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Where is Logical Knowledge Located?

Ivor Grattan-Guinness

— To the memory of Paul Gochet (1932-2011) —

Abstract

An attempt is made to distinguish logical from all other kinds of knowledge, espe-
cially mathematics. The tradition of stressing forms of proposition is revived,  
imitating the theory of moments in phenomenology from which it follows that logic 
is intrinsically dependent on the setting in which it is used. Sites are sought also 
for several topics that overlap with both logic and foundational branches of math-
ematics; they include set theory, model theory, axiomatisation and metamathematics. 
Logic is held exhibit structuralism in a way that mathematics does not. Both logic 
and its neighbouring topics manifest self-reference, which is an exceptionally ubiq-
uitous but perplexing moment.
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1.  Introduction

1.1.  Aims

[…] the attempt to formulate the foundations of logic is rendered 
arduous by a corresponding “logocentric” predicament. In order to 
give an account of logic, we must presuppose and employ logic. 

— Henri Scheffer (1926, 227-228) 

The status of logical knowledge is notoriously elusive: it seems to be 
“everywhere” and yet it is hard isolate to detach from the (normally) extra-
logical contexts in which it is used, even in disciplines such as mathematics 
and the law where its presence is marked. The characterisation proposed 
here considers classical two-valued logic, named ‘L2’, as an example of a 
logic; the analysis of other logics in a comparable manner is noted at the 
end. We suggest that L2 has four main sectors, centered respectively on 
propositions, propositional functions, assertion and deduction. It builds 
upon an examination in Grattan-Guinness, I. (2013) (named ‘GGan’ below) 
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of the assertion of a proposition (that is, the assignment to it of a truth-
value), and of the various modes of negating it;1 so we start with the prin-
cipal conclusions drawn there. As there, major notions are rendered here in 
boldface at their introduction.

On assertion, to any proposition R we associate two asserted propositions 
in the metalogic ML2 of L2: 

 ‘It is true that R’ (symbolised ‘+R’) is the ‘affirmation’ of R; 
 ‘It is untrue that R’ (symbolised ‘−R’) is its ‘denial’. 

R is a proposition about some state of affairs in a setting, which can come 
from any body of knowledge. When attention is paid to asserted proposi-
tions, propositional and functional calculi are developed, which supplement 
the normal calculi of unasserted propositions. It is a substantial sector of 
logic, which remains strangely undeveloped; for example Alfred Tarski 
mentioned ‘asserted statements’ right at the start of his famous textbook on 
logic [Tarski, A. (1941), 3], but used them only in part of one chapter.

On modes of negation, a formal logic normally restricts itself to the 
‘external’ mode, where an entire proposition is negated; but we include also 
the ‘internal’ negation of a sub-proposition or subsidiary infinitive verb within 
a proposition. For example, the proposition ‘John feels that Jill speaks badly’, 
with the principal verb ‘feels’ and one subsidiary verb ‘speaks’, takes not 
only the external negation ‘John does not feel that Jill speaks badly’ but 
also the internal negation ‘John feels that Jill does not speak badly’ and the 
external-internal negation ‘John does not feel that Jill does not speak badly’. 
The admission of internal as well as external negations into logic consider-
ably increases its utility and domain of reference; in particular, it is essential 
to expounding assertion.

These modifications to negations and to assertion are maintained here. 
However, they are not essential for our characterisation; so readers who 
prefer to continue to work only with external negation and to leave assertion 
unarticulated should ignore the appropriate parts of section 2.

1.2.  Assumptions and limitations

1)  We maintain from GGan the assumption that the primary notion of 
logical knowledge is the proposition and its referentiability rather than the 
term and its meaning. As Louis Couturat put it (Couturat, L. 1913, 134)

The Old Logic began with the theory of terms, because it was restricted to  
the study of the relations between concepts (i.e. judgements of attribution). 
Modern Logic prefers to take the proposition as its ultimate element. 

1 G rattan-Guinness (2012) is a much more elaborate philosophical and historical version 
of this article and its predecessor.
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 Otherwise we hope to be neutral about various philosophical positions and 
issues. Of especial pertinence is the question of whether logical knowledge 
is primarily concerned with (in)valid deduction and truth transmission with 
the processing of information (Sagüillo, J.M. 2009).2 (The word ‘or’ denotes 
exclusive disjunction, ‘either-or’).

2) S olely for reasons of length, the discussion is usually limited to  
propositions as such; the consequences for sentences as propositions in a 
language and to statements as utterances of sentences are not explored.  
The intentions of the utterer include persuading others to share his beliefs 
and knowledge of what he knows to be true or untrue, improving the cogency 
of an argument by converting it to a line of reasoning that is already well 
known, detecting errors in the logic of an argument, using words such as 
‘true’ and ‘untrue’ metaphorically, exploiting equivocations, ambiguities 
and jokes, and even resorting to deliberate lying. These are important actions, 
called ‘argumentations’, well captured in Corcoran, J. (1989) and Walton, D. 
(1989, 1996); they complement the discussion proffered here.

3) I n several places we shall distinguish between the base ‘object logic’ 
of a logic and its hierarchy of metalogics. Since the word ‘object’ is already 
heavily used in logic and philosophy, we shall use ‘host logic’ instead.

