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Invariance Principles in Polyadic Inductive Logic

Tahel Ronel* and Alena Vencovská

Abstract

We show that the Permutation Invariance Principle can be equivalently stated to 
involve invariance under finitely many permutations, specified by their action on a 
particular finite set of formulae. We argue that these formulae define the polyadic 
equivalents of unary atoms. Using this we investigate the properties of probability 
functions satisfying this principle, in particular, we examine the idea that the Per-
mutation Invariance Principle provides a natural generalisation of (unary) Atom 
Exchangeability. We also clarify the status of the Principle of Super Regularity in 
relation to invariance principles.
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1.  Introduction

Principles based on symmetry have provided a powerful source of rational 
principles in Pure Inductive Logic since the early explorations of the subject 
[4, 1, 2]. This has reasons both in the significant role symmetry plays in 
everyday life decisions and in its mathematical appeal, and so considerable 
effort has gone into formalising what exactly we mean by a ‘symmetry’. 
This paper shall identify a symmetry with an automorphism (first introduced 
in [11] and explicated below), focusing on the class of automorphisms that 
permute state formulae. Identifying degrees of belief with (subjective) prob-
ability, we argue that a rational choice of probability function should respect 
such symmetries.

We shall investigate properties of permutations of state formulae that 
determine automorphisms and suggest a method to generate probability 
functions that are invariant under these symmetries. We shall then propose 
what we think is a straightforward polyadic generalisation for the unary 
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notion of atoms and use this to argue that the Permutation Invariance Prin-
ciple is perhaps a more natural generalisation of the extensively studied 
Atom Exchangeability than the previously proposed Spectrum Exchange-
ability [6]. 

Throughout this exposition we shall be concerned with first order lan-
guages L with countably many constants 1 2 3, , ,a a a , a finite number of 
relation symbols 1 2, , , qR R R  of (finite) arities 1 2, , , qr r r  respectively and 
no function symbols nor equality. 1 2max{ , , , }=  qr r r r  will denote the high-
est arity of any relation symbol in our language. We shall also intend that 
the constants ai exhaust the universe, in the sense that every individual can 
be represented by a constant from the ai. We will use variables 1 2 3, , ,x x x  
to construct formulae in L and in attempt to simplify notation, shall identify 
formulae which are logically equivalent; hence in particular we shall often 
use = rather than º between logically equivalent formulae. We denote the 
set of sentences of L by SL and the set of quantifier-free sentences by QFSL.

The state descriptions of L are sentences of the form

	
1

1

1
1= , , {1, , }

( , , )  ( , , ),=
Î

Q ±Ù Ù
 

 

j

j

r
r

q

j iin
j i i n

b b R b b

where ± jR  stands for Rj or Ø jR  and 1, , nb b  are distinct constants from 
the ai. Similarly, for 1( , , )Q  nb b  a state description and 1, , nz z  a (distinct) 
choice of variables from the xi, 1( , , )Q  nz z  is a state formula of L.

We will henceforth use upper case Q, F, Y to denote state descriptions 
(or state formulae), so whenever an expression such as 1( , , )F  na a  appears 
in this account it should be taken to mean a state description on 1, , na a .

We define a function w to be a probability function on SL if  : [0,1]® Ìw SL  
satisfies the following three conditions: 

For , , ( )q f y$ Îj jx x SL, 

(P1)  If q  then ( ) = 1qw . 

(P2)  If ( )q fØ Ù  then ( ) ( ) ( )=q f q fÚ +w w w . 

(P3)  ( )1=( ( )) ( )= limy y®¥$ Ún
j j n iiw x x w a .

This definition ensures that w has properties traditionally expected of rational 
numerical beliefs, so that for instance, logically equivalent sentences are 
given the same values by w. State descriptions are especially useful when 
working in this context since any probability function is completely deter-
mined by its values on state descriptions, see for example Theorem 11.2 
of [7] based on work by Gaifman in [3].
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Moreover by a result in [8], any function w defined merely on state descrip-
tions 1 2( , , , )Q  na a a , n Î of L which satisfies1

(P1¢)  1 2(  ( , , , )) 0Q ³ nw a a a , 

(P2¢)  ( ) 1=w  , 

(P3¢) 
12 1 21

11 2 1 2
( , , , ) ( , , , ) 

( ( , , , )) ( ( , , , ))=
+

+
F Q

FQ å
 

 

n n

n n
a a a a a a

w a a a w a a a


 

extends uniquely to a probability function on QFSL and hence on SL.
Following the framework set out in [11], let LT  denote the set of struc-

tures for the language L with universe |{  }+Îia i  , where each constant 
symbol ai is interpreted as ai. Let BL be the two-sorted structure with uni-
verse LT , the sets 
	 [ ] { | }=q qÎ L T  

for SLq Î  and the membership relation between elements of LT  and these 
sets.

An automorphism h of BL is a bijective mapping from LT  onto LT  such 
that for each SLq Î , 

	 [ ]   { | ,  }   [ ]= =h q h q fÎ L  T  

for some SLf Î  and conversely, for each SLf Î , 

	 11[ ]   { | , }  [ ]= =h f h f q-- Î L  T  

for some SLq Î .
We will henceforth write2 ( )h q , or just hq, for the sentence SLf Î  such 

that [ ] [ ]=h q f . Note that hq is determined up to logical equivalence only. 
As is customary in investigations of this nature, we assume a rational 

agent is aware of the structure BL, inhabits one of the structures Î L T  
but is unaware of which particular  it is. When the agent chooses his/her 
rational probability function w, it would therefore be reasonable to assume 
that justification for the probability ( )qw  for SLq Î  (equivalently [ ] BLq Î ) 
should apply also to ( )hqw  for any automorphism h of BL. This gives us 
the following symmetry principle for a probability function w on SL:

