm mºM M  or ( ) ni jmnm dM  . In the 
latter case, (3) holds trivially. In case of ( ) ( )j in nm mºM M  we immedi-
ately get ( ) ( )ji nn gm m ap fé ùë ûM  , since by induction hypothesis we have 

( ) ( )
j jn n gm m

a
p fé ùë ûM  . This concludes the proof of the claim. 
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Note that by definition of the tree expansion rule (Definition 27), 
1( ), , ( )lm mM M  are the information cells in M(m). 

Claim 2.  The following holds: 

•	 If a = s (w), then for every (some) information cell M¢ in M(m): 
[ ]( ) gm ap f¢M  .

•	 If a = sp (wp), then for every (some) most plausible information cell M¢ 
in M(m): [ ]( ) gm ap f¢M  . 

Proof of claim.  We only consider the most complex cases, a = sp and a = wp. 
First consider a = sp. Let M¢ be a most plausible information cell in M(m). 
We need to prove [ ]( ) gm ap f¢M  . Since, as noted above, 1( ), , ( )lm mM M  
are the information cells in M(m), we must have = ( )im¢M M  for some 

{1, , }i lÎ  . Furthermore, as M¢ is among the most plausible informa- 
tion cells in M(m), mi must by definition be a most plausible child of m. 
Definition 30 then gives us that mi is a-solved. Thus = jnim m  for 
some {1, , }j kÎ  . By Claim 1 we have [ ]( ) ( )

jn gm m ap fM  , and since 
= ( ) = ( )

ji nm m¢M M M  this gives the desired conclusion. Now consider 
the case a = wp. Definition 30 gives us that at least one of the most plau-
sible children of m are a-solved. By definition, this must be one of the 

inm , {1, , }i kÎ  . Claim 1 gives [ ]( ) ( )
in gm m ap fM  . Since 

inm  is a most 
plausible child of m, we must have that ( )

inmM  is among the most plau-
sible information cells in M(m). Hence we have proven that [ ]( ) gm ap f  
holds in a most plausible information cell of M(m). 

By definition of the tree expansion rule (Definition 27), M(m) = 
( ) ( , )n n mÄM E . Thus we can replace M(m) by ( ) ( , )n n mÄM E  in Claim 2 

above. Using items 1–4 of Lemma 17, we immediately get from Claim 2 
that independently of a the following holds: [ ] [ ]( ) ( , ) ( ) gn n m ma ap fM  E  
(the condition ( ) ( , )n n mM  E  holds trivially by the tree expansion 
rule). From this we can then finally conclude [ ]( ) ( , ); ( ) gn n m m ap fM  E , 
as required.� 

Theorem 34 (Completeness).  Let a be one of s, w, sp or wp. If there is an 
a-solution to the planning problem 0= ( , , )gfAP M , then an a-planning 
tree T for P can be constructed, such that root(T) is a-solved. 

Proof. F irst note that we have [ ] [ ] [ ] [ ]; ( )= =g g gaa a ap f p f p fskip skip . Thus, 
we can without loss of generality assume that no plan contains a subexpression 
of the form skip;p . The length of a plan p, denoted | p |, is defined recursively 
by:  | | = 1skip ; | | = 1E ; | if f then p1 else p2 | = | p1| + | p2|; | p1; p2| = | p1| + | p2|.

Claim 1.  Let P be an a-solution to 0= ( , , )gfAP M  with | | 2p ³ . Then 
there exists an a-solution of the form ; p¢E  with | ; | | |p p£¢E . 
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Proof of claim.  Proof by induction on | p |. The base case is | p | = 2. We have 
two cases, p = if f then p1 else p2 and p = p1; p2, both with | p1 | = | p2 | = 1. 
If p is the latter, it already has desired the form. If p = if f then p1 else 
p2 then, by assumption on p, 0M  [if f then p1 else p2]a fg. Item 5 of 
Lemma 17 now gives that 0 fM   implies [ ]0 1 gap fM   and 0 fM   
implies [ ]0 2 gap fM  . Thus we must either have [ ]0 1 gap fM   or 

[ ]0 2 gap fM  , that is, either p1 or p2 is an a-solution to P. Thus either 
p1; skip or p2; skip is an a-solution to P, and both of these have length | p |. 
This completes the base case. For the induction step, consider a plan p of 
length l > 2 which is an a-solution to P. We again have two cases to consider, 
p = if f then p1 else p2 and p = p1; p2. If p = p1; p2 is an a-solution to P, 
then p1 is an a-solution to the planning problem [ ]0 2( , , )= gap f¢ AP M , as 

[ ] [ ] [ ]0 1 2 0 1 2; g gaa ap p f p p fÛM  M  . Clearly 1| | < lp , so the induction 
hypothesis gives that there is an a-solution 1( ; )p¢E  to ¢P , with 1 1| ; | | |p p£¢E . 
Then, 1 2; ;p p¢E  is an a-solution to P and we have 1 2 1 2| ; ; | | ; | | |=p p p p+ £¢ ¢E E
| p1 | + | p2 | = | p |. If p = if f then p1 else p2 is an a-solution to P, then we 
can as above conclude that either p1 or p2 is an a-solution to P. With both 
| p1 | < l and | p2 | < l, the induction hypothesis gives the existence an a-solu-
tion ; p¢E , with | ; | | |p p£¢E . This completes the proof of the claim. 

