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Abstract

In Pure Inductive Logic, the rational principle of Predicate Exchangeability states 
that permuting the predicates in a given language L and replacing each occurrence 
of a predicate in an L-sentence j according to this permutation should not change 
our belief in the truth of j. In this paper we study when a prior probability function w 
on a purely unary language L satisfying Predicate Exchangeability also satisfies the 
principle of Unary Language Invariance. 
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1.  Introduction

In the study of logical probability in the sense of Carnap’s Inductive Logic 
programme, [1], [2], the notion of symmetry plays a leading role. In the 
prior assignment of beliefs, as subjective probabilities, it seems logical, or 
rational, to observe prevailing symmetries, a typical example being the 
perceived fairness of a coin toss, at least in the absence of any inside knowl-
edge to the contrary. For this reason a number of rational principles have been 
proposed in Inductive Logic which are based on invariance under various 
notions of symmetry, principles which it is argued a choice of logical or 
rational (we use these two words synonymously) prior probability function 
should satisfy. I.e. a choice of probability function prior to the acquisition 
of any evidence, knowledge or intended interpretation. The most prevailing 
of these principles, accepted by both the founding fathers of Inductive Logic, 
W.E. Johnson [10], and Rudolf Carnap [3], is that the names we give things, 
in particular constants and predicates, should not matter when it comes to 
assigning probabilities. Thus, since interchanging which side of the coin we 
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call heads and which we call tails does not change what we understand by 
a coin toss, both outcomes should rationally receive the same probability.

A second, ubiquitous, rational principle is that when assigning rational 
probabilities ‘irrelevant information’ can be disregarded. Indeed the central 
principle of Johnson and Carnap, the so called Johnson’s Sufficientness 
Postulate, is just such an example. Just as with saying what exactly we 
might mean by a ‘symmetry’ this directive does of course raise the question 
of what exactly we mean by an ‘irrelevant information’, and numerous 
interpretations have been mooted, generally based on the idea that such 
information is expressed in a disjoint, or partially disjoint language.

A third, more recent and rather overarching, rational principle is the 
requirement of language invariance. By that we mean that to be rational a 
probability function should not be restricted to one special language but be 
extendable to larger languages, and furthermore that those additional rational 
principles which we imposed in the context of the original language should 
also be satisfied by these extensions.

In this paper we shall study two symmetry principles, Constant Exchange-
ability1 and Predicate Exchangeability, in the presence of language invari-
ance with the main goal of providing a representation theorem along the 
lines of de Finetti’s Representation Theorem for Constant Exchangeability 
alone, see for example [5], [11]. Although rather technical, at least in relation 
to the seemingly elementary mathematics at the heart of Inductive Logic, 
such results have, starting with Gaifman [6] and Humburg [9], been an 
extremely powerful tool in our understanding of the interrelationship between 
the various rational principles which have been proposed. Hopefully the 
results given here will also find similar applications in the future.

The structure of this paper is as follows. In Section 2 we shall intro-
duce the notation and give precise formulations of the main principles we 
shall be studying. In Section 3 we shall provide a representation theorem 
for probability functions satisfying language invariance with Constant and 
Predicate Exchangeability assuming a particularly strong irrelevance condi-
tion, the Constant Irrelevance Principle, and in the next section show a 
similar result without this assumption. This latter representation theorem 
shows that all such probability functions are in a sense convex mixtures 
of probability functions satisfying the so called Weak Irrelevance Princi-
ple, and conversely. Finally in Section 5 we will give a general representa-
tion theorem for probability functions satisfying Constant and Predicate 
Exchangeability alone, showing that they are mixtures (not necessarily 
convex) of such probability functions which additionally satisfy language 
invariance.

1  Johnson’s Permutation Postulate and Carnap’s Axiom of Symmetry.
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The philosophical standpoint of this paper is Pure Inductive Logic, see 
[11], [12], a branch of Carnap’s Inductive Logic which he already described 
in [3]. Thus we shall be interested in studying the (prior) assignment of log-
ical probability in the absence of any acquired evidence or knowledge and 
without relation to any specific interpretations. Of course the rational prin-
ciples that one might consider imposing on this assignment may have their 
genesis in real world examples but once a principle is formulated it is studied 
in Pure Inductive Logic through the agency of mathematics. The subsequent 
value to philosophy lies, we would opine, mainly in the philosophically inter-
esting conclusions that this mathematical investigation engenders. In other 
words the aim is to explicate the philosophical consequences of making certain 
philosophically motivated assumptions via the method of rigorous mathematical 
proof. The fact that the necessary mathematics linking two philosophically 
approachable assertions may be rather technical is clearly not ideal but 
nevertheless that currently seems on occasions to be unavoidable.

2.  Notation and Principles

We will be working in the usual context of (unary) Pure Inductive Logic. 
Thus the first order languages we will be concerned with consist only of finitely 
many unary predicate symbols Pi and countably many constant symbols2 

1 2, , , ,ma a a , which should be thought of as exhausting the universe. For 
|( {  0 < })=+Î Îr n n   let Lr be the language containing just the predi-

cates 1, , rP P  and let L, our default language, be Lq. Let SL denote the set of 
sentences of the language L, QFSL the set of quantifier-free sentences of L.

An atom ( )xa  of L is a formula 

	 1 2
1 2( ) ( ) ( ),ee eÙ Ù Ù

q
qP x P x P x

with {0,1}ie Î  and 1( )iP x , 0( )iP x  standing for ( )iP x , ( )Ø iP x , respectively.3 
Note that for L containing q predicates there are 2q atoms, which we shall 
denote 1 2, ,a a

q .
A state description of L for4 

1
, , niia a  is a sentence 

	
1 1=

( , , ) ( ),= aQ Ù jjn

n

hi ii j
a a a

where {1, , 2 }Î 

q
jh  for = 1, ,j n .

2	  For convenience, we shall henceforth refer to these just as ‘predicates’ and ‘constants’.
3	  In the literature, the notation ( )± iP x  is more common; however, in the scope of this 

paper, the notation ( )ei
iP x  is more convenient.

4  The entries in such lists will be taken to be distinct unless otherwise stated.
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A probability function on L is a function : [0,1]®w SL  satisfying the fol-
lowing conditions for all , , ( )J j y$ Îx x SL : 

(P1)  If J , then ( ) = 1Jw .
(P2)  If J jØ , then ( ) ( ) ( )=J j J jÚ +w w w .
(P3)  =1lim ( ( )) =  ( ( ))y y®¥$ Ún

jn jw x x w a . 

The following theorem will allow us to restrict our studies to quantifier-free 
sentences.

Theorem 1 (Gaifman, [7]).  Let : [0,1]®w QFSL  be a function satisfying 
(P1), (P2) for all ,J j Î QFSL. Then there exists a unique : [0,1]¢ ®w SL  
satisfying (P1)-(P3) extending w. 

