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Introduction

In many conventional systems of semantics for quantified modal logic, 
models are built on presheaves. Given a set K of “possible worlds”, Kripke’s 
semantics [11], for instance, assigns to each world k  K a domain of quan-
tification P(k) — regarded as the set of possible individuals that “exist” 
in k — and then xj$  is true at k iff some a  P(k) satisfies j at k. David 
Lewis’s counterpart theory [13] does the same (though it further assumes 
that P(k) and P(l) are disjoint for k l K¹ Î ). Such an assignment P of 
domains to worlds is a presheaf :P K ® Sets over the set of worlds, thus 
an object of the topos KSets . (Due to the disjointness assumption one may 
take counterpart theory as using objects of the slice category / KSets , 
which however is categorically equivalent to KSets ). Kripke-sheaf seman-
tics for quantified modal logic [7, 4, 6, 22] is another example of this sort. 
Indeed, both counterpart theory and Kripke-sheaf semantics interpret unary 
formulas by subsets of the “total set of elements” ( )k K P kÎå , and, more 
generally, n-ary formulas by relations of type: 

	 ( ( ) )  Sub ( ).K
n n

k K
P k P

Î
@å Sets

In fact, counterpart theory and Kripke-sheaf semantics interpret the non-modal 
part of the logic in the same way. (Kripke’s semantics differs somewhat in 
interpreting n-ary formulas instead as subsets of ( ( ))n

k KK P kÎ´


).
Among these presheaf-based semantics, the principal difference consists 

in how to interpret the modal operator □. Let K be a set of worlds | |=K K  
equipped with a relation k j£  of “accessibility”. Kripke declares that an 
individual ( )ka P kÎÎ K

 satisfies a property □j at world k Î K  iff a satis-
fies j in all j k³ . Lewis instead introduces a “counterpart” relation among 
individuals, and deems that a  P(k) satisfies □j iff all counterparts of a 
satisfy j. We may take Kripke-sheaf semantics as giving a special case of 
Lewis’s interpretation: Assuming K to be a preorder, the semantics takes a 
presheaf :P ®K Sets on opK , and not just on the underlying set | |K , so 
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that a model comes with comparison maps : ( ) ( )kj P k P ja ®  whenever 
k j£  in K. Then : ( ) ( )kj P k P ja ®  gives a counterpart relation: ( )kj aa  is 
the counterpart in the world j of the individual ( )a P kÎ , so that a satisfies 
□j iff ( )kj aa  satisfies j for all j k³ . (Notable differences between Kripke-
sheaf semantics and Lewis’s are the following: In the former, K can be any 
preorder, whereas Lewis only considers the universal relation on K. Also, 
since P is a presheaf, the former assumes that ( )a P kÎ  has one and only 
one counterpart in every j k³ ).

In terms of interior operators, this gives an interpretation of □ on the 
poset | |Sub ( )uPKSets  of sub-presheaves of uP where | |:u ® KKSets Sets  is 
the evident forgetful functor. Note that such sub-presheaves are just subsets 
of ( )k K P kÎå . Explicitly, given the presheaf P on K and any subset uPj Í  
of elements of ( )k K P kÎå , then uPj jÍ Í  is the largest subpresheaf 
contained in j.

Observe that u is the inverse image part of a fundamental example of a 
geometric morphism between toposes, namely, *=u i  for the (surjective) 
geometric morphism
	 | |*

* :i i ®K KSets Sets

induced by the “inclusion” | |:i K  ↪ K of the underlying set | |K  into K. In 
particular, u is restriction along i. This observation leads to a generalization 
of these various presheaf models to a general topos-theoretic semantics for 
first-order modal logic [1, 5, 15, 19], which gives a model based on any 
surjective geometric morphism :f ®  . Indeed, for each A in  , the 
inverse image part :f * ®   restricts to subobjects to give an injective 
complete distributive lattice homomorphism : Sub ( ) Sub ( )A A f A*®D  , 
which always has a right adjoint AG . Composing these yields an endo- 
functor A AD G  on the Heyting algebra Sub ( )f A* : 

� (1)
	

In the special case considered above, the interior operation on the “big algebra” 

	 | |( ( )) Sub ( )
k

P k uP
Î

@å KSets
K



determines the “small algebra” Sub ( )PKSets  as the Heyting algebra of upsets 
in ( )k P kÎå K  (an upset ( )kS P kÎÍ å K  is a subset that is closed under the 
counterpart relation: a SÎ  for ( )a P kÎ  implies ( )kj a Sa Î  for all j k³ ). 
Moreover, PG  is the operation giving “the largest upset contained in ...”, and 

PD  is the inclusion of upsets into the powerset. In this case, the logic is 
“classical”, since the powerset is a Boolean algebra.
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In the general case, the operator □ is of course interpreted by A AD G , 
which always satisfies the axioms for an S4 modality, since A AD G  is a left 
exact comonad. The specialist will note that both AD  and AG  are natural 
in A, in a suitable sense, so that this interpretation will satisfy the Beck-
Chevalley condition required for it to behave well with respect to substitu-
tion, interpreted as pullback (see [1]).