1  For = 0n , 1 2( , , , )Q  na a a  stands for any tautology and is denoted by .
2  Thus avoiding overuse of square brackets, which also denote restrictions of formulae, 

see page 545. The notation is now established so we keep to it; it should be obvious from 
the context what is meant.
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The Invariance Principle, INV

For any automorphism h of BL and any SLq Î  

	 ( )   ( ).=q hqw w

2.  The Permutation Invariance Principle and Super Regularity

Previous investigations into INV for probability functions on unary lan-
guages have proved INV to be too strong a principle [10], leaving only 
one (somewhat unsatisfactory) function that satisfies it. On the other hand, 
it is not yet clear what its full effect for general languages is. The reason 
for INV eliminating nearly all probability functions in the unary context is 
that some automorphisms can force state descriptions with different numbers 
of constants to have the same probabilities, which – combined with all other 
conditions INV imposes – is almost never satisfied.

This raises the question of what happens if we require our automor-
phisms to map state descriptions to state descriptions respecting the number 
of constants, and what the probability functions that satisfy this weaker 
version of INV would be, where we only demand that ( )   ( )=q hqw w  for 

SLq Î  and for such automorphisms h. It turns out [11] that such auto- 
morphisms must be in a certain sense uniform and that they must be (up to 
a permutation of all constants) of the type described below.

We say that a function F permutes state formulae if for each n and (dis-
tinct) variables 1, , nz z , F permutes the state formulae 1( , , )Q  nz z  in these 
variables.

An automorphism h of BL permutes state formulae if there is a function 
h  that permutes state formulae such that for any 1, , nb b  and state formulae 

1( , , )Q  nz z  
	 11 1(  ( , , ))  (  ( , , )) ( , , ),=h hQ Q   nn nb b z z b b

where 1 1(  ( , , )) ( , , )h Q  n nz z b b  is the state description arrived at by apply-
ing h  to 1( , , )Q  nz z  and then substituting 1, , nb b  into the resulting state 
formula.

Let F be a function permuting state formulae and satisfying the following 
conditions from [11]:

(A) � For each state formula 1( , , )Q  mz z  and surjective mapping s : 
1 1{ , , } { , , }  mny y z z , 

	 ( ( )) ( ),= ssQ QF F

where sQ  is the unique state formula 1( , , )Y  ny y  such that
Y(s(y1), ..., 1( )) ( , , )=s Q  mny z z .
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(B)  For each state formula 1( , , )Q  mz z  and distinct 1, , {1, , }Î ki i m  

	
1 1( ( )) [ , , ] ( [ , , ]),=Q Q k ki ii iz z z zF F

where 1[ , , ]Q  ki iz z  is the restriction of 1( , , )Q  mz z  to these variables, that 
is, the state formula on 1, , ki iz z  implied by Q.

Note that where no confusion may arise, we write Q in place of 1( , , )Q  nz z  
and ( )QF  for 1( ( , , ))Q  nz zF  in favour of clarity of notation.

By Theorems 1 and 2 of [11], every function F that permutes state  
formulae and satisfies the conditions (A) and (B) describes a function h   
that extends to an automorphism h of BL permuting state formulae and 
conversely, every such h  is a function F that permutes state formulae and 
satisfies (A) and (B).

Restricting the Invariance Principle to include only the automorphisms 
of BL that permute state formulae gives us 

The Permutation Invariance Principle, PIP

For any permutation of state formulae F that satisfies (A) and (B) and a state 
description 1( , , )Q  nb b  

	 1 1( ( , , )) (( ( ))( , , )).=Q Q n nw b b w b bF

Lemma 1.  Let F be a function that permutes state formulae and satisfies 
(A) and (B). Then F is uniquely determined by its action on state formulae 
of r variables, where r is the highest arity of an L-relation symbol.

Proof.  Consider a state formula 1( , , )Y  sz z  where <s r  and let 1( , , )Q  rz z  
be such that Q Y . By the condition (B) 

	 1 1( ) ( [ , , ]) ( ( ))[ , , ]= =Y Q Q s sz z z zF F F

so the values of F on state formulae of less than r variables are determined 
by its values on state formulae of r variables.

Now let 1( , , , , )Y   nrz z z  be a state formula with >n r  and suppose 
there is a function 1F  that permutes state formulae and satisfies (A) and (B) 
such that 1( ) ( )=Q QF F  for all state formulae Q on r variables or fewer, but 

1( ) ( )Y ¹ YF F . Then there must be a relation symbol Rj of L and (not neces-
sarily distinct) 1, ,

jriiz z  from 1{ , , } nz z  such that 
	

1 11( ) ( , , )   and  ( ) ( , , )Y Y Ø j jr rjj i ii iR z z R z z F F � (1)

(or vice versa). Let 
1
, ,

rkkz z  be distinct variables from 1{ , , } nz z  such that 
all of 1, ,

jriiz z  are included amongst them. 



546	 tahel ronel & alena vencovská

By the condition (B) and since 1,F F  agree on state formulae of r variables, 
we have 

1 1( ( ))[ , , ] ( [ , , ])=Y Y r rk k k kz z z zF F

1 11 1= ( [ , , ]) ( ( ))[ , , ],=Y Y r rk k k kz z z zF F

contradicting (1). This shows the claim holds also for state formulae with 
more than r variables, as required.� □
 
As an immediate consequence of the above lemma, the set 

	 ={ |  permutes state formulae and satisfies (A) and (B)} F F

is finite and we can therefore generate a probability function ¢w  that satis-
fies PIP from an arbitrary probability function w by averaging over ‘per-
muted versions’ of w. Furthermore, as the next proposition shall show, ¢w  
will preserve some characteristic properties of w and thus bear witness to 
their compatibility with PIP.