Since any quantifier-free sentence of L is logically equivalent to a disjunc-
tion of state descriptions, by (P2) and Theorem 1 a probability function is 
determined by its values on the state descriptions. Let 2Î



qx  , where 

	
2

212
1=

:  , , | 0, 1 .==
ì üï ïï ï³í ýï ïï ïî þ

å

q

qq ii
i

x x x x

Noticing that atoms instantiated by different constants are logically inde-
pendent we can obtain an example of a probability function 

xw  by treating 
them as even stochastically independent and defining 

xw  on state descrip-
tions via 

	
1

2

1=
( ( , , )) : ,=Q Õ



q

i
n

n
ix i i

i
w a a x

where |{ | = }|= jin j h i .
These functions are quite important examples, as they form the building 

blocks in de Finetti’s Representation Theorem. Before stating this theorem, 
we need to introduce the Principle of Constant Exchangeability:

The Principle of Constant Exchangeability, Ex

A probability function w on SL satisfies Constant Exchangeability if for each
1( , , )j Î na a SL, and s a permutation of + , 

	 (1) ( )1 ( ( , , ))  ( ( , , )).= s sj j  nnw a a w a a

The justification for Ex as a principle of rationality is based on a sym-
metry argument. That there is complete symmetry between the constants 
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and hence that to ascribe different probabilities to 1( ( , , ))j  nw a a  and 
(1) ( )( ( , , ))s sj  nw a a  would therefore be irrational.

Notice that the 

xw  satisfy Ex. Ex is such a well accepted principle in 
Inductive Logic that we shall henceforth take it as a standing assumption 
throughout that all the probability functions we consider satisfy it.

We shall therefore not mention the particular constants whenever they 
are understood from the context.

Theorem 2 (de Finetti’s Representation Theorem)  Let w be a probability 
function on SL satisfying Ex. Then there exists a normalized, s-additive 
measure  on the Borel subsets of 2q  such that

	
2 =1=1

 ( ) ( ) ( ).= aa 
æ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

ò ÙÙ 



jj q

nn
jj hh x

jj
w a w a d x


� (1)

Conversely, given such a measure , the function w defined by (1) is a 
probability function on SL satisfying Ex. 

It is straightforward to show (see [12]) that these 

xw  are characterized as 
those probability functions which satisfy Ex together with

The Principle of Constant Irrelevance, IP

A probability function w on SL satisfies Constant Irrelevance if for ,J j Î QFSL 
with no constants in common, 

	  ( )  ( )  ( ).=J j J jÙ ×w w w

Thus de Finetti’s Representation Theorem can be alternately stated as say-
ing that every probability function satisfying Ex is a convex mixture of 
probability functions satisfying IP, and conversely.

The principles that are of particular interest to us in this paper are:

The Principle of Predicate Exchangeability, Px

A probability function w on SL satisfies Predicate Exchangeability if when-
ever SLj Î  and j¢ is the result of replacing the predicates5 

1
, ,

miiP P  in j 
by 

1
, ,

mkkP P , then 
	 ( ) = ( ).j j¢w w

The justification for this principle is just the same as for Constant Exchange-
ability; in the presence of no prior knowledge of the universe a rational 

5  In such lists we shall always assume that the members are distinct. 
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agent should not favour any particular predicate in her language from the 
start.

As a motivational example6 suppose a rational agent is picking (with 
replacement) balls from an urn, these balls being either black or white 
and either shiny or matt, and she is asked about her subjective probabilities 
concerning the distribution of colours and textures of balls in this urn. Inter-
preting the constants of the language as the balls being picked from the urn 
and two predicates of the language as describing a ball’s colour and texture, 
it would seem irrational that in the absence of any prior knowledge of the 
urn the agent should assign a higher probability to ‘white’ than to ‘shiny’, 
say.

The Principle of Unary Language Invariance, ULi

A probability function w on SL satisfies Unary Language Invariance if there 
exists a family of probability functions w, one for each finite (unary) lan-
guage  , satisfying Px (and by standing assumption Ex), such that = Lw w  
and whenever ¢ Í , then =¢ ¢w w S   , the restriction of w to the sen-
tences of ¢ .

We say that w satisfies ULi with  (for some principle ), if each of the 
functions w satisfy .

This principle allows a rational agent to extend her language should the 
situation require it. For instance, suppose that in the aforementioned urn 
example the agent were to find that after picking a number of balls and 
noting their colours and textures she was to discover that some of the balls 
were magnetized and others not. She might not already have a predicate 
interpreted as ‘is magnetized’ in her language, and so might want to add 
one in order to further distinguish the balls. However, upon learning that 
some balls were magnetized it would surely be irrational to discard all the 
properties noted about the previously selected balls. If the agent’s probabil-
ity function satisfies ULi she will be able to just extend the language to 
include an additional ‘is magnetized’ predicate, which by Px would initially 
have had precisely the same status as the colour and texture predicates, and 
consequently she could just continue without having to start over again. 
After all, just because some balls are magnetized does not mean the agent 
has reason to change her belief about the colour and texture distribution of 
the balls in the urn.

6	  We need to be constantly on our guard with such examples. It is crucially important to 
appreciate that they are intended only to motivate an underlying arguably rational principle, 
in this case Predicate Exchangeability, not to propose a practical rule applicable to all inter-
pretations of the language. The widespread failure to appreciate this point has proved the 
bane of this subject.
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The ‘rationality’ of ULi is based on two considerations. Firstly the idea that 
if the agent chooses probability functions w and ¢w  on languages , ¢   
respectively and ¢Ì   then ¢w  restricted to S  should agree with w, 
otherwise she would be in the seemingly irrational position of giving dif-
ferent probabilities to the same sentence simply on account of there being 
other unmentioned predicate symbols in the language. Put another way her 
choice w would depend on the particular set of predicates in , and she 
would be imposing some a priori semantics on the languages.

The second consideration is that if our agent subscribes to some princi-
ples  as rational obligations then this should not be a function of the 
particular language under consideration, so that the agent should be sub-
scribing to  for any language. Taking  to be Px (and the standing Ex) 
these two considerations give ULi.7, 8

Notice that if , ¢w w   are members of a language invariant family and 
, ¢   have the same number of predicates then w is the same as ¢w  up 

to renaming predicates. For that reason it will, for the most part, be enough 
for us to focus our attention on the members w of the family when = rL  
for some r.

Given a permutation s of the predicates of L, there is a unique permuta-
tion of the atoms of L that is induced by s: For 1=( ) = ( )ea Ù iq

iix P x  an atom 
of L, let sa(x) be the atom given by 

	
=1

( ) ( ) ( ).= esa sÙ i
q

i
i

x P x

This now in turn induces a permutation on SL in the obvious way. Abusing 
notation, we identify these permutations of atoms and L-sentences with s. 
We shall write s is induced by Px to indicate that s arises from a permuta-
tion of predicates.

3.  A First Representation Theorem

Since the xw  are the building blocks for probability functions satisfying Ex 
(see de Finetti’s Theorem above), these functions are of special interest to 
us. We will therefore begin by studying when they satisfy ULi, equivalently 
when probability functions satisfy ULi with IP.

7  In fact, as one easily checks, without Px, any probability function w can be arbitrarily 
extended to obtain a language invariant family, which makes Language Invariance in this 
form a trivial statement.

8	  It is interesting to note, as pointed out by one of the referees, that language invariance 
is a wholly unobjectionable feature of logical consequence so its continued acceptance for 
our more general form of reasoning would seem in the first instance entirely natural.
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Suppose a probability function w on some language L satisfies Predicate 
Exchangeability. Then the probability that w assigns any atom a of L only 
depends on the number of predicates in a that occur negated.9 To see this 
notice that if ,a a¢ are atoms then a¢ can be obtained from a by a permuta-
tion of predicates just if both atoms have the same number of negated 
predicates.