This, then, is how topos-theoretic semantics generalizes Kripke-style and 
related semantics for quantified modal logic (cf. [1]). Now let us further 
observe that, since  is a topos, it in fact has enough structure to also inter-
pret higher-order logic, and so a geometric morphism :f ®   will inter-
pret higher-order modal logic. This is the logic that the current paper inves-
tigates. The first step of our approach is to observe that, because higher-order 
logic includes a type of “propositions”, interpreted by a subobject classifier 
W, the natural operations on the various subobject lattices in (1) can be 
internalized as operations on W. Moreover, the relevant part of the geomet-
ric morphism :f ®  , giving rise to the modal operator, can also be 
internalized, so that one really just needs the topos  and a certain algebraic 
structure on its subobject classifier W . That structure replaces the geomet-
ric morphism f  by the induced operations on the internal algebras *f W  and 
W  inside the topos . More generally, the idea is to describe a notion of 
an “algebraic” model inside a topos , using the fact that S4 modalities 
always occur as adjoint pairs between suitable algebras.

In a bit more detail, the higher-order logical language will be interpreted 
w.r.t. a complete Heyting algebra H in , extending ideas from traditional 
algebraic semantics for intuitionistic logic [16, 21]. The modal operator on 
H arises from an (internal) adjunction 

	 �
(2)

where i is a monic frame map and t classifies the top element of H. (This, 
of course, is just the unique map of locales from H to the terminal locale). 
Externally, for each A Î , we then have a natural adjunction between 
Heyting algebras, 

	 �
(3)

defined by composition as indicated in the following diagram: 
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Comparing (3) to (1), we note that in the case *=H f W  for a geometric 
morphism :f ®   we have: 

	 * *
*Hom ( , ) Hom ( , ) Hom ( , ) Sub ( ),=A H A f f A f AW @ W @    

as required.
In this way, the topos semantics formulated in terms of a geometric mor-

phism :f ®   gives rise to an example of the required “algebraic” struc-
ture (3), with =H f*W , and the same semantics for first-order modal logic 
can also be defined in terms of the latter. On the other hand, every algebraic 
model in  arises in this way from a geometric morphism from a suitable 
topos , namely the topos of internal sheaves on H. Thus, as far as the 
interpretation of first-order logic goes, the algebraic approach is equivalent 
to the geometric one (the latter restricted to localic morphisms, which is 
really all that is relevant for the interpretation). The advantage of the alge-
braic approach for higher-order logic will become evident in what follows. 
To give just one example, we shall see how the interpretation results in a 
key new (inherently topos-theoretic) treatment of equality which illumi-
nates the relation between modality and intensionality.

The goal of this paper is both to present the new idea of algebraic topos 
semantics for higher-order modal logic and to revisit the accounts of  
first-order semantics that are scattered in the literature, putting them into 
perspective from the point of view of the unifying framework developed 
here. The question of completeness will be addressed in a separate paper [3], 
extending the result in [2].

In the remainder of this paper, we first review the well-known topos 
semantics for (intuitionistic) higher-order logic and describe the adjunction 
i t  in some detail. The second section then states the formal system of 
higher-order modal logic that is considered here and gives the definition of 
its models. The third section discusses in detail the failure of the standard 
extensionality principles and the soundness of the modalized versions 
thereof. We then show how the semantics based on geometric morphisms 
can be captured within the present, algebraic framework. The last section 
states the representation theorem mentioned above.

For general background in topos theory (particularly for section 5) we refer 
the reader to [9, 10, 14], and for background on higher-order type theory 
to [8, 9, 12]. We assume some basic knowledge of category-theoretical con-
cepts, but will recall essential definitions and proofs so as to make the paper 
more accessible. The algebraic approach pursued here was first investigated 
by Hans-Jörg Winkler and the first author, and some of these results were 
already contained in [23]. Finally, we have benefitted from many conversa-
tions with Dana Scott, whose ideas and perspective have played an obvious 
role in the development of our approach.
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1.  Frame-valued logic in a topos

Recall that a topos  is a cartesian closed category with equalizers and a 
subobject classifier W . The latter is defined as an object W  together with 
an isomorphism 
	 Sub ( ) Hom ( , ),A A@ W  � (4)

natural in A (w.r.t. pullback on the left, and precomposition on the right). 
Equivalently, there is a distinguished monomorphism :1® W  such that 
for each subobject M A  there is a unique map : A ® W  for which M 
arises as the pullback of  along : 

	

This definition determines W  up to isomorphism. The map  is called the 
classifying map of M. The category Sets is a topos with subobject classifier 
the two-element set 2. The classifying maps are the characteristic functions 
of subsets of a given set A. We list some further examples that will play a 
role later on.

Example 1.1.  An important example is the subobject classifier in the topos 
of I-indexed families of sets, for some fixed set I; equivalently the functor 
category Sets I. It is a functor : IW ® Sets with components ( ) =iW 2 .

The subobject classifier in opCSets , for any small category C, is described 
as follows. For any object C in C, ( )CW  is the set of all sieves s on C, i.e. 
sets of arrows h with codomain C such that h sÎ  implies h f sÎ , for 
all f with cod( ) dom( )=f h . For an arrow :g D C®  in C, ( )( )g sW  is the 
restriction of s along g: 

	 |( )( ) { : },=g f X D g fs s®W Î

which is a sieve on D. The mono :1® W  is the natural transformation 
whose components pick out the maximal sieve C  on C, i.e. the set of all 
arrows with codomain C (the terminal object 1 being pointwise the single-
ton). The classifying map mc  of a subfunctor :m E F  has components 

	 ( ) ( ) { : | ( )( ) ( )}.=m C a f X C F f a E Xc ® Î

In particular, if C is a preorder, then ( )CW  is the set of all downward closed 
subsets of C¯ . Since in this case there is at most one arrow :g D C® , the 
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function F(g) may be thought of as the restriction of the set F(C) to F(D) 
along the inequality D ≤ C.� □ 

Each W  is a complete Heyting algebra, internal in . Generally, the notion 
of Heyting algebra makes sense in any category with finite limits. It is an 
object H in  with maps 

	 ,  , ,1    H H H^ Ù Ú Þ
´ 

 

that provide the Heyting structure on H. These maps are to make certain 
diagrams commute, corresponding to the usual equations defining a Heyting 
algebra. For instance, commutativity of

	

corresponds to the axiom =x xÙ , for any x HÎ . The correspondence 
between the usual equational definition and commutative diagrams in a 
category C can be made precise using the internal language of C [14].