We now prove the theorem by induction on | p |, where p is an a-solution 
to 0= ( , , )gfAP M . We need to prove that there exists an a-planning tree 
for P in which the root is a-solved. Let T0 denote the planning tree for P 
only consisting of its root node with label M0. The base case is when | p | = 1. 
Here, we have two cases, p = skip and p = E. In the first case, the planning 
tree T0 already has its root a-solved, since [ ]0 0g gaf fÛskipM  M  . In 
the second case, p = E, we have [ ]0 gafM  E  as p = E is an a-solution 
to P. By definition, this means that E is applicable in M0, and we can apply 
the tree expansion rule to T0, which will produce: 

1.	A  child m of the root node with 0( ) =m ÄM M E . 
2.	C hildren 1, , lm m  of m, where 1( ), , ( )lm mM M  are the information 

cells of M(m). 

Call the expanded tree T1. Since [ ]0 gafM  E , Lemma 17 implies that for 
every/some/every most plausible/some most plausible information cell M¢ 
in 0ÄM E , gf¢M   (where / / /= s w sp wpa ). Since 1( ), , ( )lm mM M  
are the information cells of 0ÄM E , we can conclude that every/some/
every most plausible/some most plausible child of m is a-solved. Hence 
also m and thus n are a-solved. The base is hereby completed.

For the induction step, let p be an a-solution to P with length l > 1. Let 
T0 denote the planning tree for P consisting only of its root node with label 
M0. By Claim 1, there exists an a-solution to P of the form ; p¢E  with 
| ; | | |p p£¢E . As [ ] [ ] [ ]0 0; g ga aap f p fÛ¢ ¢M  E M  E , E is applicable in M0. 
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Thus, as in the base case, we can apply the tree expansion rule to T0 which 
will produce nodes as in 1 and 2 above. Call the expanded tree T1. Since 

[ ] [ ]0 ga ap f¢M  E , items 1–4 of Lemma 17 implies that for every/some/every 
most plausible/some most plausible information cell in 0ÄM E , [ ] gap f¢  
holds. Hence, for every/some/every most plausible/some most plausible 
child mi of m, [ ]( )i gm ap f¢M  . Let 

1
, ,

kn nm m  denote the subsequence 
of 1, , lm m  consisting of the children of m for which [ ]( )

in gm ap f¢M  . 
Then, by definition, p¢  is an a-solution to each of the planning problem 

= ( ( ), , )ii n gm fAP M , = 1, ,i k . As | | < | ; | lp p £¢ ¢E , the induction hypoth-
esis gives that a-planning trees iT ¢ with a-solved roots can be constructed 
for each Pi. Let T2 denote T1 expanded by adding each planning tree iT ¢ as 
the subtree rooted at inM . Then each of the nodes 

inm  are a-solved in T, 
and in turn both m and root(T2) are a-solved. The final thing we need to 
check is that T2 has been correctly constructed according to the tree 
expansion rule, more precisely, that condition Ba has not been violated. 
Since each iT ¢ has in itself been correctly constructed in accordance with 
Ba, the condition can only have been violated if for one of the non-leaf 
or-nodes m¢ in one of the iT ¢s, 2( ) ( ( ))m root Tº¢M M . We can then replace 
the entire planning tree T2 by a (node-wise modally equivalent) copy of the 
subtree rooted at m¢, and we would again have an a-planning tree with an 
a-solved root.� 

4.3.  Planning Algorithm

In the following, let P denote any planning problem, and a be one of s, w, 
sp or wp. With all the previous in place, we now have an algorithm for 
synthesising an a-solution to P, given as follows.

Plan (a, P)
1.	L et T be the a-planning tree only consisting of root(T ) labelled by the 

initial state of P.
2.	R epeatedly apply the tree expansion rule of P to T until no more rules 

apply satisfying condition Ba.
3.	I f root(T ) is a-solved, return p(root(T )), otherwise return fail. 

Theorem 35.  Plan (a, P) is a terminating, sound and complete algorithm 
for producing a-solutions to planning problems P. Soundness means that 
if Plan (a, P) returns a plan, it is an a-solution to P. Completeness means 
that if P has an a-solution, Plan (a, P) will return one. 

Proof. T ermination comes from Lemma 28 (with B replaced by the 
stronger condition Ba), soundness from Theorem 33 and completeness from 
Theorem 34 (given any two Ba-saturated a-planning trees T1 and T2 for the 
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same planning problem, the root node of T1 is a-solved iff the root node of 
T2 is).� 

With Plan (a, P) we have given an algorithm for solving a-parametrised 
planning problems. The a parameter determines the strength of the synthe-
sised plan p, cf. Lemma 20. Whereas the cases of weak (a = w) and strong 
(a = s) plans have been the subject of much research, the generation of weak 
plausibility (a = wp) and strong plausibility (a = sp) plans based on pre-
encoded beliefs is a novelty of this paper. Plans taking plausibility into 
consideration have several advantages. Conceptually, the basement scenario 
as formalised by PB (cf. Example 19) allowed for several weak solutions 
(with the shortest one being hazardous to the agent) and no strong solutions. 
In this case, the synthesised strong plausibility solution corresponds to the 
course of action a rational agent (mindful of her beliefs) should take. There 
are also computational advantages. An invocation of Plan(sp, P) will expand 
at most as many nodes as an invocation of Plan (s, P) before returning a 
result (assuming the same order of tree expansions). As plausibility plans only 
consider the most plausible information cells, we can prune non-minimal 
information cells during plan search.