It is thus convenient to introduce a function assigning each atom the 
corresponding number of predicates:

Definition 3:

Define : {1, , 2 } {0, , }g ® 

q
q q  by 

	 ( ) =  contains  negated predicates.g aÛq ii k k

We shall drop the index q whenever it is understood from the context. 
Now considering 2Î



qc   it follows that cw  satisfies Predicate Exchange-
ability if and only if ci = cj whenever ( ) ( )=g gi j . With this in mind we shall 
assume that our enumeration of the atoms is such that the number of negated 
predicates is non-decreasing as we move right through 21 2, , ,a a a

q. Since 
for each {0, , }i qÎ   there are ( )q

i  atoms of L with i predicates occurring 
negatively we therefore have that for cw  satisfying Px 

	 0 1 1 2 2 1 1, , , , , , , , , , , ,= - -



   q q qc        

i.e. ( )= g iic   for 1,2, ,2= 

qi , and 

	 ( )
=0

= 1.å
q

i
i

q
i 

Thus any such c


 gives us a unique 0 1 2= , , , ,


 q      with the properties
 
	 ( )

=0
{0, , } 0  and  1 .=" Î ³ å

q

ii
i

qi q i 

Conversely, any 


  with these properties provides a unique 2Î


qc   such 
that cw  satisfies Px, giving us a 1-1 correspondence between these 2Î



qc   
and the elements of 

   
 ( ){ }0 1 2

0=
: = , , , , | {0, , } 0  and 1 = .= " Î ³ å



 

q

q q i i
i

qi q i        � (2)

9  This is an arbitrary choice. One could also count the number of predicates that occur 
positively in a, as the argument is symmetrical.
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We shall refer to elements of the set above as the alternative notation for 
such a 2Î



qc  .
Given an atom a of ( )= qL L , we can view this atom as a quantifier-free 

sentence in the extended language 1+qL , and obtain

	 ( ) ( )1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) .=a a a a a-+
+ +º Ú Ù Ú ÙØq qx x x x P x x P x

Now suppose 2Î


qc  , 12 +Î


qd   are such that =

q cdw SL w  and both satisfy 
Px. Then by the logical equivalence given above, we must have

	 ( ) ( ) ( ) ( ) .= =a a a a+ -+  

 d d dcw w w w

Suppose  qÎ


 , 

1+Î


q  are the corresponding alternative notations for c


 
and d



. Then we obtain for each {0, , }i qÎ  , 

	 1.= ++i i i  

The following proposition generalizes this to ULi families.

Proposition 4.  Let cw  be a probability function on Lq. Suppose cw  is a 
member of a ULi with IP family   and assume Îdw   is a probability 
function on Lr for some r > q. Let ,

 

   be the corresponding alternative 
notations for c



, d


. Then for each {0, , }j qÎ  , we have

	
=

 .=
- + æ ö- ÷ç ÷ç ÷çè ø-å

r q j

j k
k j

r q
k j

 

Proof:  We show this by induction on := -s r q. In case = 1s , we have for 
each {0, , }j qÎ  , 
	 1,= ++j jj  

since for a an atom of Lq with j negated predicates, we have in Lr (= Lq+1) 

	 ,=a a a-+ Ú

where ,a a-+  are atoms of Lr with , 1+j j  negated predicates, respectively.
Now let = 1s p +  and assume the result holds for p. Let ¢i  denote the 

corresponding values for the atoms of +q pL . By the inductive hypothesis 
we have 

	
( )

=

( )
= .

+ - +

¢

æ ö+ - ÷ç ÷ç ÷ç ÷ç -è ø
å

q p q j

j k
k j

q p q
k j

 
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Just as in the case 1=s  we have 1=¢ ++ kkk    for each 0 k q p£ £ + , 
so we obtain

	
1

1
= ==

1
=  ( )  =  ,=

+ + + - +

+

æ ö æ ö æ ö+ -÷ ÷ ÷ç ç ç÷ ÷ ÷+ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷-ç ç ç- -è ø è ø è ø
å å å
p j p j r q j

j k kk k
k j k j k j

p p r q
k j k j k j

    

as required.� 

With this proposition in mind, we are ready to proceed to our first Repre-
sentation Theorem.

Theorem 5.  Let 2Î


qc   and cw  be a probability function satisfying Px. 
Then cw  is a member of a ULi with IP family 2{ | }= Î



r
rd rw d   if and 

only if each entry ci of c


 is of the form

	 ( ) ( )
[0, 1]

(1 ) ( )= g g r--ò i q i
ic x x d x � (3)

for some normalized s-additive measure r on [0,1]. 

Proof:  We will use methods from Nonstandard Analysis working in a suit-
able nonstandard universe *V, see for example [4]. The key idea to the 
proof is to marginalize some 

cw  on some infinite language to finite lan-
guages, rather than constructing extensions of some 

dw  on a finite language 
to each finite level. Suppose we have such a ULi with IP family   of 
probability functions, so for each r Î, we have some ( )rw  on Lr in this 
family. By the Transfer Principle this holds for each *Îr  , so we can 
pick some nonstandard natural number * \n Î   and consider ( )nw . Now 

( )( ) =n r
rw SL w  for each <r n , as these are members of the same ULi  

family and we can retrieve our original family   by looking at functions 
of the form ( )n

rw SL  for r Î, taking standard parts – denoted as usual 
by ° – where necessary.

In more detail let *V be a nonstandard universe that contains at least 2q  
for finite q Î, all probability functions 

bw  satisfying Px and everything 
else needed in this proof. Let *n Î  be nonstandard and consider 2nÎ



b   
such that 

bw  on nL  satisfies Px. Assume that 


  is the alternative notation 
for b



 given by (2). For each <q n , we can define a probability function on 
Lq in *V satisfying Px by letting 

	
=

 =
n

k
k

n
k

- + æ ö- ÷ç ÷ç ÷ç ÷ç -è ø
å

q j

j
j

q
j

 
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for 0, ,= j q. In general, this gives 2
*Î



qc  , so we need to take the stan-
dard part of c

, denoted 


c , to get a probability function 


cw  in V.
We will first look at 



 when all weight is concentrated on a single k , 
0 k n£ £ . Since we need to have ( )0= = 1n n

kkkå  , we obtain

	 ( )
1
.=k

n
k

-



Then we get for 0 j q£ £

1

== k
n n n
k k k

-æ ö æ ö æ ö- -÷ ÷ ÷ç ç ç÷ ÷ ÷×ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç- -è ø è ø è ø
j

q q
j j

 

( )!   !   ( )!
=

( )!  ( )!  !
n k n k

k n k n
- × × -

- × - - + ×
q

j q j

( 1) ( 1) ( ) ( 1) ,=
( 1) ( 1)

k k k n k n k
n n n

× - - + × - - - + +
× - - +

 



j q j
q

� (4)

thus leading to the standard part being

	 ( ) ( ) ( ) ( )( )  1  1 .= =
k k k k
n n n n

- -æ ö÷ç × - × -÷ç ÷çè ø

  



j q j j q j

j � (5)

Now consider an arbitrary 0, ,= n



   . Then for each 0 k n£ £  there 
exists *[0,1]kg Î  such that we can write 

	 ( )
1

  .=k k
n

g
k

-

×

Note that since

	 ( )
0 0==
 1  we must have  1.= =

n n

k k
k k

n
g

kå å

Then using (4) we see that each summand in j  will be of the form

	 ( ) ( ) 1
  , k
n n

g
k k

--
× -

q
j
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thus  j  will become

	 ( )( )
1

=
=    .