The induced partial ordering on H is constructed as the equalizer

	
1   

  
 ,E H H Hp

Ù
´ 



corresponding to the usual definition 

	  iff .=x y x y x£ Ù

The description of arbitrary joins and meets additionally requires the exis-
tence of exponentials and is an internalization of how set-indexed joins and 
meets in set-structures can be expressed via a suitable adjunction. For any 
object I in , there is an arrow 

	 : I
I H HD ®

that is the result of applying the functor ( )H -  to the unique map 1I ®   
in . In detail, : I

I H HD ®  is the exponential transpose of 1 : H I Hp ´ ®  
across the adjunction ( ) ( ) II- ´ - . Set-theoretically, for any x HÎ , 

( ) ( ) =I x i xD , for all i IÎ . The object HI inherits a poset structure (in fact, 
a Heyting structure) from H, which set-theoretically translates into the 
pointwise ordering.

I-indexed joins IÚ  and meets IÙ  are given by internal left and right 
adjoints to ID , respectively. After all, joins and meets are coproducts and 



	 topos semantics for higher-order modal logic� 597

products in the Heyting algebra H, and these can always be defined by 
adjoints in exactly that way, regarding H as in internal category in .  
This is analogous to externally defining I-indexed products (coproducts) 
of families ( )i i IA Î  of objects in a category C by right (left) adjoints to the 
functor 
	 : I

ID ®C C

Example 1.2.  In case  = Sets, the right adjoint I"  to ID  is explicitly 
computed as 
	 ( ) { | ( ) },=I If a H a f" Î D £Ú � (5)

following the standard description of the right adjoint to a map of complete 
join-semilattices, in this case ID . In fact, it is not hard to see that 

	 ( ) ( ).=I
i I

f f i
Î

" Ù

The left adjoint I I$ D  is described dually.� □ 

Example 1.3.  An important case that will be useful later is where the cat-
egory in question is of the form opCSets , for a small category C. Products 
in opCSets  are computed pointwise. In particular, a Heyting algebra H in 

opCSets  has pointwise natural structure. That is to say, each H(C), for C in 
C, is a Heyting algebra in such a way that e.g. for all binary operations  
on H, ( ) ( ( ) ( ))=D CH f H f H f´   , for any arrow :f C D®  in C. This 
is because the structure maps, being arrows in opCSets , are natural trans- 
formations. Naturality in particular means that for each :f C D®  in C, the 
map ( )H f  preserves the Heyting structure.

By contrast, exponentials are not computed pointwise but by the formulas 

	 ( ) Hom( , )=IH C C I H´y

	 ( ) : ( 1 ),I
IH f fh h ´y 

where yC denotes the contravariant functor Hom ( , )C-C . The induced 
Heyting structure on HI is the pointwise one at each component. In par-
ticular, for any ,  : C I Hh  ´ ®y , 

(in ( )) iff ,  for eachI
D DH C D Ch  h £ £ Î

iff ( , ) ( , ) (in ( )),  for each : , ( ).D Df b f b H D f D C b I Dh £ ® Î

Since we are mainly interested in adjoints between ordered structures, for any 
two order-preserving maps : :H Gh   between internal partial orderings 
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H, G in opCSets , h   means that C Ch   at each component C. That is to 
say 
	 ( )  iff  ( ),C Cx y x yh £ £

for all ( )x H CÎ , ( )y G CÎ .
The natural transformation : I

I H HD ®  (henceforth D) determines for 
each ( )x H CÎ  a natural transformation ( ) :C x C I HD ´ ®y  with com‑ 
ponents 
	 ( ) ( , ) ( )( ).=C Dx f a H f xD

Its right adjoint : I
I H H" ®  (henceforth ") has components, for any 

Hom( , )C I Hh Î ´y ,

	 ( ) { ( ) | ( )( ) ( , ), for all : ,  ( )},=C Ds H C H f s f b f D C b I Dh h" Î £ ® ÎÚ

where the join is taken in H(C ). Dually, the left adjoint $ of D has com-
ponents 

	 ( ) { ( ) | ( , ) ( )( ), for all : , ( )}.=C Ds H C f b H f s f D C b I Dh h$ Î £ ® ÎÙ

(Note that for instance the condition on the underlying set of the join ( )C h"  
expresses that ( )C s hD £  as elements in ( )IH C , so these definitions are in 
accordance with the general definition of right adjoints to DC given in the 
previous example).