We also envision using this technique in the context of an agent frame-
work where planning, acting and execution monitoring are interleaved.9 
Let us consider the case of strong plausibility planning (a = sp). From some 
initial situation an sp-plan is synthesised which the agent starts executing. 
If reaching a situation that is not covered by the plan, she restarts the process 
from this point; i.e. she replans. Note that the information cell to replan 
from is present in the tree as a sibling of the most plausible information 
cell(s) expected from executing the last action. Such replanning mechanisms 
allow for the repetition of actions necessary in some planning problems 
with cyclic solutions.

We return one last time to the basement problem and consider a modified 
replace action such that the replacement light bulb might, though it is unlikely, 
be broken. This means that there is no strong solution. Executing the sp-
solution flick; desc, she would replan after flick if that action didn’t have 
the effect of turning on the light. A strong plausibility solution from this 
point would then be flick; replace; flick; desc.

5.  Related and Future Work

In this paper we have presented a-solutions to planning problems incor-
porating ontic, epistemic and doxastic notions. The cases of = /sp swa  are, 

9 C overing even more mechanisms of agency is situated planning [11].
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insofar as we are aware, novel concepts not found elsewhere in the literature. 
Our previous paper [1] concerns the cases = /s wa , so that framework 
deals only with epistemic planning problems without a doxastic component. 
Whereas we characterise solutions as formulas, [2] takes a semantic approach 
to strong solutions for epistemic planning problems. In their work plans are 
sequences of actions, requiring conditional choice of actions at different 
states to be encoded in the action structure itself. By using the L(P, A) we 
represent this choice explicitly.

The meaningful plans of [10, chap. 2] are reminiscent of the work in this 
paper. Therein, plan verification is cast as validity of an EDL-consequence 
in a given system description. Like us, they consider single-agent scenarios, 
conditional plans, applicability and incomplete knowledge in the initial 
state. Unlike us, they consider only deterministic epistemic actions (without 
plausibility). In the multi-agent treatment [10, chap. 4], action laws are 
translated to a fragment of DEL with only public announcements and public 
assignments, making actions singleton event models. This means foregoing 
nondeterminism and therefore sensing actions.

Epistemic planning problems in [15] are solved by producing a sequence 
of pointed epistemic event models where an external variant of applicability 
(called possible at) is used. Using such a formulation means outcomes of 
actions are fully determined, making conditional plans and weak solutions 
superfluous. As noted by the authors, and unlike our framework, their approach 
does not consider factual change. We stress that [2, 15, 10] all consider the 
multi-agent setting which we have not treated here.

In our work so far, we haven’t treated the problem of where domain 
formulations come from, assuming just that they are given. Standardised 
description languages are vital if modal logic-based planning is to gain 
wide acceptance in the planning community. Recent work worth noting in 
this area includes [7], which presents a specification language for the multi-
agent belief case.

As suggested by our construction of planning trees, there are several 
connections between our approach for a = s and two-player imperfect infor-
mation games. First, product updates imply perfect recall [18]. Second, when 
the game is at a node belonging to an information set, the agent knows a 
proposition only if it holds throughout the information set. Finally, the 
strong solutions we synthesise are very similar to mixed strategies. A strong 
solution caters to any information cell (contingency) it may bring about, by 
selecting exactly one sub-plan for each [3].

Our work relates to [11], where the notions of strong and weak solutions 
are found, but without plausibilites. Their belief states are sets of states which 
may be partioned by observation variables. The framework in [16] describes 
strong conditional planning (prompted by nondeterministic actions) with par-
tial observability modelled using a fixed set of observable state variables. 
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Our partition of plausibility models into information cells follows straight 
from the definition of product update. A clear advantage in our approach is 
that actions readily encode both nondetermism and partial observability. 
[14] shows that the strong plan existence problem for the framework in [1] 
is 2-EXP-complete. In our formulation, Plan (s, P) answers the same ques-
tion for P (it gives a strong solution if one exists), though with a richer 
modal language.

We would like to do plan verification and synthesis in the multi-agent 
setting. We believe that generalising the notions introduced in this paper to 
multi-pointed plausibility and event models are key. Plan synthesis in the 
multi-agent setting is undecidable [2], but considering restricted classes of 
actions as is done in [15] seems a viable route for achieving decidable 
multi-agent planning. Other ideas for future work include replanning algo-
rithms and learning algorithms where plausibilities of actions can be updated 
when these turn out to have different outcomes than expected.
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