n

k
k

n n
g

k k

-- +æ ö- ÷ç ÷×ç ÷ç ÷-è ø
å





q j

j
j

q
j

Since we are only interested in the standard part, we can add the finitely 
many summands for = 0, , 1, 1, ,k n n- - + + j q j  without changing 


j  (assuming that 0 < <j q ), as we have 

1

0=
   

n

k
k

nn
g

k k

-æ öæ ö æ ö ÷-ç ÷ ÷ ÷ç çç ÷ ÷× -÷ç çç ÷ ÷ ÷ç çç ÷ ÷ç ç- ÷è ø è ø ÷çè ø
å





j
q
j



1 11

= 0 = 1

        =
n

k k
k k n

n n n n
g g

k k k k

- --

- + +

æ ö æ öæ ö æ ö æ ö æ ö- -÷ ÷ç ç÷ ÷ ÷ ÷÷ ÷ç ç ç çç ç÷ ÷ ÷ ÷× + ×÷ ÷ç ç ç çç ç÷ ÷ ÷ ÷÷ ÷ç ç ç çç ÷ ÷ ç ÷ ÷ç ç ç ç÷ ÷- -è ø è ø è ø è ø÷ ÷ç çè ø è ø
å å

 

j

q j

q q
j j

1 11

= 0 = 1

       =
n

k k
k k n

n n n n
g g

k k k k

- --

- + +

æ ö æ öæ ö æ ö æ ö æ ö- -÷ ÷ç ç÷ ÷ ÷ ÷÷ ÷ç ç ç çç ç÷ ÷ ÷ ÷+÷ ÷× ×ç ç ç çç ç÷ ÷ ÷ ÷÷ ÷ç ç ç çç ÷ ÷ ç ÷ ÷ç ç ç ç÷ ÷- -è ø è ø è ø è ø÷ ÷ç çè ø è ø
å å


j

q j

q q
j j

0 0,= +

because for {0, , 1, 1, , }k n nÎ - - + + j q j , either ( / ) 0=k n  or 
(1 / ) 0=k n- , so the first and last sum vanish as each consists of finitely 

many terms. Note that in case 0,=j q, either the first or the second sum-
mand is empty, and therefore we can apply the same argument for 0,=j q 
as well, giving

	

1

=0
=    

n

k
k

n n
g

k k

-æ öæ öæ ö- ÷ç ÷ ÷ ÷ç çç ÷ ÷ ÷× ç çç ÷ ÷ ÷ç çç ÷ ÷ç ç ÷-è øè ø ÷çè ø
å





j
q
j

 � (6)

for {0, , }Î j q .
Now let = {0, , }N n  and (in *V of course) let  be the Loeb counting 

measure on n (see example (1), section 2 in [4]). Then we can write (6) as

	

1

=    ( ).k
n n

g  k
k k

-æ öæ ö- ÷ ÷ç ç÷ ÷× ç ç÷ ÷ç ç÷ ÷ç ç-è øè øò




j N

q
d

j
 � (7)

Let  ¢ be the discrete measure on *[0,1] which for Nk Î  gives the point 
/k n measure .kg  Then we get
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1 1

*[0,1]
   ( ) =   ( ) . k

n n nng  k n nk k

- -æ ö æ ö æ ö æ ö-- ÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷× ×× ¢ç ç ç ç÷ ÷ ÷ ÷ç ç ç ç× - ×÷ ÷ ÷ ÷ç ç ç ç-è ø è ø è ø è øò òN

qq d d xx j xj � (8)

Now let r be the measure in V on [0,1] which for a Borel subset A of [0,1] 
gives
	 *( )  ( ).=r  ¢A A � (9)

By well known results from Loeb Measure Theory, see for example [4],

 11

*[0,1] [0,1]
( ) = ( ).nn n n

 r
n n n n

-- æ öæ ö æ ö æ ö æ ö ÷-ç- ÷ ÷ ÷ ÷ ÷ç ç ç çç÷ ÷ ÷ ÷× × ÷¢ç ç ç çç÷ ÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ç ÷ ÷ç ç ç ç× - × × - × ÷è ø è ø è ø è ø ÷çè ø
ò ò



 qq d x d xx j x x j x
� (10)

Combining (5), (7), (8), (10) now gives that

	
[0,1]

=  (1 ) ( )r-× -ò

q jj
j x x d x � (11)

We obtain a 2Î


qc   by letting 

	 1 10 1 1       , , , , , , , , .= - -
     



  q q qc      

As we can marginalize b


 in the above way to any r Î, we obtain that 
given a family of functions 2{ | }Î



r
rd rw d   such that each 



rd  is obtained by 
marginalizing some 2nÎ



b   and therefore satisfies (3), this family satisfies 
Unary Language Invariance.

For the converse it is straightforward to check that any cw  for which 
all the ci in c



 are of the form (11) does satisfy ULi, the required family 
member on Lr being obtained simply by changing q to r with the same 
measure r. � 

However, as the following example will show, the probability functions of 
the form cw  satisfying ULi with IP are not the building blocks that generate 
all probability functions satisfying ULi:

Example 6.  Let 2
0
Lc  be the probability function on 2L  given by 

	
( )2

1,0,0,0 0,0,1,0 0,0,0,10,1,0,00
1   .= 4

Lc w w w w+ + +

Then 2
0
Lc  satisfies ULi as it is a member of Carnap’s Continuum of Inductive 

Methods (see e.g. [12]). However, both 0,1,0,0  and 0,0,1,0  are not of 
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the form (3), and thus 2
0
Lc  shows that we cannot have a Representation 

Theorem for w satisfying ULi of the form 

	
2

( )= ò 



q xw w d x


with  giving all weight to c


 of the form (3). 

4.  The Representation Theorem for w satisfying ULi

In the previous section, we used a probability function satisfying Px + IP 
on the infinite language nL  to construct a language invariant family by 
marginalizing to each finite level. In turn this gave us our first Representa-
tion Theorem, Theorem 5.

In this section we shall instead derive a representation theorem for just 
ULi by using an arbitrary state description ¡ of nL  to construct a probability 
function satisfying Px by averaging over all permutations of predicates, 
similarly to the definition of 2

0
Lc  in Example 6. We first introduce some nota-

tion and a related result, Theorem 8, which is of interest in its own right.
Let 1 1( , , , , , )nn¡  P P a a  be the state description of nL  given by

	 ,
1 1

1 1= =
( , , , , , )  ( ).=

nn e
n n¡ ÙÙ 

i j
ji

i j
P P a a P a

Then we can represent ¡ by the n n´ -matrix 

	

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

.

n

n

n n n n

e e e
e e e

e e e

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷÷çè ø





   



Now consider the q n´ -matrix Y where the j’th row of Y is the ij’th row of 
¡, for some 1, , {1, , }nÎ qi i , not necessarily distinct. Then we can simi-
larly think of Y as a state description 1( , , )a anY   of Lq. So each column 
of Y represents an atom of Lq, and we obtain 2*Î



qc   by letting

	
|{ | ( )} |

  .=
a

n
Y ji

i
j a

c


We thus obtain for each 1, , qi i  with 11 , , n£ £ qi i  some cw  for 2*Î


qc  , 
which we shall denote by 

1, ,
¡
 qi iw .
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We can now define the functions that we will then use to prove the repre-
sentation theorem for general ULi functions.

Definition 7.  Let 1 1( , , , , , )n n¡  P P a a  be a state description of Ln for n 
distinct constants. Let L = Lq for some finite q. For 1, , {1, , }nÎ qi i , not 
necessarily distinct, let 

1, ,
¡
 qi iw  be given as above.