Lastly, each H(C ) really is a complete Heyting algebra in the usual 
sense of having arbitrary set-indexed meets and joins (so the previous def-
initions of " and $ actually make sense). For any set J, the right adjoint 

: ( ) ( )J
J H C H C" ®  can be found as follows. Consider the constant J-val-

ued functor DJ on C (and constant value 1J on arrows in C). For any C in 
C, there is an isomorphism 

	 

Hom ( , ) Hom ( , )J HC C J H@ ´DSets C y

(natural in J and H ). Given a function :h J HC® , define a natural transfor-
mation :h C J Hn ´D ®y  to have components ( ) ( , ) ( )( ( )).=Dh g a H g h an  
Conversely, given a natural transformation h on the right, define a function 

:f J HCh ®  by ( ) (1 , )= CCf a ah h . These assignments are mutually inverse. 
Moreover, the map that results from composing : ( )J

J HC H CDD ®  with 
that isomorphism is computed as 

	 ( ( )) ( ) ( ) (1 , ) = (1 ) ( ) ,= =C C C C Cf x a x a H x xD D
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so that for any x HCÎ , ( )C xD  is the constant x-valued map on J. This 
justifies taking the right adjoint to DJ as the sought right adjoint of the 
diagonal map ( )JHC H C® .

Indeed, for exponents DJ the formula for the right adjoint to DC, for 
instance, takes the familiar form met in the previous example

	
( )

( ) ( ) ( ) (1 , ),= = =C J CC
a J a J C

f f a ah h h h
Î ÎD

" " Ù Ù
or 
	

( )
( ) ( ) ( ) (1 , ) ( ),= = =J C C C

aa J C J
h h h a h an n

ÎÎD
" " Ù Ù

respectively.� □

For convenience, let us recall the Heyting structure of W  in more detail, 
as it will be useful later on. It is uniquely determined by the natural iso- 
morphism (4) and the Yoneda lemma which “internalizes” the (complete) 
Heyting structure of Hom ( , )- W   (coming from Sub ( )- ) to W . Since 
each pullback functor : Sub( ) Sub( )f B A* ® , for :f A B®  in , preserves 
the Heyting structure on Sub (B), all the required diagrams that define the 
Heyting operations on W  necessarily commute.

The top element is : 1® W , which by the previous considerations is 
the classifying map of the identity on the terminal object. The bottom ele-
ment is the characteristic map of the monomorphism 0 1 , where 0 is the 
initial object of . Meets 

	 : Ù W ´W ® W  

are given as the classifying map of , : 1á ñ ® W ´W   , which is the  
classifying map of the pullback of 1, uá ñ  and , 1uá ñ  ( : 1u W ®  is the 
canonical map):

	

viewed as subobject of W ´W  ; while 1, uá ñ  and , 1uá ñ  in turn arise as 
the subobjects classified by 2p  and 1p , respectively. In a similar way, joins 
are constructed as classifying map of the image of the map 

	 1, , , 1  : .u uW W
é ùá ñ á ñ W + W ® W ´Wê úë û      
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Implication is given as the classifying map of the equalizer 

	 1   

  
  .E p

Ù
W ´ W W

  

The classifying map can be factored as follows, where the two squares are 
pullbacks: 

	

following a standard description of equalizers.1
Using the Yoneda principle one also obtains indexed meets and joins as 

adjoints to the map : I
ID W ® W  . They are essentially provided by the fact 

that, for any topos , and any arrow :f A B®  in , the pullback functor 

	 : Sub ( ) Sub ( )f B A* ® 

has both a right and a left adjoint. Adding a parameter X yields that 

	 (1 ) : Sub ( ) Sub ( )X f X B X A*´ ´ ® ´ 

restricts to a functor 

	 Hom ( , ) Hom ( , )B AX XW ® W   

by the isomorphisms 

	 Sub ( ) Hom ( , ) Hom ( , ).YX Y X Y X´ @ ´ W @ W   

These are natural in X and so by Yoneda provide a map 

	 ,ABW ® W 

which is precisely fW .
In particular, DI arises in this way from pullback along the projection 

1 : X I Xp ´ ® :

	 1 :  Sub ( ) Sub ( ),X X Ip* ® ´ 

1	  Actually, the Yoneda argument determines Þ as the classifying map of the subobject 
,1 ( )uΩ〈 〉∀


   of Ω ×Ω  , where the latter is precisely the said equalizer.
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that is by applying the previous argument to the map : 1Iu I ® , as 
required. The external adjoints of 1p* induce the required internal adjoints 
of .=Iu

IW D
As is well-known, one can interpret (intuitionistic) higher-order logic 

w.r.t. this algebraic structure on W  [12, 14]. In particular, each formula 
| jG , where 1 1( : , , : )= n nx A x AG   is a suitable variable context for j, is 

recursively assigned an arrow 

	    

 

1     
   nA A j

´ ´ W





in . Connectives and quantifiers are interpreted by composing with the 
evident Heyting structure maps of W  described above. For instance, 
 : | . x A y j"  is the arrow 

	
 

 

 

 

 

 
    ,
           

BB BA
l j "

W W 

 

where 
 

 Bl j  is the exponential transpose of 

	      :   .A Bj ´ ® W

In particular, the equality predicate on each type M is interpreted as the 
classifying map 

 Md  of the diagonal 

	
 

 

     1 ,1 :   .M M M M Má ñ ® ´
 

Example 1.4.  When = Sets , and =WSets 2 , then the right adjoint I"  to 
: I

ID ®2 2  is by definition required to satisfy 

	 ( )  iff ( ),II x f x fD £ £ "

which holds just in case I"  satisfies 

	 ( ) 1  iff ( ) 1, for all  .= =I f f i i I" Î

Equivalently,
	 ( ) 1  iff  ,= =I S S I"

where S IÍ . Given a formula |:x X j , and an interpretation  

   
   

X j 2 , 
then 

 

 

 : 1 X
Xl j ® 2  picks out the subset S of  X  whose characteristic 

map is  j , i.e. the set of objects in  X  that satisfy j. Thus  . 1=x j"  if 
and only if  =S X , as expected.� □
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In principle, these definitions make sense for any Heyting algebra H in  
in place of W , except for interpreting equality, since there is no notion of 
classifying map available for arbitrary H. We present below a way in gen-
eral to canonically interpret equality for arbitrary H, closely connected to 
the treatment of modal operators.