1.3.  The need for well-suitedness

An important but little-recognised concern in logic and mathematics is the 
theory of sortal and unsortal terms. Involving the universe(s) of discourse 
of a logical deduction and the ranges of significance of propositional func-
tions, it holds that the realm of “objects” and properties that we can con-
sider is too vast and varied for universes and ranges to embrace them all; 
thus associated propositions, while well-formed and not paradoxical, are 
sortally ill-suited and so cannot be asserted at all. For instance, the pair of 
propositions ‘Winston Churchill is (not) the king of Spain’ are well-suited, 
respectively untrue and true; but ‘Winston Churchill is (not) right-angled’ 
are both ill-suited, as also are, say, ‘every trapezium is (not) puzzled’, ‘ 34 
is (not) happy’, ‘Elephants (do not) hate Mondays’ and ‘The city of Paris 
is (not) symphonic’. Unless excepted we assume that a proposition is well-
suited; that is, in a simple proposition its predicate relates to its subject.

2 O ther issues include intension versus extension, Platonism versus empiricism versus 
nominalism versus a priorism versus psychologism versus formalism, and analysis versus 
synthesis (Otte, M. and Panza, M. 1997). Some of these issues may well bear less upon 
logic than upon its settings; compare Weir, A. (2010) on several of them relative to math-
ematics.
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The theory of ‘syntactic relativisation’ allows us to alter the range of 
significance of propositional functions and the universe(s) of discourse of 
a logical deduction so that ill-suited propositions can become (un)true. For 
example, if we are developing a geometrical theory where quantification 
applies only over trapeziums, then the proposition Z : = ‘Every trapezium 
is puzzled’ must be sortally ill-suited. But if the universe(s) of discourse 
were increased to include objects of any kind, then Z could be rewritten as 
Z’ : = ‘For any entity, if it is a trapezium then it is puzzled’, which is untrue. 
Symbolically, using ‘T(x)’ for ‘x is a trapezium’ and ‘t’ for ‘trapezium’ with 
P(x) as ‘x is puzzled’, the difference is between the ill-suited proposition 
Z : = ("t)P(t) and the untrue proposition Z’ : = ("x)(T(x) → P(x)). The corre-
sponding difference obtains between not-Z and not-Z’, and also between exis-
tentially quantified propositions such as ‘Some trapezium is (not) puzzled’.3

Neither of these theories receives the attention that they deserve, 
though they are invoked in talk of ‘(un)restricted quantifiers’ (for example, 
Rosser, J. B. (1953, 140-152)). A comprehensive classification of terms into 
sortal and unsortal is a very formidable task, far from complete elucidation.4 
The discussions of assertion and negations in GGan applied only to well-
suited propositions, but ill-suitedness will now play a larger role.

2.  Inside logic

Logic is concerned with the real world just as truly as zoology, 
though with its more abstract and general features. 

— Bertrand Russell Russell, B. A. W. (1919, 169) 

2.1.  The importance of moments

The study of indirect proof-methods in GGan exposed a gap in proofs of 
asserted theorems. Instead of proving, for example, that ‘It is true that 2  
is an irrational number’, reduction ad absurdum delivers only ‘It is untrue 
that 2  is not an irrational number’. The gap is caused by the difference 
between denial and external negation, which is a semantic property. It is 
fillable by assuming that the denial of R is logically equivalent to the affir-
mation of its external negation, 

 DN : = -R if and only if +(not-R);

3 S agüillo, J. M. (2000) distinguishes between its roles in informal and formalised theo-
ries whereas I focus upon theories that are formalised enough that their pertaining logic is 
explicitly studied.

4 A  good survey of Anglo-Saxon theories is given in Lowe, E. J. (2009); some European 
contributions, such as Husserl’s, are assessed in Simons, P. (1987).
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the (il)legitimacy of adopting DN is determined by the content of the setting 
and so itself is extra-logical if the setting is not logic itself. Logic is involved 
when we consider the different forms in which DN may be cast.

Forms have long been emphasised in logic; in particular, the classification 
of (in)valid syllogistic inferences in Aristotle and many authors later, and 
the distinction between form and matter that was emphasised by various 
logicians in the 19th century. Forms are part of the logical furniture; in the 
new-old version proposed here, they constitute the dining table. We discuss 
the word ‘formal’ in sub-section 2.5.

To make more precise the status of forms, we invoke the powerful philo-
sophical distinction between independent and dependent parts (or moments) 
of a totality. An example is between the tail of a dog and her weight; the 
tail can be considered on its own, but its weight is necessarily of something 
else, in this case of the dog. Both parts and moments may have their own 
parts and moments (the fur on the tail, the weight of that fur, the owner’s 
surprise over that weight), and so on. While parts (of parts of ...) of a totality 
can be expressed in set theory using membership and inclusion, moments 
cannot, for they do not belong to the totality in the same way. However, one 
can speak of a set of moments for a given totality.

The distinction was applied to logic and mathematics especially by the 
philosopher Edmund Husserl from the 1890s; it is explored in detail in 
Smith, B. (1982). We take ‘moment’ as a synonym for ‘form’, and also for 
‘schema(ta)’ and the phrase ‘logical skeleton’, which have been used in 
logic texts.

2.2.  Propositions

We propose that one sector of the host logic of L2 is a theory of proposi-
tional moments. The manner of their determination is well known (for 
example, Russell, B. A. W. (1919, 194-201)). Take some (well-suited) prop-
osition R, not necessarily asserted, in a setting of L2 (which could be L2 
itself), and expose its propositional moment by stripping out its particular 
propositions leaving behind its connectives in their various modes, and 
propositional quantifiers. This moment is not itself a proposition.