Define the function ¡ÑL  on SL by

	 (1), , ( )
:{1, , }  {1, , }

1=  .
n n

¡
¡

®

Ñ å


 

L
e e qq

e q
w

Instead of just marginalizing to the first q rows, as we did in the case of 
cw , ¡ÑL  now also averages over all permutations of the predicates. One can 

think of this as picking q rows from the matrix representing ¡ with replace-
ment to obtain the predicates 1, , qP P  of L.

Before our next result we need to recall another principle, see [8], [12].

The Weak Irrelevance Principle, WIP
A probability function w on SL satisfies Weak Irrelevance if whenever 

,J j Î QFSL have no constants nor predicates in common then 

	  ( )  ( )  ( ).=J j J jÙ ×w w w

Notice that this is a weakening of the Constant Irrelevance Principle, IP, 
where we required only that ,J j have no constants in common.

Theorem 8.  Let 1 1( , , , , , )nn¡  P P a a  be a state description of Ln and let 
L = Lq. Then the function ¡Ñ L is (can be extended to) a probability function 
on SL satisfying ULi + WIP. 

Proof: From the definition of ¡ÑL  it is obvious that ¡Ñ L is a probability 
function satisfying Ex.

For Px, let s be a permutation of the predicates of L. Then we obtain

 
(1), , ( )

 : {1, , }  

1( )   ( )=s s
n

¡
¡

®¡

é ù
ê úÑ Q × Qê úê úë û

å








L
q e e q

e q
w

1 1( (1)), , ( ( ))
 : {1, , }  

1  ( ) ,=
s sn - -

¡

®¡

é ù
ê ú× Qê úë û

å






q e e q
e q

w

since s permutes the predicates of L,
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= 1 ( )
1

1 1

:{1, , }
(1), , ( )

 
    

�

� …
� … �

e q
q e e q
w

σ
σ σν−
− −

→
∑ ⋅












ϒ

ϒ Θ 

(1), , ( )
 : {1, , }  

1  ( ) = ( ).=
n

¡
¡¢ ¢

® ¡¢

é ù
ê ú× Q Ñ Qê úê úë û

å








L
q e e q

e q
w

To show that ULi holds, notice that for 1( , , )Q  na a  the state description 

	 1
=1

( , , ) ( ),= aQ Ù j

n

h jn
j

a a a

we obtain on 1+qL , 

	
1

1
, ,  {0,1} 1=

( , , ) =   ( ),e

e e
a

Î
Q Ú Ù





j
j

n

n

jhn
j

a a a

where 
	 1( ) ( ) ( ).= eea a +Ù jj

jj hh qx x P x

This gives 

1 ( )+
¡Ñ Q

qL

1

11 1=, ,  {0,1}, ,  {0,1}
=  e

e ee e
a+

¡
ÎÎ

æ ö÷ç ÷Ñ ç ÷ç ÷÷çè ø
å Ú Ù





q j
j

nn

nL
h

j

11

(1), , ( 1)1
, ,  {0,1} 1=, ,  {0,1}  : {1, , 1}  {1, , }

1=  e

e ee e n
a

n
¡

++
ÎÎ + ®

é ùæ ö÷çê ú÷ç ÷ê úç ÷÷çè øê úë û
å å Ú Ù







  

j
j

nn

n

he e qq
je q

w

11

(1), , ( 1)1
, ,  {0,1} 1= : {1, , 1}  {1, , } , ,  {0,1}

1  = e

e en e e
a

n
¡

++
Î+ ® Î

é ùæ ö÷çê ú÷ç ÷ê úç ÷÷çè øê úë û
å å Ú Ù







  

j
j

nn

n

he e qq
je q

w

 : {1, , }  {1, , }

1  =
n n®¢

é
ê ×êêë

å


 

q
e q

11

(1), , ( ), (1)
, ,  {0,1} 1=: {1}  {1, , } , ,  {0,1}

1 ,e

e en e e
an

¡
¢ ¢

Î® Î

ùæ ö÷ç ú÷ç ÷úç ÷÷çè øúû
å å Ú Ù





 

j
j

nn

n

he e q f
jf

w
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where

	 ( ) if  {1, , },
( ) =

(1) if  1.=

ì Î¢ïïíï +ïî

e i i q
e i

f i q

It now remains to show that 

11

(1), , ( ), (1)) (1), , ( )
, ,  {0,1} 1=:{1} {1, , } , , {0,1}

1  ( )=e

e en e e
an

¡¡
¢ ¢ ¢ ¢

Î® Î

æ ö÷ç Q÷ç ÷÷çè øå å Ú Ù
 



 

j
j

nn

n

he e q f e e q
jf

w w

� (12)

for arbitrary ˆ:{1, , }® ¡¢ e q . There are 2
*Î



qc  , 12
* +Î



qd   such that 

	 (1), , ( ) = ,¡
¢ ¢





ce e qw w

	
(1), , ( ), (1) = .¡

¢ ¢




de e q fw w

Given bj an atom of Lq+1, there is a unique atom ai of Lq and a unique 
{0,1}e Î  such that 

	 = .eb aj i

Thus, we can unambiguously write = e
j id c  for these i, e. We then obtain

 	
11 1

(1), , ( ), (1))
, ,  {0,1} =1 1, ,  {0,1} , ,  {0,1} =

 =e e

e ee e e e
a¡

¢ ¢
ÎÎ Î

æ ö÷ç ÷ç ÷ç ÷÷çè ø
å å ÕÚ Ù





 

j j
j j

nn n

nn

h he e q f
j j

w c

	 0 1

1=
( ).= +Õ j j

n

h h
j

c c � (13)

Since by picking row f (1) as the q+1’st row we partition the occurrences 
of the atom aj of Lq obtained by picking rows (1), , ( )¢ ¢e e q  into occur-
rences of the atoms 1a j  and 0a j  of Lq+1, and this is the only way in which 
we obtain these atoms, we must have 10 =+i i ic c c  for each {1, , 2 }Î 

qi . 
Thus (13) gives 

	 10
(1), , ( )

1 =1=
 ( )  ( ).= = ¢ ¢+ QÕ Õ

j j j

n n

h h h e e q
j j

c c c w

The equation (12) now follows.
It remains to show that Weak Irrelevance holds for ¡Ñ L. Let 1( , , )J  ma a , 

1( , , )j ++  m nma a  be state descriptions of L having no constant or predicates 
in common. We can assume that 1QFSLJ Î , 2QFSLj Î , where 1 2 = ØÇL L  
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and 1 2 =ÈL L L . Let ai  range over the atoms of L1, bj over the atoms of L2. 
Then we obtain in L1 and L2, respectively, 

	 1
1=

( , , ) ( ),=J aÙ i

m

m h i
i

a a a

	 1
1=

( , , ) = ( ).j b ++ + Ù j

n
g m jm m n

j
a a a

Suppose that 1
1{ , , }=  pL P P , 2

1{ , , }= + +p p rL P P . Then we obtain in L 

	
1

1
1=1 , ,  2

( , , ) =   ( ) ( ),J a b
£ £

ÙÚ Ù


 ii
r

m

m
shm i i

is s
a a a a

	
1

1
1=1  , ,  2

( , , )   ( ) ( ),=j a b++ + +
£ £

ÙÚ Ù


 j j
p

n

n
gt m jm m n m j

jt t
a a a a

and by ULi for ¡Ñ L, 

	 1

1 1=1 , ,  2
( )    ,=J a b¡ ¡

£ £

æ ö÷ç ÷çÑ Ñ Ù ÷ç ÷ç ÷è ø
Ú Ù 



ii
r

m

m
L L

sh
is s

� (14)