Definition 1.1.  In any topos , a frame H in  is a complete Heyting alge-
bra H in . A frame homomorphism :f H G®  is a map f in  that is 
internally , ÙÚ -preserving. 

Example 1.5.  The prototypical frame is the collection of open sets ( )X  
of a topological space X. The set ( )X  is a complete Heyting algebra, as 
is ( )X . However, arbitrary meets in ( )X  are in general not mere inter-
sections. That is to say, the inclusion 

	 : ( )i X  ↪ ( )X

does not preserve them. This exhibits ( )X  as a subframe of ( )X  rather 
than a sub-Heyting algebra. The example also illustrates why the notion 
frame homomorphism matters at all. Note also that every frame map 

:f H G®  has a right adjoint f*, defined for any y GÎ  as 

	 ( ) { | ( ) }.=f y x H f x y* Î £Ú � (6)

The right adjoint to the inclusion i is the interior operation on the topo-
logical space X, which determines, in accordance with the formula for f*, 
the largest open subset (w.r.t. X ) of an arbitrary subset of X.

A related and more elementary example is the set inclusion 3 ↪ 4 of the 
three element Heyting algebra into the four element Boolean algebra, as 
indicated in:

	

(3 may be thought of as the open set structure of the Sierpiński space.) The 
inclusion does not preserve the implication 10 00® : 

	 10 00 00,  in=® 3
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while 
	 10 00 01,  in .=® 4

Since i preserving arbitrary meets is equivalent to saying that i preserves 
implications, 3 is included in 4 as a subframe rather than as a sub-Heyting 
algebra.� □
In a topos  the frame W  plays a distinguished role:

Lemma 1.2.  In any topos , the subobject classifier W  is the initial frame. 
That is to say, for every frame H in , there is a unique frame map 

:i HW ® . Moreover, the right adjoint t of i is the classifying map of the 
top element : 1H H®  of H. 

We refer to [9] (C1.3) for the proof.
We will mainly be interested in those frames H for which the map 

:i HW ®  is monic, to which we will refer as faithful.2 This map :i HW ®  
will play a crucial role both in modelling equality and the modal operator 
on H. Looking ahead, suppose given a suitable (intuitionistic) higher-order 
modal theory (as in section 2). Then we shall interpret equality on a type A 
w.r.t. an H-valued model in a topos  as the composite of i with the usual 
classifying map of equality: 

	    

      .
      

A iA A Hd
´ W 



The semantics thus obtained is not sound w.r.t. standard higher-order  
intuitionistic logic; in particular, function and propositional extensionality 
fail (as we shall show by providing counterexamples). On the other hand, 
one can restore soundness by taking into account the following naturally 
arising modal operator.

Lemma 1.3.  Given a frame H in a topos , let i t  be the canonical 
adjunction described in lemma 1.2, 

	 : : .i H tW 

The composite i t  is then an S4 modality on H. 

Proof.  The composite i t  preserves finite meets because both components 
do. In virtue of i t , the composite is a comonad, which gives the S4 laws.
� □ 

2	  A frame H is faithful in this sense iff the inverse image part of the canonical geometric 
morphism Sh ( )H ®   is faithful (see section 5).
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2.  Higher-order intuitionistic S4

The formal system of higher-order modal logic considered here is simply 
the union of the usual axioms for higher-order logic and S4. The higher-
order part is a version of type theory (cf. [8, 9, 12]). Types and terms are 
defined recursively. A higher-order language  consists of a collection of 
basic types , ,A B  along with basic terms (constants) : , :a A b B. To stay 
close to topos-theoretic formulations, we assume the following type and 
term forming operations that inductively specify the collection of types and 
terms of the language: 

•	 There are basic types 1, P 
•	 If A, B are types, then there is a type A B´  
•	 If A, B are types, then there is a type BA  

Terms are recursively constructed as follows. Here we assume, for every 
type A, an infinite set of variables of type A, written as :x A, to be given. 
We follow [8] in writing | :t BG , for 1 1( : , , : )= n nx A x AG  , involving at 
least all the free variables in the term t. A context G may also be empty. 
Formally, every term t always occurs in some variable context G and is 
well-typed only w.r.t. such a context. This is important to understand the 
recursive clauses below. To simplify notation, however, we omit G if it is 
unspecified and the same throughout a recursive clause.

•	 There are distinguished terms |Ø :1*  and Ø | , : ^ P  
•	 If :t A and :s B are terms, then , :t s A Bá ñ ´  is a term 
•	 If :t A B´  is a term, then there are terms 1 :t Ap  and 2 :t Bp  
•	 If | :t AG  is a term and :y B a variable in G, then there is a term 

|[ : ]  . : By B y t AlG ; where [ : ]y BG  is the context that results from G by 
deleting :y B. 

•	 If : Bt A  and :s B are terms, then app (t, s) : A is a term. 
•	 For any two terms :t P, :s P there are terms :t sÙ P, :t sÚ P, :t sÞ P. 
•	 If , : | :y B tG P is a term, then | . :y tG " P is a term; and similarly for 

| . :y tG $ P 
•	 If :t A and :s A are terms, then :=As t P is a term. 
•	 If :t P is a term, then :t P is a term. 