One of the most widely accepted principles in Pure Inductive Logic is 
that a rational probability function should treat the individual constants ai 
equally. This is formally stated as:

Constant Exchangeability, Ex

For any formula 1( , , )q  nx x  of L and distinct constants 1, , nb b , 1, ,¢ ¢ nb b  
from the ai, 
	 1 1 ( ( , , ))  ( ( , , )).=q q ¢ ¢ n nw b b w b b

Ex is sometimes imposed at the start of investigations in Inductive Logic 
as the first requirement a rational probability function should obey. It is 
implied by INV but not by PIP. We do not assume it here but we will 
explain the role it has in what follows.

For the remainder of this section, we will focus on the rather elusive Prin-
ciple of Super Regularity and clarify its status with respect to INV and PIP.

Super Regularity, SReg

For any consistent SLq Î , 
	 ( ) > 0.qw

Note that the condition is imposed on all consistent sentences so this prin-
ciple is stronger than that of Regularity (see for example [8]), where only 
quantifier free sentences are involved.
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Let w be an arbitrary probability function on SL and define : [0,1]®¢w SL  
for state descriptions 1( , , )Q  na a , n Î , by

	 1 1
1( ( , , ))   ( ( , , ))=

| |n nw a a w a a
Î

¢ Q Qå F
F 

� (2)

where ( )1 1( ( , , )) ( ( )) ( , , )= QQ   nnw a a w a aF F .

Lemma 2.  The function ¢w  defined in (2) extends uniquely to a probability 
function on SL. Moreover, (2) holds even when the constants 1, , na a  are 
replaced by any other distinct constants 1, , nb b .

Proof.  Let Î F . Clearly wF  satisfies (P1¢) and (P2¢) on page 543. To 
check (P3¢) note that by the condition (B) on F, for state descriptions 

11( , , , )+F  n na a a , 1( , , )Q  na a  we have 

	 1 11 1 1 1( , , ) ( , , ) ( ( )) ( , , ) ( ( )) ( , , ).+ +F Q Û F Q   nn n na a a a a a a a F F

Consequently, since (P3¢) holds for w and since 11( ( )) ( , , )+F  na aF  run through 
the state descriptions for 11, , + na a  when 11( , , )+F  na a  do so, we have 

1 1( ( , , ))   (( ( )) ( , , ))=Q Q n nw a a w a aF F
	

1 1 1

1 1
( ( )) ( , , )  ( ( )) ( , , )

=  (( ( )) ( , , ))
+

+
F Q

Få
 



n n

n
a a a a

w a a
F F

F

1 1 1

11
( , , )  ( , , )

= ( ( , , ))
+

+
F Q

Få
 



n n

n
a a a a

w a a


F

so (P3¢) holds for wF  and hence wF  extends uniquely to a probability func-
tion on SL. ¢w  is therefore a convex combination of probability functions 
on SL and thus defines a probability function on SL. 

The rest of the lemma follows upon noting that any probability function v 
on SL satisfies

	
1 2 1 2

1 2 1 2
( , , , )  ( , , , )

( ( , , , )) ( ( , , , )), =
F Q

Q Få
 

 

k n

n k
a a a b b b

v b b b v a a a


where k is large enough for the 1, , nb b  to be included amongst 1, , ka a .
� □
Proposition 3.  The probability function ¢w  defined in (2) satisfies PIP.  
If, in addition, the original probability function w satisfies Ex + SReg then 
so does ¢w .
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Proof. T o see that ¢w  satisfies PIP, let 1( , , )Q  nz z , 1( , , )F  nz z  be state 
formulae of L with ( ) =Q FG  for some ÎG . Consider the set 

	 1|{ }.= -¢ Î FG F

  is closed under composition and inverse of functions [11], so 1- Î FG  
and Í¢  . Conversely, every ÎF  can be written as the composition 
of Î FG  and 1-G , so Í ¢  . Therefore, 

1 1
1( ( , , ))   (( ( )) ( , , ))=

| |n nw b b w b b
Î

Q¢ Q å 

F
F



1
1

1=   (( ( ( ))) ( , , ))
| | nw b b-

Î

Qå 

F
FG G



1

1
1

1=   (( ( )) ( , , ))
| | nw b b

-

-

Î ¢

F
¢

å 

FG

FG


1
1=  (( ( )) ( , , ))

| | nw b b
Î

Få 

F
F



1=  ( ( , , )).¢ F  nw b b

Suppose w satisfies Ex. Then for every ÎF  and distinct 1, , nb b , 1, ,¢ ¢ nb b  
from the ai 
	 1 1(( ( )) ( , , )) (( ( )) ( , , ))= ¢ ¢Q Q  nnw b b w b bF F

so wF  satisfies Ex on state descriptions and hence3 on SL. Consequently, so 
does ¢w .

Now suppose w is super regular. Recall that the extension of each wF  to 
a probability function on SL is unique and that ¢w  is defined as the weighted 
sum of these extensions. Notice that the permutation that maps each 
state formula to itself trivially satisfies (A) and (B), so Id Î  . It follows 
that w must be the extension to SL of Idw  defined on state descriptions 
of L and w is therefore one of the summands in the calculation of ¢w . So 

1
| | ( ) ( ) > 0q q³¢w w  for every consistent SLq Î  and so ¢w  is super regular.

� □

3	 N ote that it suffices to check that a probability function satisfies Ex on state descrip-
tions of L, since then its extension to SL would satisfy Ex (for details see the forthcoming 
[12]).
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The existence of a probability function ¢w  that satisfies PIP, SReg and Ex 
follows, since a w satisfying Ex and SReg exists (see Chapter 25 of the 
forthcoming [12] for details). Note also that since PIP implies the prin-
ciples of Predicate Exchangeability (Px), Strong Negation (SN) and Vari-
able Exchangeability (Vx) (see for example [11]), ¢w  will also satisfy these 
principles.