	 2

1 1=1  , ,  2
( )    .=j a b¡ ¡

£ £

æ ö÷ç ÷çÑ Ñ Ù ÷ç ÷ç ÷è ø
Ú Ù 



jjp
n

n
L L

gt
jt t

� (15)

Now for J jÙ , we obtain in L 

( )J j¡Ñ Ù
L

1 1 1 1= =1 , , 2 1 , , 2
=    a b a b¡

£ £ £ £

æ öæ öæ ö ÷ç ÷ç÷ç ÷÷çÑ Ù Ù Ùç÷ ÷ç ÷ç ÷ ç ÷÷ç ÷çç è ø ÷è øè ø
Ú Ú Ù Ù

 

ji ji
pr

m n

n n
L

s gh t
i js s t t

1 1  : {1, , }  {1, , }1 , , 2 1 , , 2

1=   
n n®£ £ £ £

é
ê ×êêë

å å å


 

 

pr
m n

q
e qs s t t

(1), , ( )
=1 =1

  a b a b¡
ùæ öæ öæ ö ÷ç ÷ úç÷ç ÷÷ç Ù Ù Ùç÷ç ÷÷ úç ÷ ç÷ ÷ç ÷ç ÷çè ø è øè øúû

Ù Ù
 ji ji

n n
gs the e q

i j
w

1 1

(1), , ( )
1= : {1, , }  {1, , }1 , , 2 1 , , 2

1=    
n

a b
n

¡

®£ £ £ £

é æ ö÷ê ç× Ù ÷ç ÷ê ÷çè øêë
å å å Ù





 

 

ii
pr

m n

n
shq e e q

ie qs s t t
w

(1), , ( )
=1

  ,a b¡
ùæ ö÷ç ú÷× Ùç ÷úç ÷çè øúû

Ù


jj

n
gte e q

j
w
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by IP for w e e q(1), , ( ) 
¡

= w
s s e q

q e e q
m

r1 , , 2 :{1, , } {1, , }
(1), , ( )

1

1
        

 
≤ ≤ →
∑ ∑ ⋅
…

�

… …
…

ν ν
ϒϒ

i

n

h si i
=1
∧ ∧

































 α β

1

(1), , ( )
1= : {1, , }  {1, , }1  , ,  2

1   
n

a b
n

¡

®£ £

æ öé ùæ ö ÷ç ÷çê ú÷ç ÷× × Ùç ÷ç ÷ê úç ÷÷ç ç ÷ç è øê úè øë û
å å Ù





 



jj
p

n

n
gte e qq

je qt t
w

1 1=1 1=1 , ,  2 1  , ,  2
    a b a b¡ ¡

£ £ £ £

æ ö æ öæ öæ ö÷ ÷ç ç ÷ç÷÷ ÷çç ç ÷Ñ Ù × Ñ Ùç÷÷ ÷ç ÷ç ç÷ ç÷ ÷÷ç ÷ç ç çè ø÷ ÷ç ç è øè ø è ø
å åÙ Ù 

 

j jii pr
m n

m nL L
s t hh

i js s t t
=

= ( )  ( ),J j¡ ¡Ñ × Ñ L L

by (14) and (15). 

We are now set up to prove the main result of this section:

Theorem 9 (The Representation Theorem for ULi).  Let w be a probabil-
ity function on L = Lq. Then w satisfies ULi if and only if there exists some 
normalized s-additive measure r such that 

	 ( ).= r¡Ñ ¡ò  Lw d � (16)

Proof:  By Theorem 8, it is straightforward to see that any w in the form (16) 
satisfies ULi, as it is a convex combination of ULi functions.

For the other direction, suppose w satisfied ULi. Then there is an exten-
sion nLw  of w to Ln and we obtain for 1( , , )Q  na a  a state description of L,

 
	

1( , , )
 

( ) ( ),= n

nF
F Q

FQ å


L

a a
w w



� (17)

where F ranges over the state descriptions of Ln. For a state description 
1 1( , , , , , )n n¡  P P a a , let 

	 (1) ( ) (1) ( )= { ( , , , , , | ,  are permutations of {1, , }}.s s n t t n s t n¡ ¡   P P a a

Note that the sets ¡ partition the set of state descriptions of Ln. We can now 
write (17) as 
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 ( ) ( )= n

ÎF ¡¡
F Q

Q Fåå Lw w


( )||{ }|=  ,
| |

n

¡

F Î ¡ F Q
¡

¡
å ÚLw

as nLw  is clearly constant on ¡ since it satisfies Px (and Ex).
Now the ratio

	
||{ }|

| |
F Î ¡ F Q

¡


is equal to the probability that by randomly picking distinct predicates 
1
, , qiiP P  and constants 

1
, , njja a , we have that 

	
1( , , ),s¡ Q  nj ja a

where s is (an initial segment of) the permutation of predicates of Ln with 
( ) =s kk i  for {1, , }Î k q .
Note that with our definition of ¡ÑL, we allow the same row to be picked 

multiple times, so not all picks of rows represent a permutation of the 
predicates. Thus the difference between the probabilities given by ¡ÑL and 
the above ratio is the difference between picking rows of ¡ with and with-
out replacement. However, since the probability of picking the same row 
twice is infinitesimal, it will disappear when taking standard parts.

Thus we obtain 

	 ||{ }| = ( ) .
| | ¡

æ öF Î ¡ F Q ÷ç ÷ Ñ Qç ÷ç ÷çè ø¡





L

Now taking  to be the measure on the ¡  given by nLw , we obtain 

	 ( )| ||{ }| |{ }|= ( ).
| | | | n 

¡

F Î ¡ F Q F Î ¡ F Q
¡ ¡

¡ ¡
Úå òLw d 

Taking standard parts, we obtain 

| ||{ }| |{ }|( ) = ( )
| | | |

 r
æ öF Î ¡ F Q F Î ¡ F Q ÷ç ÷¡ ¡ç ÷ç ÷çè ø¡ ¡

ò ò




d d 

= ( ),r¡Ñ ¡ò  L d

where r is the Loeb measure given by the nonstandard measure .� 
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Since ¡Ñ L satisfies WIP we obtain the following theorem.

Theorem 10.  The ¡Ñ L are the only functions satisfying ULi with WIP. 

Proof:  We follow essentially the proof for the analogous theorem for Atom 
Exchangeability.10

Let w be a probability function satisfying ULi with WIP. Let QFSLJ Î . 
Extend w to ¢w  on some language ¢L  large enough so that we can permute 
the predicates and constants in J  to obtain J¢ with no predicates nor  
constants in common with J. We can achieve this by picking ¢w  on ¢L  in 
the same ULi family as w, giving =¢w SL w  and guaranteeing WIP for 

¢w . By Px for ¢w  we then have ( ) ( )=J J¢ ¢ ¢w w . Now we clearly obtain

0 2 ( ( ) ( ) ( ))= J J J JÙ - ×¢ ¢ ¢ ¢ ¢w w w

= ( ) ( ) 2 ( ) ( ) ( ) ( )J J  J  J ¢ ¢ ¢
Y Y FÑ Ù Y - Ñ Y × Ñ F¢ ¢ò ò ò 

L L Ld d d

( ) ( )J J ¢
F+ Ñ Ù F¢ò  L d

( )2 2= ( ) 2 ( ) ( ) ( ) ( ) ( )J J J J  ¢ ¢ ¢ ¢
Y Y F FÑ - Ñ × Ñ + Ñ Y Fò ò 

 



L L L L d d

( )2
= ( ) ( ) ( ) ( ),J J  ¢ ¢

Y FÑ - Ñ Y Fò ò  
L L d d

using the Representation Theorem. Certainly, since the function under the 
integral is non-negative, there must be a measure 1 set such that ¢

YÑ L  is 
constant on this set for each QFSLJ Î , giving = ¢

YÑ¢  Lw  for any Y in this 
set. Since =¢w SL w , i.e. = ¢

YÑ Lw SL , marginalizing ¢w  to L yields 
= YÑ Lw , as required.� 

With Theorem 9, we have shown that the building blocks for probability 
functions satisfying Unary Language Invariance all satisfy Weak Irrelevance, 
and that in fact these are the only ones that satisfy this principle. This is 
analogous to the situation with Atom Exchangeability and its generaliza-
tion to Polyadic Pure Inductive Logic, Spectrum Exchangeability, see [12, 
Chapter 32].