One also assumes the usual structural rules of weakening of the variable 
context (adding dummy variables), contraction, and permutation. We may 
also assume that each variable declaration occurs only once in a context.

As usual, we define a deductive system by specifying a relation  between 
terms of type P. The crucial difference between the standard formulation 
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of intuitionistic higher-order logic and the present one are the modified 
extensionality principles marked with (*).

	 •	 j j  

	 •	 :
[ / ] [ / ]

t A
t x t x
j y

j y



, for :x A (similarly for simultaneous substitution)

	 •	 j y y J
j J

 


 

	 •	 =Ax x , where :x A 

	 •	 [ / ]= Ax x x xj jÙ ¢ ¢ . where : , :x A x A¢  

(*)	 •	 ( ( ) ( ))= = AB Bx f x g x f g"  , for terms :x A and , : Af g B  

(*)	 •	 ( ) =p q p qÛ  P , for terms :,p q P 

	 •	 1= x* , where :1x  

	 •	 1 , = Ax y xp á ñ  and 2 , = Bx y yp á ñ , where :x A and :y B 

	 •	 21 , =A Bw w wp p ´á ñ , for :w A B´

	 •	 |[ : ] ( . , ) [ / ]=Bx A x t x t x xlG ¢ ¢ app , for | :t BG  and :x A¢  

	 •	 . ( , ) = ABx w x wl app , for : Aw B  

	 •	 j , for any :j P  

	 •	 j^ , for any :j P  

	 •	  iffj y J j yÙ   and j J  

	 •	  iffj y J j JÚ    and y J  

	 •	  iffj y J j y JÞ Ù   

	 •	 | .  iff , : |x x Aj y j yG $ G   

	 •	 | .  iff , : |x x Aj y j yG " G   

Definition 2.1.  A theory in a language  as specified above consists of a set 
of closed sentences a, i.e. terms of type P with no free variables (well-typed in 
the empty context), and which may be used as axioms in the form | aG  . 

Remark 2.2.  Adding the axiom 

	 | .p p pG " ØÚ

makes the logic classical.
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As is well-known there are more concise formulations of higher-order 
systems. The particular one chosen here is very close to the definition of a 
topos as a cartesian closed category with subobject classifier. One does  
not really need all exponential types and their constructors, however, but 
only those of the form PA, for every type A, which we write PA and call 
powertypes. Along these lines one may define: 

	 { : | } : . : ,x A x Aj l jº P

where |: :x A j P. On the other hand, for : As P  and :x A, set 

	 :  ( , ).x xs sÎ º app

According to the axioms for exponential terms, we have 

	 : | { : | } [ / ]=x A x x A x xj jÎ¢ ¢ ¢

	 | { : | } .=x A x w wÎ

Thus one could instead take only types of the form PA, and the constructors 
{ | }-  and  as basic, along with the last two axioms. For further simpli-
fications see [9, 12]. 

Finally, the S4 axioms are the usual ones 

•	
|

|
j y
j y

G
G  




 

•	 |G    

•	 | ( )j y j yG Ù Ù    

•	 | j jG    

•	 | j jG    

The first three axioms express that □, viewed as an operator, is a mono-
tone finite meet preserving operation. The other two axioms are the T and 
4 axioms, respectively. Further useful rules provable from the axioms are 
necessitation 

	
|

,
|

j
j

G
G 




and the axiom K: 

	 | ( ) .j y j yG Þ Þ  
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Although it is essentially obvious, for the sake of completeness we provide 
a definition of a model of this language in a topos.

Definition 2.3.  A model of a higher-order modal type theory in a topos  
consists of a faithful frame H in , and an assignment  -  that assigns to 
each basic type A in  an object  A  in such a way that 

•	  1 = 1

•	   = HP

•	      =A B A B´ ´

•	
 

 

 = BBA A .

Moreover, each term | :t BG  in , where 1 1( : , , : )= nnx A x AG   is a suitable 
variable context for t, is assigned an arrow 

	      :t BG ®

recursively as follows (where  G  is short for    1  nA A´ ´  and  t  really 
means  | :t BG ).

•	 Each constant :c A in  is assigned an arrow 

	
   :1 .c A®

In particular: 
  : 1= H H®   
  : 1= H H^ ^ ®  
  1:1 1=*   (the identity arrow on the terminal object). 

This extends to arbitrary terms-in-context as follows

•	 For any constant :c A,  | :c AG  is the arrow 

		
 

 

   1   
      

c AG  



•	 If | :s AG  and | :t BG  are terms, then  | , :s t A BG á ñ ´  is the map 

		           , : .s t A Bá ñ G ® ´

•	 If | :t A BG ´  is a term, then  1| :t ApG  is 

		
 

 

   

 

 

1    ,
      

t A B Ap
G ´ 

	 and similarly for 2tp .



608	 steve awodey, kohei kishida & hans-christoph kotzsch

•	 If | :t AG  is a term and :y B a variable in G, then 
 

|[ : ]  . : By B y t AlG  is 

		
 

     

  : [ : ] B
B t y B Al G ®

•	 If | : Bt AG  and | :s BG  are terms, then  | ( , ) :t s AG app  is 

		         

 

   , :    .
   