When possible we strip propositions further to reveal the next sector  
of the host logic, functional moments. They comprise particular sub- 
propositions, propositional functions (including relations) and quantifiers 
of first or higher orders, with their modes noted and scopes checked. Not 
itself a proposition, it does not contain the variables upon which the quan-
tifiers operate, or particular values of those variables; they come from the 
setting. We also place in the metalogic stripped-out versions of specifica-
tions, propositions that state the ranges of significance of propositional 
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functions and the universe(s) of discourse of a logical deduction that obtain 
in the setting, and rules for determining the scopes of connectives and 
quantifiers.

Finally, we strip out free and quantified variables, constants and param-
eters. But we do not assume that these notions are exclusively logical, for 
they occur in many other settings; for example from mathematics, the dif-
ferential and integral calculus, numerical methods and mechanics.

We take as an example the (as it happens, true) unasserted first-order 
proposition in arithmetic ‘Some integers are not odd’, and strip it to reveal 
the functional moment ‘Some Xs are not Y’, where ‘X’ and ‘Y’ are sche-
matic letters (not quantifiable variables); a popular alternative writing style 
in logic texts is ‘Some — are not —’. We can set that moment in, say, 
biology by putting X = men and Y = mortal to produce the (presumably 
untrue!) proposition ‘Some men are not mortal’; or in chemistry and choose 
X = acids and Y = poisonous to produce the true proposition ‘Some acids 
are not poisonous’; or go back to arithmetic and reconstruct ‘Some integers 
are odd’. In each setting we may alter the specifications of ranges and uni-
verses, maybe setting them very wide (at “all” entities, say).

The numbers of propositional and functional moments are very large; for 
example, any theorem in the propositional or functional calculus in L2 may 
be so reduced. It is not practicable to catalogue them all; better is to take a 
proposition and follow the procedure just described.5

2.3.  Asserted propositions and their laws

While the truth-value of an asserted proposition depends upon the setting 
involved, whether L2 itself or not, assertion and the pair of truth-values 
themselves form the third sector of L2. The propositions +R and −R are 
sited in the metalogic ML2 of L2, which is also the place for assessing the 
completeness and consistency of L2 and handling its paradoxes. ML2 can 
have its own metalogic (for example, to handle its own paradoxes); the 
usual hierarchy of meta-levels is available if desired, with as there is no 
“final” all-embracing logic, just as there is no largest cardinal or ordinal 
number.

Any asserted proposition R in any level is stripped down to reveal its 
assertional moment:

 ‘It is V that X’, 

5 T he work could involve coping with adverbs such as ‘hence’, ‘since’, ‘only’, ‘but’ and 
‘because’ – and especially the ambiguous ‘if not’ as in ‘Wyn is pedantic if not bureaucratic’, 
with its contrary senses of ‘although not’ and ‘and even’.
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where V takes the values ‘true’ and ‘untrue’ for L2 and ‘X’ is the proposi-
tional moment of a proposition sited in the level below. Once again it is not 
an assertion and not even a proposition.

The affirmation ‘+’ and the denial ‘-’ of R are two iterable operations that 
constitute an algebra, which also is satisfied by L2. Its basic properties are:

1)	 ++R = +R, which we follow Benjamin Peirce (Peirce, B. 1870) in  
calling ‘idempotence’;6 it is also satisfied by conjunction and inclusive 
disjunction; 

2)	 --R = +R, which we call ‘dipotence’; it has analogues in internal and in 
external negation; 

3)	 +-R = -+R = -R, which we call ‘supervention’; and 
4)	 (+-)+R = +(-+)R, an example of associativity and applicable to any trio 

of adjacent truth-values.

Each equality sign refers to the logical equivalence (‘if and only if’) of the 
corresponding propositions. These properties are a great relief, because we 
can iterate both kinds of assertion indefinitely many times, to produce well-
formed horrors such as 

 - -+-++-...- -++-R; 

but they can be reduced to linearity by successively taking each pair or trio 
of assertions from the right and applying to it the appropriate law. Two 
inverse algebras of de-assertion can also be developed: they differ from the 
above algebras in the interesting respect that de-assertion is not iterable.

A feature of assertion about which logicians are often curiously uncuri-
ous is the status of the asserted proposition itself. It must be taken to be a 
guess about some state of affairs in about the setting, and so subject to 
testing there. This process involves theories of truth, of which there are 
several, none all-encompassing. Truth theories and testing use a logic, but 
they are not logic; so unfortunately logicians do not usually discuss them.7

2.4.  Deduction

Deduction is a cluttered sector covering implication, inference, logical con-
sequence and entailment, often not clearly distinguished (Corcoran, J.
(1973). As in GGan, we locate implication and the conditional in L2 and 
confine remarks here to ML2. 

6 I dempotence gradually became known in algebras, especially through American inter-
est around the 1900s in model theory (Grattan-Guinness, I. 1997); now it has a respectable 
remit in both mathematics and logics (Gunawardena, J. 1998).