The consistency of Super Regularity with PIP is interesting due to the 
restrictive nature of SReg. Yet this consistency becomes perhaps even more 
noteworthy in view of the fact that INV contradicts SReg, as we shall now 
show. The case for languages containing only unary relation symbols follows 
from the results in [10] that we have already mentioned and we will extend 
it to polyadic languages. For simplicity, we shall construct the argument for 
a binary language; however the result generalises similarly to languages of 
higher arities.

For this purpose, let L1 denote the language with a single unary predicate 
symbol P and let L be the language with a single binary relation symbol R. 
Let SLf Î  be the sentence 

	 ( ( , )  ( , ))." " Ú " Øx yR x y y R x y

For Î L T  such that f  , define 1( )b Î L T  by 

	 1( , ) ( ) ( ),bÛi iR a a P a   

so b is a bijection between  |  { }fÎ L T    and 1LT .
For SLy Î , define *y  to be the result of replacing each occurrence of 

21( , )R t t  in y , where 1 2,t t  are any terms of L, by 1( )P t . Then for f  it 
follows easily by induction on complexity of L-formulae that 

	 *  ( ) .y b yÛ   

Similarly, for 1SLx Î  we define x+  to be the result of replacing each occur-
rence of 1( )P t  in x  by 1 1( , )R t a . Then for f  

	 ( ) .x b x+Û   

In [10] an automorphism4 d of BL1 is specified, with the property 

	 1 2 1 2 3[ ( ) ( )]  [ ( ) ( ) ( )].=d Ù Ù ÙP a P a P a P a P a

Using this automorphism d, define a bijection :t ®L LT T  in the following 
way: 

4 R eferred to as g in [10].
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1( ( ( ))) if ,( ) =
otherwise.

b d b f
t

-ìïïíïïî

  




Then t is an automorphism of BL since for SLy Î , 

	 *[ ] [( ) ( )] [ ] [( ( )) ],= =t y t y f y f y f d y f+ÙØ Ú Ù ÙØ È Ù

and *[ ] [( ( )) ]y f d y f+ÙØ È Ù  is *[( ) (( ( )) )].y f d y f+ÙØ Ú Ù  Similarly for 
t−1[y].

Let SLy Î  be the sentence 1 1 2 1( , ) ( , )ÙR a a R a a . Then *y  is 1 2( ) ( )ÙP a P a , 
*

1 2 3( ) ( ) ( ) ( )=d y Ù ÙP a P a P a , so *
1 1 2 1 3 1( ( )) = ( , ) ( , ) ( , )d y + Ù ÙR a a R a a R a a .

Consequently, for any probability function w satisfying INV, we require 

	 1 1 2 1 1 1 2 1 3 1( ( , ) ( , ) ) ( ( , ) ( , ) ( , ) ).=f fÙ Ù Ù Ù Ùw R a a R a a w R a a R a a R a a

On the other hand, 

	 1 1 2 1 1 1 2 1 3 1( ( , ) ( , ) ) ( ( , ) ( , ) ( , ) )=f fÙ Ù Ù Ù Ù +w R a a R a a w R a a R a a R a a

1 1 2 1 3 1( ( , ) ( , ) ( , ) )fÙ ÙØ Ùw R a a R a a R a a

However then 

	 1 1 2 1 3 1( ( , ) ( , ) ( , ) ) = 0fÙ ÙØ Ùw R a a R a a R a a

and this sentence is satisfiable. Therefore w cannot satisfy Super Regularity.

3.  PIP and Polyadic Atom Exchangeability

Lemma 1 exemplified the unique role state formulae on r variables5 play in 
determining automorphisms of BL that permute state formulae. Results in 
this section will demonstrate a second application of these state formulae, 
allowing us to show that PIP is in fact a natural generalisation of the thor-
oughly studied unary principle of Atom Exchangeability. 

To emphasise the unary context where appropriate, we use symbols 
1 2, , , qP P P  for unary predicates and Lq for the language containing just 

these predicate symbols.

5 R ecall that r is the highest arity of a relation symbol in the language L with which we 
are concerned.
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Atom Exchangeability, Ax

For any permutation t of {1, 2, ,2 }q
  and constants 1, , nb b , 

	 ( )
1 1= =

( ) = ( ) ,
i i

nn

h i h i
i i

w b w bta a
æ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷÷ ÷ç çè ø è øÙ Ù

where 1 2 2( ), ( ), , ( )qx x xa a a , the atoms of Lq, are formulae of the form 

	 1 2( ) ( ) ( ).qP x P x P x± Ù± Ù Ù±

Note that a state formula of Lq on n variables, 11 ==  ( )  n q
j iji P x±Ù Ù , is then 

just a conjunction of atoms 1= ( )
i

n
h ii xaÙ , {1, 2, , 2 }q

ih Î  , and a state formula 
for one variable is an atom. So Ax above is the statement that two state 
descriptions that are mapped one to the other by a permutation of atoms, 
should get the same probability. In the unary case, permutations of atoms 
are in an obvious bijection with permutations of state formulae satisfying 
(A) and (B) and so in the unary context PIP is equivalent to Ax.

We extend the notion of atoms to any polyadic language L, by defining 
a polyadic atom to be a state formula on r variables. We label the polyadic 
atoms 1 1 2 1 1( , , ), ( , , ), , ( , , )r r rNx x x x x xg g g     in a fixed order, where the
total number of atoms N is 12

rq j
j r=å , since each state formula of r variables 

contains jrr  conjuncts for each 1, 2, ,=j q . Unless indicated otherwise, kg  
will stand for 1( , , )rk x xg  , with these variables. Note that for purely unary 
languages, this definition exactly describes the atoms of the language in the 
original sense.