Bt s A B Aeá ñ G ® ´ 

•	 For any two terms | :pG P, | :qG P, and   any of the connectives 
, ,Ù Ú Þ,  | :p qG  P  is 

		
 

   ,    ,
      
p q H H Há ñ

G ´ 



	 where in the last line  is the evident algebraic operation on H.

•	 If |, : :y B tG P is a term, then  | . :y tG " P  is 

		
 

 

 

 

     
         

B Bt BH H
l "

G  

	 and similarly for  | . :y tG $ P  via 
 B$ .

•	 If | :t AG  and | :s AG  are terms, then  | :=At sG P  is the map 

		
 

   

   

 ,      ,
             

At s iA A H
dá ñ

G ´ W  



	 where i is the unique (monic) frame map.

•	 If | :tG P is a term, then  | :tG  P  is the map 

		
 

       ,
         

t iH HtG W  



	 where t is the classifying map of : 1H H® , as described before.

Before moving on, let us review some common examples

	 Examples 2.1 

1.	 A well-studied class of examples are structures induced by surjective 
geometric morphisms :f ®  . If  is Boolean, then so is f* W . For 
instance, there are geometric morphisms 

		  | | ®C CSets Sets
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	 induced by the inclusion | | ®C C. When C is a preorder, then this yields 
Kripke semantics for first-order modal logic. This case was originally 
studied in [5, 22].

	 Similarly, the canonical geometric morphism 

		  / Sh( )X X®Sets
	
	 induced by the continuous inclusion | |X  ↪ X gives rise to sheaf models 

for classical first- (and higher-) order modal logic, studied in [1]. The 
exact structure of these examples will be discussed in more detail in 
section 4 below.

2.	 More generally, by a well-known theorem of Barr, every Grothendieck 
topos  can be covered by a Boolean topos  in the sense that there is 
a surjective geometric morphism 

		  : .f ® 

	 For =H f* W , this provides models in Grothendieck topoi.3

3.	O f course, in any topos  the subobject classifier W  itself would do. 
However, as noted e.g. in [17, 19], the resulting modal operator will be 
the identity on W .

3.  Soundness of algebraic semantics

The given system of intuitionistic higher-order S4 modal logic is sound 
w.r.t. the semantics described in def. 2.3. Except for the two extensionality 
principles, soundness is straightforward following known topos semantics. 
The reason why plain propositional extensionality fails in our semantics is 
the interpretation of implication. In the general topos semantics based on 
W  Heyting implication on W  is given by the map 

	 1,    
        
p dá Ùñ

W ´W W ´W W 

    

that immediately implies propositional extensionality. By contrast, for an 
arbitrary frame H we observe:

3  Cf. e.g. [14], IX.9. Actually, the geometric morphism f can be extended to a surjective 
geometric morphism → →   , where  is the topos of sheaves on a topological space, 
although  might not be Boolean ([14], IX.11).
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Lemma 3.1.  For an arbitrary topos , and a (faithful) frame H in , it is 
not in general the case that 

	

commutes. 

Proof.  A counterexample may easily be found in the topos Sets with sub-
object classifier 2 and ( )=H X , for some set 1X ¹ . The adjunction 

	 : ( ) :i X t2  

(i t ) is defined by 
	 , if 1=

( ) =
Ø, if 0=
X x

i x
x

ìïïíïïî

and 
	 ( ) 1   iff .= =U U Xt

For any , ( )U V XÎ  , 

	  { ( ) | }.=U V W X W U VÞ Î Ç Í




If U V , then U U V¹ Ç , and so 

	 1, ( , ) ( , ) (0) Ø.= = =i U V i U U V id p dá Ùñ Ç

But U V  does not in general imply = ØU VÞ . (Consider e.g. V U VÍ Þ , 
for ØU V ¹Ç ).� □

As suggested by the example, the reason for the failure of plain propositional 
extensionality is that failure to be true (in the sense of = X U VÞ ) does 
not imply equality to ^ in H. On the other hand, note that ( ) 0=U Vt Þ , 
because X U VÞ . This observation generalizes. Although 1, =id pá Ùñ Þ 
fails in general, we have the following.

Lemma 3.2.  In any topos , the diagram 
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commutes, and thus 
	 1 , .= Hi it d pá ÙñÞ

Proof.  Consider the pullbacks 

	

	

whence the claim follows from uniqueness of classifying maps. The left-
hand square in the first diagram is a pullback by the definition of Þ, while 
the second diagram is the definition of the induced partial ordering on H as 
the equalizer of 1p  and Ù.� □

This argument neatly exhibits the conceptual role played by the modal 
operator t (more exactly, the adjunction i t ). The soundness proof is 
essentially a corollary to that.

Corollary 3.3.  Modalized propositional extensionality 

	 : , : | ( ) =p q p q p qÛ  PP P

is true in any model ( , )H . 