7 S ee, for example, Quine (1951, 3-5 and ch. 1) and Church, A. (1956, esp. pp. 23-27). 
Good sources on theories of truth include Haack, S. (1978) and Field, H. (2008).
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Deductions (synonymously, ‘derivations’ or ‘demonstrations’) of all 
kinds, whether valid or invalid, are stripped down to reveal their deduc-
tional moments. Rules of inference constitute an important kind of deduc-
tion; for example, the modus tollendo tollens has as moment 

+X; +(if not-Y, then not-X); hence +Y, 

where X and Y are propositional moments. As usual, it is not a rule and not 
even a proposition.

A further species of deduction is by rules of substitution. There are 
several kinds: of words in propositions (including symbolism in formulae), 
and of propositions within larger ones, including guarantees that the propo-
sition created by the substitution is well-suited. Substitution also occurs 
when changing specifications of ranges and universes (sub-section 2.2). The 
result of substituting in proposition R to produce proposition S is a ‘non-
formal principle of inference’ of S from R, to quote Russell’s nice phrase 
(Russell, B. A. W. 1919, 115) when he apologised for their omission from 
his earlier logical writings. (Sheffer’s predicament, stated at the head of 
this article, was a reaction to Principia Mathematica.) Indeed, logicians 
often do not clarify the logical character of these rules: mathematicians 
rarely mention them at all, though an example occurs in the application 
of ‘the algebra of classes’ to logic by Saunders MacLane (Birkhoff & 
MacLane 1953, 343), a mathematician notable for his strong interest in 
logic (section 4).

2.5.  Momental logic

We have individuated four kinds of moments: propositional, functional, 
deductional and assertional. Both ‘logical constants’ such as propositions, 
connectives and quantifiers, and the metalogical constants such as truth-
values and assertion, belong to its domain of reference. So do rather over-
looked features of L2, such as specifications and rules of substitution. Taken 
all together they constitute momental logic, and comprise the core of L2, 
existing independently of all settings.8 This explains why logical knowledge 
is so elusive; being momental, it is always dependent upon, and thereby 
subordinate to, something else somewhere else.

None of these four sectors reduces to any of its companions, and no 
underlying kind of knowledge is the basis for all of them. On the contrary, 
deduction depends upon propositional, functional and assertional moments, 
of which the last itself depends upon the previous two.

8 A  temptation is to call it ‘pure’ logic, but this name has been used in some theories of 
logic with connotations that are not upheld here.
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Those who are suspicious of creating moments from totalities could 
replace them with rules of substitution that go from, say, ‘acids’ to ‘inte-
gers’ in the example of sub-section 2.2 without invoking any moment; but 
the loss of moments is a pity. Further, this use of substitution needs care-
ful study; a valuable source of emulation is combinatory logic (Cardone, 
F. and Hindley, J. R. 2009), which incidentally was motivated in Haskell 
Curry in the 1920s because he noticed their absence from Principia mathe- 
matica.

Momental logic can be regarded as ‘formal’. Dutilh Novaes, C. (2011) 
acutely exhibits around a dozen different senses in which the phrase ‘formal 
logic’ is used; the senses that fit this construal best are ‘topic-free’ and 
‘topic-neutral’, while those that stress abstraction or the dominance of rules 
have some bearing.

2.6.  Self-settings and paradoxes

The self-referential process of applying a host logic to itself becomes  
here the siting of propositional and functional moments in the metalogic 
ML2 and its assertional and deductional moments in its metametalogic.  
For example, continuing with the example ‘Some Xs are not Y’ of sub-
section 2.2 above, put X = proposition and Y = untrue, and find in ML2 the 
true proposition ‘Some propositions are untrue’. Situations involving mutual 
cross-reference between propositions also belong here.

Certain moments will produce the propositional and other paradoxes.  
In order to formulate them we follow GGan in drawing upon a distinction that 
is well-known in the philosophy of language (see, for example, [Donnellan 
1966]) but seemingly not in logic: between attributive propositions such as 
‘the father of Cynthia does not feel that Jill speaks badly’ and referential 
propositions such as ‘John does not feel that Jill speaks badly’. The liar 
paradox arises not only in the well-studied unasserted and self-attributive 
proposition ‘this proposition is untrue’ but also in the little-studied asserted 
and referential propositions ‘it is (un)true that this proposition is untrue’.

These versions of the liar paradox, and some others, were formulated in 
GGan. We do not discuss any solutions or accommodations of the paradoxes 
either there or here; but their presence in L2 and ML2 is one of the reasons 
given in sub-section 2.1 for making DN explicit.

2.7.  The relation of identity

The relation of identity is often assigned to logic, and much philosophy is 
po(u)red over it. Highly influential is the salva veritate criterion of iden-
tity based upon indiscernibility (hereafter ‘II’), where the substitution of a 
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component in a proposition by an identical component leaves unchanged 
its truth-value. But its broad popularity is questionable (Wessel, H. (1994); 
for surely it is an absurd convention to regard, say, the tri-equation 4 = 2 + 
2 = 2 × 2 as containing any identities when, for instance, 2 × 2 possesses 
the property of multiplication while 4 and 2 + 2 do not (compare Tarski, A. 
(1941, ch. 3)). A better tactic is to invoke closure, where a collection of 
distinguishable objects a, b, ... is closed with respect to a means of combi-
nation ‘∙’ when for all a and b a ∙ b (including a ∙ a) is of the same kind as a 
and b (for example, negative integers under addition).