In a manner corresponding to the case for unary languages, every state 
formula of the polyadic language L may be written as a conjunction of 
polyadic atoms. Namely, 

	
, , 11

1

1
, ,  {1, , }

( , , ) ( , , ).= ri irr
r

n h i i
i i n

z z z zg
á ñÎ

Q Ù


 

  � (3)

In contrast however, not every such conjunction describes a state formula of 
L, since some of these will be inconsistent. For instance, for L containing a 
single binary relation symbol R and a state formula 1 2 3 4( , , , )z z z zQ , in order 
for the conjunction to be consistent we must have 4,33,4 3 4 4 3( , ) ( , )=h hz z z zg g  
and when i = j the ,i jhg  need to be those atoms where R occurs either only 
positively or only negatively.

Note that when 1, , ri i  in (3) are distinct, 

	
, , 1 11

, ,( , ) [ , ].=r ri irh i ii iz z z zg Q


 
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On the other hand, when 1, , ri i  are not all distinct we have 

	
, , 11 1( , , ) ( [ , , ])= m msi ir

i ih rx x z z sg Q


 

where 
1, , mm si i  are the distinct numbers among 1, , ri i , and s  :  {x1,  …,  xr}   

1
{ , , }m msiiz z  is defined by ( ) = =m kk jj i mx z i is Û , so

	
, , 1 11

( , , ) [ , , ].= m msi i rr
i ih i iz z z zg Q



 

By Lemma 1 every permutation of state formulae that satisfies the condi-
tions (A) and (B), equivalently a permutation that extends to an automor-
phism permuting state formulae, is determined by its restriction to the 
atoms of L. Let G denote the set of permutations t of {1, , }N  such that 
the permutation x of atoms defined by 1 1( )( ( , , )) ( , , )=k r rkx x x xtx g g   is 
a permutation of state formulae satisfying (A) and (B). With these definitions, 
PIP is clearly equivalent to what may be termed

Polyadic Atom Exchangeability – Permutation Version

For any state description 
	

, , 11
1, ,  {1, , }

( , , )ri irr
r

h i i
i i n

b bg
á ñÎ

Ù


 



and t Î G, 

	
( ) ( )1 1, , , ,1 1

1 1

( )
, , {1, , } , , {1, , }

, , , , .=r ri i i ir rr r
r r

i i i ih h
i i n i i n

w b b w b btg g
á ñÎ á ñÎ

æ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç ÷ ç ÷è ø è ø
Ù Ù

 

   

 

This represents PIP as a generalisation of Ax as stated above, except that 
we limit the ‘allowed’ permutations of polyadic atoms to those in G. The 
next result will determine exactly which6 permutations of atoms define a 
permutation of state formulae that satisfies (A) and (B).

Lemma 4.  A permutation t of {1, , }N  is in G if and only if for each m r£ , 
distinct 11 , , mi i r£ £ , 11:{ , , } { , , }miirx x x xs    and , {1, , }k s NÎ   

1 11 ( ) ( ) 1( [ , , ]) ( , , ) ( [ , , ]) ( , , ).= =m mk i i s r k i i s rx x x x x x x xs t s tg g g gÛ   

� (4)

6 N ote that the condition in the following lemma is trivial when L is purely unary in 
accordance with the aforementioned fact that any permutation of unary atoms extends to a 
permutation of state formulae satisfying (A) and (B).



	 invariance principles in polyadic inductive logic� 553

Proof.  Suppose first that t Î G and let h be the associated automorphism 
of BL. Then h  satisfies (A) and (B). Also, ( )( ) =k kth g g  and by (B) 

	
1 ( )1 1

( [ , , ]) = ( )[ , , ] = [ , , ]k i i k i i k i im m m
x x x x x xth g h g g  

so by (A) 

	
1 1 1( )( [ , , ]) ( ( [ , , ])) = (( [ , , ]) ).=m m mk i i k i i k i ix x x x x xt s s sg h g h g  

Hence (4) follows from ( ) ( )=s stg h g .
To prove the opposite direction, assume that t satisfies (4). First 

observe that for 1, , ri i  not necessarily distinct, 
1

( , , )
rk i iz zg   is consistent 

just when 1( ) ( , , )rk i iz ztg   is consistent. This is the case since for a poly-
adic atom vg , 1( , , )ri iv z zg   is consistent just when 1( , , )v rx xg   is 

1( [ , , ])tm mv x x sg   where 1, , tm mi i  are the distinct numbers amongst 1, , ri i  
and s is defined by ( ) == u ujj m mx x i is Û .

Another observation we need is that if two atoms ,k hg g  have the prop-
erty that restricting one to some m variables and the other to some (other) 
m variables produces the same state formula up to renaming the variables 
then the same holds for ( ) ( ),k ht tg g . Expressed more formally, for (distinct) 

1, , mi ix x
 and 1, , mj jx x  from 1{ , , }rx x  we have 

1 11 1[ , , ] ( [ , , ]) ( / , , / )=m mm mj j j ji i i ik hx x x x x x x xg g  

1 11 1( ) ( )[ , , ] ( [ , , ]) ( / , , / )=m mm mj j j ji i i ik hx x x x x x x xt tg gÛ   

� (5)

where 1 11( [ , , ]) ( / , , / )mm mj j j ji ih x x x x x xg    is the result of replacing every 
occurrence in 

1
[ , , ]mjjh x xg   of vjx  by vix , 1, ,=v m .