10	  The principle of Atom Exchangeability is a strengthening of Px stating that a probabil-
ity function w should be invariant under permutations of the atoms of the language L (see 
e.g. [12, Chapter 14]). For the purposes of this paper however it is not necessary to know 
anything more about Atom Exchangeability.
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5.  A General Representation Theorem

In the case of Atom Exchangeability, Ax, we have a theorem stating that 
each w satisfying Ax can be represented as a difference of scaled ULi func-
tions with Ax (see e.g. [12, chapter 33]). In this section, we will prove an 
analogous result for Px. Recall that our default language L is Lq.

Definition 11.  Let 2Î


qc  . Let S be the set of all permutations of atoms 
of L that are induced by Px. Define the probability function 

cy  on QFSL by

	 1 1
1( ( , , )) =  ( ( , , ))

| |n nccy a a w a as
sÎS

Q Q
S

å 


 

for state descriptions 1( , , )Q  na a  of L. 
Note that by definition, 

cy  satisfies Px. By a straightforward argument 
we obtain the following variation on de Finetti’s Theorem:

Theorem 12.  Let w be a probability function on SL satisfying Px. Then 
there exists a normalized, s-additive measure  on the Borel sets of 2q  
such that

	
21= =1

 ( )  ( ) ( ).=a a 
æ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

òÙ Ù



j jq

n n

j jh hc
j j

w a y a d c


� (18)

Conversely, given such a measure , the function w defined by (18) satisfies Px. 

The key to obtaining the desired General Representation Theorem will 
therefore involve finding a uniform representation of the building blocks 

cy  
in terms of a difference of ULi functions. The ¡Ñ L functions used for this 
proof will have a specific characterization that deserves a slightly different 
notation. Since at this point, we will be working in the usual standard uni-
verse again, we will drop the standard part symbol ° from the notation and 
assume that all ¡ÑL from now on are given in their standard form.

Recalling the definition of ¡ÑL note that for fixed :{1, , } {1, , }e q n®  , 
the function (1), , ( ) e e qw¡



 is given by the q n´ -matrix with the i’th row 
identical to the e(i)’th row of ¡. Also, since with (1), , ( ) e e qw¡



 we also have 
all the ( (1)), , ( ( ))e e qw s s

¡


 for s ranging over the permutations of the predicates 
of L occurring in ¡ÑL, we see that this function is a convex combination of 
functions of the form 

cy .
We can now arrange ¡ÑL to contain a copy of 

cy  for a given 2Î


qc   as 
follows: Let F be the state description represented by the matrix 

	 1 1 2 2 2 2

| | | | | | | | | |
,

| | | | | | | | | |
a a a a a a

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷÷çè ø
   q q
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where ai occurs [ ]n×ic  times. Now let 1, , 0³ qp p  be such that 1= = 1åq
ii p  

and let ¡ be the n n´ -matrix containing [ ]n×ip  copies of the i’th row of F, 
for each i, and fill the remaining rows with arbitrary copies of rows from F. 
Then ¡ÑL certainly contains a copy of 

cy .
With this in mind, we can modify the notation of ¡ÑL to 

	 ¡Ñ
 Lp

for 1, ,=


 qp p p  to indicate that ¡ contains only q distinct rows, occurring 
with the frequency given by 



p. We will write ( )¡Ñ 

 L
cp  to indicate that ¡ 

arises from 2Î


qc   in this manner.
We can represent ( )¡Ñ 

 L
cp  in terms of 

cy  as follows. Let K = 
1={ | }=Î å

 qq
iin n q , so n KÎ



 represents the choices of picking rows from 
¡. Then we obtain the representation 

	 ( ) 1
1=
 ( , , )! ,=¡

Î

Ñ åÕ 

 







i
n

q
nL

qc ci
in K

n n yp p � (19)

where 



nc  results from picking rows according to n


 and (as standard) 

	 1 2
1

11 2

( )!
( , , )!       .= = , ,! !  !

æ ö+ + + ÷ç ÷ç ÷ç ÷çè ø









q
q

qq

n n n qn n n nn n n

Note that we need this multinomial coefficient here since ( )¡Ñ 

 L
cp  is in fact 

a sum of 

ew , and although each of the 

ew  occurring in 

cy  occurs, the nor-
malizing constant exists only implicitly in ( )¡Ñ 

 L
cp . With this notation in 

mind, we can prove the first step needed to show the desired theorem.

Lemma 13.  Let 2Î


qc  . Then there exist 0l ³  and probability functions 
1w , 2w  satisfying ULi such that 

	 1 2(1 ) .= l l+ -cy w w

Proof:  Fix 2Î


qc  . As demonstrated in the discussion above, we can easily 
find ¡ÑL  with 

cy  occurring in it, amongst other instances of 

ey . Thus, the 
problem reduces to finding a way to remove all of these other instances via 
ULi functions.

To this end, suppose that for each m KÎ


 we have ( )¡Ñ 



 L
cmp  such that ¡ is 

the state description obtained from 

cw  by the method discussed above. 
Then, since the representations of the form (19) of these functions only 
differ in the coefficients of the 

ey  occurring we obtain the equation 
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	 1( )  = ( , , )! ,¡

æ öæ ö ÷÷ çç ÷÷ çç ÷÷Ñ ×çç ÷÷ çç ÷÷ çç ÷ ÷ç çè ø è ø




 












m

L
q cm c A m m yp � (20)

where A is the K K´ -matrix with entry ,m n
 

 being 1 ,=Õ 

kq n
k m kp . It suffices now 

to show that we can pick the 



mp  such that A is regular. For suppose this is 
the case. Then we obtain from (20) the equation

	 1
1( )    ( , , )! .=-

¡

æ öæ ö ÷÷ çç ÷÷ çç ÷÷ çç ÷÷ çç Ñ ÷÷ çç ÷÷ çç ÷÷ ÷ç÷ç ÷ ÷ç çè ø è ø





 












m

L
q cm cA m m yp

Suppose 1
, , ( )=-

Î
   n m n m KA b . Then for 1,1, ,1=



n  we obtain

	 , ,( ) ( )
1

1 1    ,==
( , , )! !¡ ¡

Î Î

Ñ Ñå å     

 



 

 



L L
n m m n m mc cc

q m K m K
y b b

n n q
p p

and by collecting the functions with positive coefficients in the linear com-
bination on the right-hand side, we obtain constants , 0g l ³ , independent 
of c


, such that11 

	 , ( ) 1 2
1   ,=
!