Identity of (compound) symbols is recognised by mathematicians in 
algebraic identities, such as axioms or theorems satisfied by all members of 
an algebra; model theorists correctly insist on including the quantifiers 
when stating them. Examples of good practice include the law of commu-
tativity (‘for all a and b, if a = b or a ≠ b, then a ∙ b = b ∙ a’), and the law of 
reflexivity (‘for all a, a ≥ a’) in some logics and mathematical theories, or 
theorems such as completing the square.

A legitimate use of the identity relation is that of co-identification of 
referents such as ‘the morning star’ and ‘the evening star’, or of ‘the trio 
of points of intersection of pairs of perpendicular bisectors of any planar 
triangle’ thanks to the theorem that they coincide. Identity can also hold 
between moments, such as of the particular direction shared by a collection 
of parallel lines. The category of self-referring self-reference exemplifies 
non-identity (sub-section 5.4).

A related issue is the status of universals in a logic, especially their 
dependence upon, or independence of, the domains of references (if any) 
of its predicates and relations f to the physical world. Landini, G. and Fos-
ter, T. R. (1991) provide a difficult but valuable discussion of three different 
stances over ‘realism’ in connection with II. In the ‘logical’ stance indepen-
dence is upheld, and only the implication ‘for all f if fx then fy’ is needed 
to establish II. The ‘attribute’ stance also affirms independence but admits 
only universals with physical reference and so requires equivalence in its 
rendering of II in terms of ‘for all f, fx iff fy’). 

The ‘natural’ kind requires that universals depend upon reference, and there-
fore also uses ‘iff’ in its formulation of II. Only the first kind belongs to logical 
knowledge as understood here; the other two draw also upon the settings.

3.  Alongside logic

3.1.  Neighbours

‘Alongside’ refers to foundational topics of various kinds that both apply 
to mathematics and to logics and are settings of momental logic; like logics, 
some of them are also self-referential. Several of them also apply to each 
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other; none reduces to another one except perhaps for special cases. This 
plurality of topics is maintained, and no efforts are made to reduce some 
of them to the others; the network of relationships between them all is 
extremely complicated, and has never been elaborated in detail.9

In this section we note briefly theories of collections, metamathematics, 
axiomatisation, model theory and definitions, ending with a lament over the 
excessive use of ‘existence’. Some branches of mathematics are also nearby, 
especially finite and transfinite arithmetic, recursion theory, common alge-
bra and several abstract algebras. Other topics include the part of semiotics 
(theories of signs and sign families) that deals with notations; and diagrams 
and graphical representation of knowledge, which has a rich history in logic 
but rather a low status in its philosophy (Allwein, G. and Barwise, J. (1996). 
Linguistics involves logic to a notable extent (McCawley, J. D. 1981); so 
does semantics, including the paradoxes of naming. Computer science also 
relates to these neighbours as well as logics and several branches of math-
ematics, for it examines the theoretical foundations of information and 
computation and of techniques for their setting in computer systems.

3.2.  Theories of collections

Theories of collections possess uniquely close links to logic, especially via 
an (implicit or explicit) comprehension principle that associates a proposi-
tional function with the collection of values of the argument variable(s) 
satisfying it (for example, ‘x is a man’ vis-à-vis the collection of men). More 
or less in chronological order from the 1840s to the 1910s, there developed 

1)	 part-whole theory, where membership is not distinguished from inclu-
sion: the traditional theory, elaborated especially by Bernard Bolzano, 
Hermann and Robert Grassmann, and the algebraic logicians (1830s+); 

2)	C antorian (-Dedekindian) set theory, including point set topology, trans-
finite arithmetic and order-types (1870s+): to become central in the ‘logis-
tic’ programme led by Giuseppe Peano of axiomatising both mathemat-
ical theories and the ‘mathematical logic’ involved in them (1890s+), and 
formally encased in the ‘logicistic’ programmes of Gottlob Frege (1870s+) 
and especially of A. N. Whitehead and Russell (1900s+) that reduced 
(some) mathematics to mathematical logic; 

3)	 the germs of multiset theory with A. B. Kempe (in the context of part-
whole theory): the most general theory of all in allowing for multiple 

9 A  nervous attempt to cope with some of them was made in Grattan-Guinness, I. 
(2011b). The methods of developing mathematical theories given in Pólya, G. (1954) and 
Grattan-Guinness, I. (2008) – analogising, importation, reduction, convolution, and so on – 
are also relevant to logics.
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membership (1886) but overlooked by almost everyone and still little 
known even after its post-War rebirth; 

4)	 axiomatic Cantorian set theory (1900s+), initially expounded by Ernst 
Zermelo; and 

5)	 several variants of the above in connection with other programmes, such 
as Husserl’s theory of manifolds (of which the parts/moments distinction 
of sub-section 2.2 is an offshoot, 1880s+) and intuitionist mathematics 
and logic (1900s+).10

These various theories, and now also fuzzy set theory (1960s+), also played 
and still play important roles in the study of paradoxes, axiomatisation and 
model theory. It seems better to abandon the aspiration of having collections 
of things as “stuff” inside from logical knowledge and assign them to math-
ematics, or maybe treat them as a body of knowledge of their own.11 The title 
of Quine’s survey (Quine 1969), ‘set theory and its logic’, has it right: sets 
are not propositional functions; even a finite collection of words or of propo-
sitions is not a linguistic object in the way that a property can be construed.