To see this, consider for example 11 1:{ , , } { , , }mi irx x x xs    and 
12 1:{ , , } { , , }mj jrx x x xs    defined by

	

11

1 1
1 2

if { , , }, if { , , },=
( ) ( )= =otherwise, otherwise.

vj vm mi
i i

ji

x i i i x i i i i
x x

x x
s s

ì ìÎ Îï ïï ïí íï ïï ïî î

 

Then the left hand side of (5) holds just if for these 1 2,s s  we have 

	 11 1 21( [ , , ]) ( , , ) ( [ , , ])= =m mj ji ik s r hx x x x x xs sg g g  

for some 1( , , )s rx xg  , in which case 

	
11 1 2( ) ( ) 1 ( )( [ , , ]) ( , , ) ( [ , , ])= =m mj ji ik s r hx x x x x xt s t t sg g g  
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follows by (4), implying the right hand side of the equivalence. The other 
direction follows similarly.

Let the function F be defined as follows. For a state formula Q (z1, ..., zn) = 

1 1, ,1, , {1, , }  ( , , )r ri ir r
i ihi i n z zgá ñÎÙ



 


,

	
1 1, ,

1

1 ( )
, , {1, , }

( ( , , ))  ( , , ).= ri irr
r

i in h
i i n

z z z ztg
á ñÎ

Q ÙF


 

  � (6)

By the first of the above observations each conjunct in (6) is consistent. 
Moreover, the whole conjunction must be consistent, since otherwise there 
would be 1, , ri iá ñ  and 1, , rj já ñ  from {1, , }rn  and distinct 1, , tk k  
occurring both amongst 1{ , , }ri i  and 1{ , , }rj j  such that for some relation 
symbol Rj of L of arity rj and some 1, , jrm m  from {1, , }t , 
	

11 1, ,( ) ( , , ) ( , , ),
rjr m mi ir

i i j k kh z z R z ztg


 

	
11, , 1( )( , , ) ( , , ).

rjr m mj jr
j j k kjh z z R z ztg Ø



 

This would mean that 
	

1 11 , , 1, , 1 1( ) ( )( , , ) [ , , ]  ( , , ) [ , , ],r rji i t j tr r
i i j jh k k h k kz z z z z z z zt tg g¹





   

so by the second observation 
	

1 11 , , 1, , 1 1
( , , ) [ , , ]  ( , , ) [ , , ].r rji i t j tr r

i i j jh k k h k kz z z z z z z zg g¹




   

However this is impossible since both are 11( , , ) [ , , ]
tn k kz z z zQ   .  

Therefore F defined by (6) permutes state formulae and clearly 
1 ( ) 1( ( , , )) ( , , )=k r k rx x x xtg gF   .

It remains to check that F satisfies conditions (A) and (B). The condition (B) 
is obvious and for (A), let 

	
1, , 1

1

1
, ,  {1, , }

( , , ) ( , , )=
r ri i

r
r

m h i i
i i m

z z z zg
á ñÎ

Q Ù


 

 

and let 1 1:{ , , } { , , }n my y z zs   . Writing s also for the mapping from 
{1, , }n  to {1, , }m

 that sends j to i iff ( ) =j iy zs , we have 

	
1( ), , ( ) 1

1

1
, ,  {1, , }

( ( , , )) ( , , ),=
rj j r

r
r

m h j j
j j n

z z y y
s ss g

á ñÎ

Q Ù


 

 

	
1 1, ,

1

1 ( )
, ,  {1, , }

( ( , , )) ( , , )= ri irr
r

i im h
i i m

z z z ztg
á ñÎ

Q ÙF


 

 
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so both 1( ( ( , , )))mz z sQF   and 1( ( , , ) )mz z sQF   are
	

1( ), , ( ) 1
1

( )
, ,  {1, , }

( , , ).
rj j rr

r

h j j
j j n

y y
s stg

á ñÎ
Ù



 



� □
We shall now show that another formulation of Ax which while in the unary 
case is easily seen to be equivalent to the one given above, in the polyadic 
context becomes a principle that is not obviously equivalent to PIP but 
somewhat surprisingly turns out to be so nevertheless.

Atom Exchangeability (II)

Let 

	 1 1
1 1= =

( , , ) ( ), ( , , ) ( ),= =i i

n n

n h i n k i
i i

b b b b b ba aQ FÙ Ù 

be state descriptions of a unary language. If for all 0 ,i j n£ £  we have 
= =j ji ih h k kÛ  then ( ) ( )=w wQ F .

The immediate polyadic counterpart of this is 

Polyadic Atom Exchangeability - Spectral-Equivalence Version, PAx

Let 
	

, , 11
1

1
, ,  {1, , }

( , , ) ( , , )= ri irr
r

n h i i
i i n

b b b bg
á ñÎ

Q Ù


 

 

and 
	

1, , 1
1

1
, ,  {1, , }

( , , ) ( , , )= ri irr
r

n k i i
i i n

b b b bg
á ñÎ

F Ù


 

 

be state descriptions of L such that for all 1 1, , ,  , , {1, , }r
r ri i j j ná ñ á ñ Î  

	
1 11 1, , , ,, , , , .= =r rr rj j j ji i i ih h k kÛ
 

 

� (7)

Then 1 1( ( , , )) ( ( , , )) =n nw b b w b bQ F  .

We shall show that PIP is equivalent to PAx and in order to do so we will 
use an equivalent characterisation of when two state formulae can be 
mapped one to another by a permutation satisfying (A) and (B).

State formulae 1( , , )nz zQ  , 1( , , )nz zF   are similar if for all (distinct) 
1, , ti i  and 1, , sj j  from {1, , }n  and 11

:{ , , } { , , }st j ji iz z z zs    

	
1 11 1

[ , , ] ( [ , , ])  [ , , ] ( [ , , ]) .= =s st tj j j ji i i iz z z z z z z zs sQ Q Û F F   
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Theorem 5.  [11] State formulae Q and F are similar if and only if there is 
a permutation of state formulae that satisfies (A) and (B) and maps Q to F. 

Theorem 6.  The principle PAx is equivalent to PIP.