g l¡
Î

Ñ -å  





 L
m mk c

m K
b w w

q
p

with 1w , 2w  convex combinations of ULi functions. Since this gives the 
probability function 

cy , we must have

	 1 21 ( ) ( ) ( ) ,= = =g l g l- -cy w w  

and thus 1=g l+ .
It remains to show that the m



p  can be chosen such that A is regular. For 
this, we will show the following by induction on j:
Let 1 21 < < <£ £ ji i i r  and let 1, , ji iA  be the j j´  sub-matrix of A 
obtained by taking the 1, , ji i ’th rows and columns of A. Then there is a 
choice of the 



kmp , 1, ,=  jk i i  such that 1, , ji iA  is regular.
For j =1, this is trivial. Suppose j = n+1 for some 1n ³  and consider 

1, , ji iA . For a given m KÎ


, the polynomial 1=Õ jq m
jj x  takes its maximum value 

11	 Note that we can safely assume 0l ¹ , since if = 0l , then the 

cy  in question would 
already satisfy ULi, and therefore already has the desired representation by the Representa-
tion Theorem for ULi. We also trivially have 0g ¹ , since 

cy  is a probability function for 
any 2Î



qc  .
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on 2q  at /= jjx m q. Fix an enumeration of K. There exists ,,1, ,=




k kki i qim m m  
such that 

	
,,

, ,

1 1= =
 >  
æ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

Õ Õ
i si s jk

k k

m mq q
i s i s

s s

m m
q q

for all j k¹ . For if not, then 

	
,,,

,, ,

1 1 1= = =
  <  

æ öæ ö æ ö ÷ç÷ ÷ç ç ÷÷ ÷ ç£ç ç ÷÷ ÷ çç ç ÷÷ ÷ç ç ç ÷è ø è ø è ø
Õ Õ Õ

i si s ji s jk
jk k

mm mq q q i si s i s

s s s

mm m
q q q

for some j k¹ , and continuing in this way we arrive at a contradiction.
By the inductive hypothesis, there exists a choice of the 



msp , s  
1{ , , }\ { } j ki i i  such that the sub-matrix 1 1 1, , , , ,- + k k ji i i iA  is regular. Thinking 

of the ,


ikm sp  for the moment as unknowns we obtain for the determinant of 
1, , ji iA  an expression of the form 

1, ,det( ) =
 ji iA

,
1 1 1

1

,
, , , , ,, ,

1 1{ , , }\ { }= =
det ( )  ( det ( )),

- +
Î

± × + × ±åÕ Õ 

 



i t sk
k k ji ik k

j k

q qm ms
i i i i tm s m s

s st i i i
A A p p � (21)

(for some choices of ±) where the At are the corresponding sub-matrices of 
1, , ji iA . Now picking 

, ,( / )=

k ki s

g
i sm m qp  for large enough g > 0, the term 

	 1 1 1

,
, , , , ,,

1=
det( )

- +
×Õ 

 

ik
k k jik

q m s
i i i im s

s
A p

becomes the dominant term of (21), giving that 
1, ,det( ) 0¹
 ji iA , as certainly

,
,1=  > 0Õ 

k

k

i s
i s

nq
s mp  and 

1 1 1, , , , ,det ( ) 0
- +

¹
 k k ji i i iA  by the inductive hypothesis.

Note that using this procedure we in general obtain 



mp  with entries ,


im jp  
not summing to 1. In that case, we can pick ¢



mp  such that 

	 ,
,

,1=

=
 

¢

å







i
i

i

m j
m j q

m ss

p
p

p

for each m KÎ


. Then the matrix ¢A  with entries ,
1 ,=  ¢Õ 

j

i

n sq
s m sp  is regular just if 

A is, and the ¢


mp  have the desired properties.� 

Using this lemma, we can now prove the desired theorem.
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Theorem 14 (The General Representation Theorem for Px).  Let w be a 
probability function on SL satisfying Px. Then there exist 0l ³  and prob-
ability functions 1w , 2w  satisfying ULi such that 

	 1 2(1 ) .= l l+ -w w w

Proof: Let w be a probability function on SL satisfying Px. By the Repre-
sentation Theorem for Px, we have that w has a representation 

	
2

( )= ò 



q cw y d c


� (22)

for some measure , and by Lemma 13, we have, for a fixed 0l ³ , a rep-
resentation 
	 21(1 )= l l+ - 



c ccy w w

for each 2Î


qc  . Now applying this to the representation (22), we obtain

2
1 2(1 ) ( )= l l + -ò 




ccq
w w w d c



2 2
1 2(1 ) ( ) ( )= l  l + -ò ò 


 

ccq q
w d c w d c

 

1 2(1 ) ,= l l+ -w w

for 

2 2
1 1 2 2( ),    ( ),==  ò ò 



 

ccq q
w w d c w w d c

 

as required.� 

Theorem 14 might initially suggest that if our agent chooses a probability func-
tion w on a language L then she can express w in the form 1 2(1 )w wl l+ - , 
where 1 2,w w  satisfy ULi, and hence extend w to a larger language by using 
this form with 1 2,w w  extended to this larger language. The flaw in this argu-
ment is that for J from a larger language there is no longer any guarantee 
that 
	 1 2(1 ) ( ) ( ).l J l J+ ³w w

In other words such an attempt to extend w can (in fact has to if w fails 
ULi) lead to ‘negative probabilities’.

Again, as with Theorem 9, an analogous General Representation Theorem 
to Theorem 14 has been proved for Atom Exchangeability and its gener-
alization to Polyadic Pure Inductive Logic, Spectrum Exchangeability, see 
[12, Chapter 34].
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6.  Conclusion

The three main results in this paper are the Representation Theorems 5 
and 9 for ULi + IP and ULi respectively and the General Representation 
Theorem 14. In the process we also obtained a complete characterization 
of the probability functions satisfying ULi with Weak Irrelevance, Theorem 10. 
Mathematically such representation theorems are valuable because they tell 
us how probability functions satisfying, for example ULi, are made up of 
simple building block functions satisfying ULi. As a result it is often the 
case that to prove some property holds of all probability functions satisfying 
ULi it is enough to show it for these simple building blocks, of which we 
usually have a much clearer grasp. Whilst the mathematics may be some-
what technical at times there are numerous examples where this has led to 
results which are philosophically interesting, particular examples of this 
being Humburg’s use of de Finetti’s Representation Theorem to prove that 
Ex implies the Principle of Instantial Relevance, see [9], and the recent use 
of the polyadic version of de Finetti’s Theorem to refine the Counterpart 
Principle of Analogy, see [12, Chapter 22].

In particular in this paper we have obtained results characterizing the 
probability functions satisfying Px and relating this principle to ULi, IP and 
WIP, all principles which are directly accessible to philosophical consid-
eration. Indeed it seems to us hard not to grant Px the same degree of 
acceptance as Ex commonly now enjoys within the context of Pure Induc-
tive Logic, and in this case investigating its properties and relationships 
with other purportedly rational principles is central to the subject.

Throughout this paper we have worked in the conventional Unary Pure 
Inductive Logic. Over the past decade however there has been a rapid 
development of Polyadic Pure Inductive Logic (again see [12]) and we 
anticipate that the Representation Theorem for ULi functions can be 
extended to the polyadic case, using the same methods as demonstrated 
above. A classification for probability functions on polyadic languages  
satisfying Language Invariance would give rise to the question whether we 
can find a corresponding General Representation Theorem for the polyadic 
case as well.
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