3.3.  Metamathematics

In the programme of ‘metamathematics’ led by David Hilbert, especially the 
second phase from 1917 onward, the aim was to axiomatise a logic (for him, 
L2) and a mathematical theory and study its (lack of) consistency, complete-
ness and independence of the axioms.12 Hilbert used the word ‘formalism’ 
only to refer to the axiomatised version of the theory; L. E. J. Brouwer 
named metamathematics ‘formalism’ as a criticism, and unfortunately it 
caught on from around 1930.

Further, Gödel’s incompletability theorems (Godel, K. 1931) showed that 
Hilbert’s conception of metamathematiocs could not be upheld. However, 
it has continued in revised versions, and is applied to other logics, finite and 
transfinite arithmetic, recursion theory, set theory, geometries, abstract alge-
bras, mechanics and probability theory. Perhaps less success has been found 
elsewhere, such as axiomatising branches of physics (for example, thermo-
dynamics), economics and biology. Hilbert also used the term ‘proof theory’ 

10  Quite a lot of these various histories and their historical developments can be garnered 
from van Heijenoort, J. (1967b), Moore, G. H. (1982), Hallett, M. (1984), Simons, P. (1987), 
Ferreirós, J. (1999), Grattan-Guinness, I. (2000) and Hartimo, M. (2010), and their own 
further references.

11  For example, a recent proposed definition of numbers as moments of multisets Grattan-
Guinness, I. (2011a) uses L2 but is neither a part nor a moment of it.

12  Zermelo’s axiomatisation of set theory, recently mentioned, is a well-known early 
example of a follower of the first phase in the late 1900s; an even better one is Georg Hamel 
(1909) on mechanics.
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in these contexts; we take it to encompass, for example, the study in GGan 
of the relationship between direct and indirect proof-methods.13

3.4.  Model theory

Model theory is another subject that is practiced both in logic and in math-
ematics. It examines links between the syntax and the semantics of a formal 
language F that contains constants and variables, connectives and quantifiers, 
operation symbols for building up terms from them, and relation symbols 
to express relations between terms (for instance, equality). An interpreta-
tion of F is a syntactically determined ‘structure’14 S that includes objects 
corresponding to these notions (for example in arithmetic, the successor 
relation and positive integers) in which set-theoretic relations such as union 
and improper inclusion play roles. A well-formed formula in F lacking free 
variables (but maybe containing quantified ones) is a ‘sentence’; if it is true 
in a structure S, then conversely S is a ‘model’ of F. Examples include 
models of axiomatic set theory (to be distinguished from the use of sets in 
the basic formulation of model theory); and the Peano axioms for the pos-
itive integers, which however are satisfied by other systems such as the odd 
positive integers and model only progressions.

The connections between model theory and metamathematics and some 
logics (for example, modal and combinatory) have been close. A recent 
example is F. W. Lawvere’s categorical logic, which was partly inspired by 
analogies between category theory and aspects of (modern) algebraic logic 
(Bell, J. L. 2005). However, links have not always been followed. For 
example, a natural manner of formulating the property that proposition R 
is a logical consequence of the collection of propositions C is that there is 
no model in which each member of C is true and R is untrue; but even 
Tarski, a leading model theorist, did not use it in his textbook on logic 
(Tarski, A. 1941, esp. pp. 29-32, 119-120).

3.5.  Definitions

Definitions, much understudied in theories of knowledge in general, are 
especially significant in mathematics and logics (Dubislav, W. 1931). The 

13 T he historical literature on metamathematics is considerable. Mancosu, P. (1998) is a 
useful source book on both Hilbert and his dispute over logic with Brouwer. Still important 
on the history of axiomatics is Cavaillès, J. (1938).

14 T his use of the word ‘structure’ is singularly unfortunate in referring to an “object” 
rather than a moment; the older word ‘system’ was much preferable ((Corcoran, J. 1980, 
188-190), a paper on the important property of categoricity). On links between model theory 
and set theory see, for example, Hodges, W. (2009); on its development within algebras and 
logic see Sinaceur, H. (1991, pts. 2-4).
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most common kind is nominal definition, where a term within a theory is 
defined by a well-formed defining expression. When the term plays a major 
role in the theory, it has the status of a stipulation. Typical of an important 
case in a branch of mathematics is that of the continuity of a mathematical 
function; it also exemplifies competition between different definitions of a 
term, as several versions are available.

Another significant kind is contextual definition. In logic a connective 
will be defined this way in terms of others (and all of them from ‘nor’ or 
from ‘not-and’). Each definition is framed within a propositional moment, 
such as of material implication: 

 (If X, then Y) := (not-X or Y), 

where X and Y themselves are propositional moments. It also played a major 
role in the Whitehead-Russell programme because their comprehension 
principle and theory of definite descriptions were formulated contextually.

A further kind arises when an axiom system, maybe along with some  
or all of its models, is regarded as furnishing implicit definitions of its 
concepts and notions (Gabriel, G. 1978). Other kinds include analytic and 
synthetic definitions, especially in (neo-)Kantian philosophy; creative defi-
nitions relative to an axiom system; distinctions of sense, when one type of 
a term is distinguished from another type (such as continuity from semi-
continuity of a mathematical function in the context of sub-section 2.1); 
definitions under hypothesis; definition by mathematical induction, and 
more generally by recursion; and so-called essentialist definitions, when it 
is (controversially) claimed that the essence of some term is captured. Each 
kind of definition can be formulated in terms of moments, whether or not 
definitions are regarded as part of logic.