Proof.  First assume that w satisfies PAx. Suppose that F is a permutation of 
state formulae that satisfies (A) and (B), Q is a state formula and ( )=F QF . 
Assuming 1( , , )nb bQ   and 1( , , )nb bF   are written as in the statement of 
PAx, by the condition (B) we have that 

1, , , ,1
( ) =i i i ir rh kg gF

 

 so (7) holds. 
Hence 
	 1 1( ( , , ))  ( ( , , )),=n nw b b w b bQ F 

showing PIP for w.
Now suppose that w satisfies PIP. Let Q, F be as in the statement of PAx 

and such that (7) holds. It suffices to show that Q and F are similar since then 
it will follow by Theorem 5 and PIP that 1 1( ( , , ))  ( ( , , ))=n nw b b w b bQ F  , 
proving PAx for w.

So suppose that for distinct 1, , ti i  and 1, , sj j  from {1, , }n  and  
11

:{ , , } { , , }st j ji iz z z zs    we have

	
11

[ , , ] ( [ , , ]) .= st j ji iz z z z sQ Q 

Then for every choice of 1, , jrm m  (with possible repeats) from 1{ , , }ti i  
and each relation symbol Rj of arity rj, 
	

1 1
( , , )  ( ( ), , ( ))

j jr rj jm m m mR z z R z zs sQ Û Q  

since 

11 1 1
[ , , ] ( , , ) [ , , ] ( ( ), , ( )).

j jr s rt j jm m j j m mi iz z R z z z z R z zs sQ Û Q    

With a slight abuse of notation, writing ( ) =d ei js  instead of ( ) = ed jiz zs , this 
means that for any 1, , rm m  (with possible repeats) from 1{ , , }ti i  we 
have 1 1, , ( ), , ( )=r rm m m mh hs s



, as 
1, , rm mhg


 describes every relation involving 
variables from 

1
{ , , }

rm mz z  and similarly for 
1( ), , ( )rm mhs s

g


.
If we had 

	
11

[ , , ] ( [ , , ])st j ji iz z z z sF ¹ F 

then reasoning as above, this would mean that for some 1, , rm m  from 
1{ , , }ti i , 1 1( ), , ( ), , rr m mm mk ks s¹





. However this would contradict (7), so 
11

[ , , ] ( [ , , ])st j ji iz z z z sF F= 
 and since the same argument can be repeated 

with Q and F interchanged, we conclude that Q and F are similar as 
required.� □
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We have thus far shown that two versions of Atom Exchangeability on 
unary languages result in the principle PIP on polyadic languages when 
formulated using polyadic atoms. The third remaining formulation of Ax in 
the unary context utilises the idea of spectrum of a state description, as we 
shall shortly explain. This version can easily be seen to be equivalent to the 
previous statements of unary Ax if we assume that Ex holds. It would be 
natural to ask therefore, whether a polyadic formulation of this version of 
Ax would be equivalent to PIP + Ex. We shall show that for the most 
immediate polyadic counterpart of this principle the answer would be no. 
Whether other possible definitions of polyadic spectrum do indeed provide 
an equivalence with PIP + Ex remains a topic for further research.

Atom Exchangeability (III)

For 1( , , )nb bQ   a state description of a unary language Lq, the probability 

	
1

1=
( ( , , )) ( )= i

n
n ih

i
w b b w ba

æ ö÷çQ ÷ç ÷÷çè øÙ

depends only on the spectrum of this state description, that is on the multi- 
set 21{ , , }qm m  where |{ | = }|=j im i h j , the number of times the atom ja  
appears in 1( , , )nb bQ  .

By analogy, in the polyadic case this gives rise to defining the p-spectrum 
(polyadic, atom-based spectrum) of a state description 
	

, , 11
1

1
, ,  {1, , }

( , , ) ( , , )= ri irr
r

n h i i
i i n

b b b bg
á ñÎ

Q Ù


 

 

of a polyadic language L as the multiset 1{ , , }Nm m  where 

	
1, ,1|{ , , {1, , } | }| .== r

r
j i irm i i n h já ñÎ



 

For ease of notation, we usually omit zero entries from our multisets.
We remark that current use of the term spectrum in polyadic languages, 

as in the statement of Spectrum Exchangeability (Sx) [6, 5] for instance, 
involves the strong notion of indistinguishability of constants in a particular 
state description, where bi and bl are indistinguishable in 1( , , )nb bQ   if for 
any relation Rj of L and 1 2, , , , ,

ju u rk k k kb b b b+   from 1{ , , }nb b  

1 21( , , ) ( , , , , , , )
ju u rk k k kj inb b R b b b b b+Q   

1 21( , , ) ( , , , , , , ).
ju u rj k k k klnb b R b b b b b

+
Û Q   

The spectrum of Q is then defined as the multiset of the sizes of the classes 
of indistinguishable constants. This is clearly different from the notion of 
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p-spectrum. Unless the language is unary, this type of indistinguishability 
is not preserved when the state description is extended, that is when we 
consider another state description with additional constants that implies the 
given one. 

On the other hand, in the definition of p-spectrum of a state description 
we consider ordered r-tuples of constants (possibly with repeats), classifying 
them purely by the way these r constants relate to each other in the state 
description and disregarding their connections to the other constants. If we 
choose to define p-indistinguishability of two r-tuples in a state description 
to mean satisfying the same atom within it, we find that this notion of 
p-indistinguishability is ‘forever’: extending the state description to more 
constants does not change it.

With this in mind, we arrive at the following new polyadic symmetry 
principle:

Atom-Based Spectrum Exchangeability, p-Sx

The probability of a state description of a polyadic language L depends only 
on its p-spectrum.

Examining this new principle, we can see7 that p-Sx implies Ex; it also 
implies PAx (and hence PIP), since any two state descriptions that satisfy (7) 
necessarily have the same p-spectrum. 

We now show the converse does not hold in general by pointing out a 
probability function that satisfies PIP + Ex but gives different probabilities to 
state descriptions with the same p-spectrum. For this purpose, we employ one 
of the probability functions ,p L

Eu . A general construction of these functions is 
presented in [9], where it is also proved that the ,p L

Eu  satisfy PIP and Ex. Here 
we explain the definition only in the special case used in what follows.

Let L be the language with a single binary relation symbol R.
Imagine having an urn containing balls of 4 different colours (referred 

to as colours 1, 2, 3, 4), in equal proportions. Let 2º  be the equivalence on 
the set of ordered pairs of these colours which has the following equivalence 
classes: 

	 { 1,1 , 3,3 } { 2,2 , 4,4 } { 1,2 , 3,4 } { 2,1 , 4,3 }á ñ á ñ á ñ á ñ á ñ á ñ á ñ á ñ

	 { 1,3 } { 3,1 } { 1,4 } { 4,1 } { 2,3 } { 3,2 } { 2,4 } { 4,2 }.á ñ á ñ á ñ á ñ á ñ á ñ á ñ á ñ

We pick balls from the urn repeatedly, with replacement, to obtain a 
sequence of colours 1, , nc cá ñ . Each such sequence thus has a probability ( )1

4
n 

7	  If w satisfies p-Sx then obviously 11( ( , , )) ( ( , , ))= nnw b b w b b ¢¢Q Q   when 1, , nb b
 and 

1, , nb b¢ ¢
  are distinct constants and 1( , , )nb bQ   is a state description, so Ex follows.
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of being chosen. Having picked the sequence 1, , nc cá ñ , we pick uniformly 
at random a state description consistent with this sequence, where a state 
description 
	

21, 1 2
2

1 2

1
,  {1, , }

( , , ) ( , )= i in h i i
i i n

b b b bg
á ñÎ

Q Ù




of L is consistent with 1, , nc cá ñ  if for any 2
1 2 1 2, ,  , {1, , }i i j j ná ñ á ñÎ  , 

	
1 2 1 222 11 ,,2, , .= j ji ijji ic c c c h há ñ á ñ Þº � (8)

For a state description 1( , , )nb bY  , we define 1( ( , , ))nw b bY   to be the 
probability that 1( , , )nb bY   is picked by the above process. It can be 
checked that w is one8 of the functions ,p L

Eu  defined in [9].
Any state description of L on n constants may be represented by an n n´  

{0,1}-matrix where 1 or 0 at the ( , )i j th entry means this state descrip- 
tion implies ( , )jiR b b  or ( , )jiR b bØ  respectively. Let 1 2 3 4( , , , )b b b bQ  and 

1 2 3 4( , , , )b b b bF  be the following state descriptions:

	
1 0 0 1 1 0 1 1
0 1 0 1 0 1 0 1

: :           .
0 0 1 1 1 0 1 0
1 1 1 1 1 1 0 1

Q F

The p-spectrum of both is {10,6}, so it remains to show that ( ) ( )w wQ ¹ F .
To see this, note that neither Q nor F are consistent with any sequence 

of colours 1 2 3 4, , ,c c c cá ñ in which a colour appears more than once, since 
if 21 =j jc c  ( 1 2, {1,2,3,4}j j Î ), then 21 2, ,j ji ic c c cá ñ º á ñ and so it would have 
to be the case that for each {1,2,3,4}i Î , as matrices,

	
21[ , ] [ , ]=j ji ib b b bQ Q

(so in particular in the matrix for Q there would be two identical columns) 
and similarly for F, but there is no pair 1 2,j j  where 1 2j j¹  for either Q 
or F with this property. So consider a sequence 1 2 3 4, , ,c c c cá ñ where each 

8  Where 1 1 1 1
4 4 4 40, , , , , 0,0,=p á ñ  and E  is defined by 1 1, , , ,k k kc c d dá ñº á ñ   if and 

only if one of the following holds:
•  1 1, , , ,=k kc c d dá ñ á ñ  ,
•  For each {1, , }j kÎ  , either 1=jc  and 3=jd , or 2=jc  and 4=jd , 
•  For each {1, , }j kÎ  , either 3=jc  and 1=jd , or 4=jc  and 2=jd .
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colour appears exactly once. For some permutation n of {1,2,3} we must 
have (1) (2) 2 (3) 4, ,c c c cn n ná ñ º á ñ but 

	 (1) (2) (3) 4
1 0 1 1[ , ]  , [ , ]= =0 1 1 1b b b bn n nQ Q

for every n, so Q is consistent with no sequence 1 2 3 4, , ,c c c cá ñ and hence 
( ) = 0w Q .
On the other hand, F is consistent for example with the sequence 

1,2,3,4á ñ and hence ( ) 0w F ¹ . Thus w is a function that satisfies PIP and 
Ex (see [9]) without satisfying p-Sx as required.

4.  Conclusion

In this paper we have investigated the special role state formulae on r vari-
ables, where r is the highest arity of a relation symbol in our language, play 
in the context of polyadic symmetry. We have shown that the auto- 
morphisms of our structure that permute state formulae are determined by 
their action on these particular state formulae. We have proposed that state 
formulae on r variables form the natural extension into the polyadic context 
of unary atoms and using this idea we have shown that PIP results as a 
natural extension of two formulations of the unary Ax, whilst a third possible 
formulation of Ax (equivalent to the others only as long as Ex is assumed) 
does not yield PIP when extended in the most obvious way to the polyadic. 
It is our hope that the definition of polyadic atoms will enable further 
research into polyadic Inductive Logic, making it possible to formulate  
new rational principles and to find plausible extensions of unary principles 
currently without a polyadic counterpart. For example, the long standing 
Johnson’s Sufficientness Principle [4] is potentially a fruitful direction for 
future investigation.
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