3.6.  Existence

Existence lurks both inside and outside logic and mathematics, sometimes 
tied to kinds of definition (Krasner, M. 1957-1958). The word has been 
used rarely here, for in a very untidy situation one sense of it often contra-
dicts another one; but in many contexts it is a significant moment. For 
example, + 13  exists as a real number in arithmetic, as an irrational  
number defined from rational numbers by (say) cuts, as a referent of the 
indefinite description ‘fourth root of 169’, and not as the referent of the 
definite description ‘the negative square root of 13’. Sets can also exist: for 
example, thanks to some ontological claim about collections, or as definable 
in finite terms by a propositional function (so that a set created by an axiom 
of choice does not exist in this sense), or by being not empty (so that 
Russell’s paradoxical set does exist in this sense). Constructions can exist, 
as in many existence theorems; or not, including impossibility theorems 
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such as the insolubility of the quintic equation by radicals. Optimisation is 
involved in instances such as the existence in a geometry of the shortest 
distance between two points, or of the derivation of a proposition in logic 
in some minimal number of or symbols.

3.7.  Effects of our proposals

The proposals concerning negations and assertion made in the previous 
article, and the momental logic formulated in this one, have some conse-
quences for these neighbouring disciplines, although none of a revolution-
ary or comprehensive character. For example, negations encroach upon 
syntax, assertion affects model theory and semantics and could use several 
operator algebras, and logical moments involve new kinds of definitions. 
The impact of these proposals would increase when extended from proposi-
tions to sentences and statements. The encouragement to pay more attention 
to assertion and to the specification of ranges of significance and universes 
of discourse, applies also to some of these neighbours. But the main poten-
tial impact of these proposals lies in the use of the distinction between parts 
and moments of a totality, which deserves to be far better known in math-
ematics, logical knowledge and philosophy.

4.  On structuralism: logic(s) ≠ mathematics

The emphasis on moments of various kinds (propositional, functional, 
assertional, deductional) as dependent parts, and the detachment from L2 
of theories of collections, suggest that philosophically this characterisation 
of logical knowledge is structuralist, with the word ‘structure’ taken as a 
synonym for both ‘form’ and ‘moment’. This kind of position has been 
advocated for mathematics (for example, in Mac Lane, S. (1986)), and 
indeed structures are very significant in mathematics (Vercelloni, L. 1989), 
especially in algebras: commutativity, associativity, distributivity, idempo-
tence, duality, symmetry, and many others not necessarily rooted in algebra, 
such as linear combination and sum of squares. However, the reduction of 
mathematical theories to structures is surely excessive precisely because 
structures are moments of the mathematical totalities that may possess 
them, such as sets or groups or dodecahedra (compare Krömer, R. (2007, 
esp. ch. 7) on this point in the context of category theory). By contrast, the 
central role given to moments lets structuralism fit logic rather nicely in the 
algebra of assertion described in sub-section 2.3, even technically so.

The same view holds for non-bivalent logics. They have more or other 
truth-values from those in L2; for example, modal logics use ‘necessary’ 
and ‘possible’ as well as ‘true’ and ‘untrue’, and some constructivist logics 
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deny a truth-value to propositions that use double negations.15 But each logic 
can be taken to be a structuralist theory, with its own momental structure, 
use of internal as well as external negations, and an articulable theory of 
assertion. Forceful analogies hold between the bivalent ‘it is (un)true that’ 
and, for example, the epistemic ‘It is (not) known that’, the convinced 
‘It is (not) believed that’, and the modal ‘It is (not) necessary or possible 
that’. They are also much involved with self-reference, which is our last topic.

5.  The status of self-reference

A feature of our discussion of both L2 and the neighbouring topics is self-
reference. Extremely ubiquitous, it manifests itself not only in logics but 
also words, signs (including families of them), properties, propositions, 
whole theories including some philosophical positions.16 A wide variety of 
settings lies in the life and social sciences, many of them named in the form 
‘self-’; and in literature a wide range of delightful whimsies have been 
created.17 We distinguish between two categories of setting.

5.1.  Linguistic self-reference

Linguistic self-reference is tied to languages and logics, and involves the 
formation of clauses and propositions. An attractive example from method-
ology is that in theory we develop a theory in order to put it into practice, 
but in practice we do not! Again, we use quotation marks when naming 
signs, but then what signs can we use to name quotation marks? Surely not 
the self-referential “’ and ‘”. The last sentence of this paragraph is also an 
example.

Certain philosophical positions cannot be self-referring: for example, the 
requirement of logical positivism that meaningful asserted propositions must 
be empirically verifiable or tautological does not itself exhibit these proper-
ties. Especially interesting is Karl Popper’s requirement that a scientific 

15 S ome logics invoke real numbers for their truth-values; for example, probability logic 
and fuzzy logic take all real numbers in the interval [0,1] (where the latter works better with 
sub-intervals. But these resorts are question-begging, as they assume that the theory of real 
numbers is itself consistent.

16  Champlin, T. (1988) is a fine survey of settings, which are well captured also in 
Bolander, T. (2009). For Thomas-Fogiel, I. (2011, ch. 6) self-reference plays a role in avoid-
ing the ‘death of philosophy’ that some philosophers of various kinds have predicted over 
the ages.

17  Notable exploiters include Lawrence Sterne’s Tristram Shandy (Sterne, L. 1781, Book 9, 
esp. the empty chs. 18-19), Lewis Carroll, much more in his Alice tales and poetry than in 
his logic books (Jourdain, P. E. B. 1918), Joseph Heller’s Catch 22 (Heller, J. 1961, esp. ch. 5), 
and various scenarios due to Stanislaw Lem (Swirski, P. 1997) and Douglas Hofstadter (1979).
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proposition must be falsifiable, for it is not itself falsifiable; then he widened 
it to criticisability, which is criticisable and led Bartley, W. W. (1964) to 
identify ‘comprehensively critical rationalism’, an important self-referring 
alternative to both justificationism and relativism. His main target was theol-
ogy, where several examples involve maximality (Does Jesus worship Jesus? 
Can God destroy God? ...).18

When applied to logic, self-reference is recognised as a cause of para-
doxes, and guides the development of several solutions of them (as was noted 
in section 5 of GGan). But it is also the source of paradox in the unasserted 
proposition ‘This proposition is not self-referential’. In the late 1900s Kurt 
Grelling imitated this kind of paradox when he defined ‘heterological’ 
words in a language as those that do not exhibit any of their properties as 
words, unlike ‘autological’ words such as ‘word’ or ‘four-syllabled’, which 
do; therefore ‘heterological’ is heterological if and only if it is not (Peck-
haus 1995). This kind of paradox is also formulable for phrases about/in a 
language like ‘not a noun’, ‘contains three words’ and ‘does not contain three 
words’, and mnemonic acronyms such as ‘MAD’ for ‘mutually assured 
destruction’. Propositions such as the liar paradox can be stated in hetero-
logical terms. 

Autological words and phrases are examples of linguistically self-refer-
ential propositions that are not paradoxical. Consider these self-referring 
instructions written in imperative mood on signboards:

DO NOT WALK 
BEYOND THIS SIGN

DO NOT DEFACE 
THIS SIGN

DO NOT READ 
THIS SIGN

The first may be an important safety warning while the other two are use-
less, but only the third is paradoxical.

5.2.  Self-reference elsewhere

Our second category, may not even be stated in linguistic form at all, or at 
least not involve linguistic self-reference. An example from semiotics is the 
flag of the United Kingdom, which is a superposition of the flags of England, 
Ireland and Scotland (poor Wales was left out).

A rich source of cases is technology, where self-reference controls safety 
devices mounted on equipment and activated; the word ‘feedback’ is often 
used in these contexts. For example, a servomechanism such as a governor 
mounted on the drive shaft of a steam engine or waterwheel shuts down the 
machine when the angular velocity of the shaft exceeds the value that has 

18 N ote also the excellent line in Leonard Bernstein’s Mass (1971): ‘I’ll believe in thirty 
religions if they’ll believe in me’.
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been assigned to be dangerous; but then the governor itself shuts down. 
Similar devices are used in electrical engineering, such as a fuse set inside 
a plug, or a sensor set into the floor of a lift that prevents the lift doors from 
closing when an excessive load is detected; and in heating technology with 
thermostats built around a multi-metallic strip. The operation of computers 
shows many examples: my computer has an icon on the screen called ‘My 
computer’; I cannot copy a programme onto itself; and so on harmlessly if 
on occasion frustratingly. Some testing procedures are self-referring, such 
as ringing the bell on my bicycle to check that it is working properly rather 
than to warn other traffic of my presence.

5.3.  Cross-reference: extensions to pluralities and interactions

Many of the examples of self-reference can be extended to situations involving 
more than one entity. In logic, for example, a well-known version of the 
liar paradox is the pair of propositions 

 A : = ‘Proposition B is true’ and B : = ‘Proposition A is untrue’, 

with further versions extended to n > 2 propositions. Paradoxes of sets can 
be extended to paradoxes of multi-sets where multiple membership is 
involved (subsection 3.2). Semiotics has many properties concerning families 
of signs, such as the pair ‘Ù’ and ‘Ú’ in logics reflecting the duality of con-
junction and (either mode of) disjunction. The physical sciences have many 
theories centered upon interactions: a major instance is the perturbations of 
the orbits of the planets around the Sun in our solar system that are held 
to be caused by influences upon each other. The life and social sciences are 
full of cases: MAD was already mentioned in sub-section 5.1. A particularly 
interesting case is the so-called but mis-named ‘suicide pacts’, which are 
actually mutually agreed murders (Champlin, T. 1988, ch. 10).

5.4.  Specification

It is tempting to formulate self-reference as the property of a proposition of 
including itself in its domain of reference, and to apply to instances of it 
the characterisation of logic outlined in this article: momental logic in its 
four sectors distinguished from the setting, locating paradoxes in the appro-
priate metatheory, and so on. But even the small collection of examples 
used here shows that self- and cross-reference are far more ubiquitous than 
propositions in languages and logics; they are not confined to formation in 
language but are also manifest, for example, semiotic recognition. So we take 
a setting to be a totality as described in sub-section 2.1, whether linguistic 
or not, and then specify each instance of self-reference as a moment of that 
totality. Then self-referentially self-referring propositions are not identical 
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with self-referring ones (that is, self-reference is not idempotent), because 
they are moments of moments. They launch a metahierarchy of hierarchies; 
and so on ...
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