Proof.  In view of lemma 3.2, and since t, i commute with meets, the left-
hand side of the above sequent is interpreted as the map 

	 1 2( ) , , , ,H H H Hi d d p pÙ ´ ááÙ ñ áÙ ññ

with Ù the meet on W . The right-hand side is the internal equality on H: 

	 : .Hi H H Hd ´ ® W ®

It is clear from the properties of W£  as a partial ordering that 

	 1 2( ) , , , .H H H H Hd d p p dWÙ ´ ááÙ ñ áÙ ññ £
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Since i preserves that ordering, we have 

	 1 2( ) , , , .H H H H H Hi id d p p dÙ ´ ááÙ ñ áÙ ññ£ � □

The failure of plain function extensionality and its recovering via t can be 
analyzed in a similar fashion. For non-modal function extensionality in the 
standard W-valued setting essentially holds because ( ) = Y

Y
Y X Xd d" 

. How-
ever, in our setting we don’t in general have ( ) = Y

Y
Y X Xi id d"  , but rather:

Lemma 3.4.  For any topos , and any faithful frame in H, the following 
diagram commutes: 

	

Hence in particular 
	 ( ) .=Y

Y
Y XXi i id t d" 

Proof.  The right-hand square of the diagram commutes by uniqueness of 
classifying maps, while for the left-hand square we have ti = 1. Similarly, 
the bottom triangle commutes, because 

	

is a pullback diagram. (Note that the left-hand square is a pullback, because 
the functor ( )Y- , as a right adjoint, preserves these.)� □

Corollary 3.5.  Modal function extensionality 

	 |: , :  ( : . ( ) ( )) .== Y
Y Y

X Xf X g X y Y f y g y f g" 

is true in any interpretation ( , )H . 

Proof.  The left-hand side of the sequent is interpreted by the arrow 

	 13 23( , )      ,
                      

YY Xi ev evY Y YX X H H Hl d p pá ñ "´ 

  
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where the projections come from YYX X Y´ ´ , and : Yev X Y X´ ®  is the 
canonical evaluation. The right-hand side is simply 

	    .
      

YX iYYX X Hd´ W 



We need to show that the arrow 

	 13 23( , ),  :Y
YY

Y Y X Xi i ev ev i X X H Ht l d p p dá " á ñ ñ ´ ® ´

factors through the partial ordering ( ) H H£ ´ . Write the left-hand com-
ponent as ij. It is enough to show that 

	 : ,Y
Y Y

X X Xj dW£ ´

whence the claim follows as before, i being order-preserving.
To show that the subobject ( , )Q m  classified by the map 

13 23( , )Y XY i ev evt l d p p" á ñ  factors through YXD , as subobjects of YYX X´ , 
observe first that 13 23( , )Y Xi ev evl d p pá ñ  can be written as 

	 13 23, ( )  ( )   ( )     ,
                     

YY YXev ev iYY Y YY Y Y YX X X X Y X X Hp p dh á ñ
´ ´ ´ ´ W   

where h is the unit component (at Y YX X´ ) of the product-exponential 
adjunction ( ) ( )YY- ´ - . By the previous lemma 

	 ( ) .= Y
YY

Y X Xit d d"  

The subobject in question thus arises from pullbacks 

	

But 13 23, Yev evp p há ñ   is the identity arrow. For it is the transpose (along 
the adjunction ( ) ( )YY- ´ - ) of 

	 13 23, : .Y Yev ev X X Y X Xp pá ñ ´ ´ ® ´

The latter in turn is the canonical evaluation of Y YX X´  viewed as the 
exponential ( )YX X´ , i.e. the counit of the adjunction at X X´ , transposing 
which yields the identity. As a result, 

	 13 23( , ) ,YY XY Xi ev evt l d p p dW" á ñ £
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and therefore 

	 13 23( , ) .YY XY H Xi i ev ev it l d p p d" á ñ £
�

□

Remark 3.6.  Before giving a counterexample to ( )=Y
Y

Y XXi id d" 
, let us 

remark that the equation does actually hold in the topos Sets. For consider 
Yf g X¹ Î , i.e. ( ) ( )f y g y¹ , for some y YÎ . Then for any complete 

Heyting algebra H, the function ( ) ( , )Y Y
Xi f g Hd Î  is defined as 

	 ( ) ( , )( ) ( ( ), ( )) , if ( ) ( ),= = =Y
X Xi f g y i f y g y f y g yd d 

and ^ otherwise. Thus taking the meet (cf. the definition in example 1.2) 
yields

	 ( ) ( , ) ( ) ,=Y
X

y Y
i f g yd

Î
^Ù

because ( ) ( )f y g y¹ , for some y YÎ , by assumption. In turn the meet 
equals  just in case ( ) ( )=f y g y , for all y YÎ , i.e. if and only if =f g . 

Proposition 3.7.  It is not in general the case that for a topos  and a frame 
H in : 
	 ( ) .=Y

Y
Y XXi id d" 

Proof.  To find a counterexample we consider a specific presheaf topos 
opCSets  described below.4 Let’s first recall some general facts. Write | |W C  for 

the subobject classifier in | |CSets  and choose | |=H f* W C  (henceforth *W ), where 
f is the geometric morphism | |: opf ®C CSets Sets  induced by the inclusion 
| |C  ↪ C via right Kan extensions. Recall moreover from the beginning that 
the subobject classifier W of opCSets  determines for each C the set of all 
sieves on C. By contrast, ( )C*W  is the set of arbitrary sets of arrows with 
codomain C (cf. also the example from the next section).

Recall that in any category of the form opCSets  the evaluation maps 
: AB A Be ´ ®  have components 

	 ( , ) (1 , ),=C C Ca ae h h

where ( ) Hom( , )=AB C C A Bh Î ´y  and ( )a A CÎ . The exponential trans-
pose : AZ Ba ®  of a map : Z A Ba ´ ®  has components 

	 ( ) ( 1 ),=C Aza a z ´ � (7)

4	  The counterexample, in particular the choice of C and the functor :G ®C Sets below, 
follows a slightly different, though equivalent, proof first given in [23].
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where : C Zz ®y  corresponds under the Yoneda lemma to the element 
( )z Z CÎ , i.e. is defined as ( ) ( )( )=f Z f zz , for any ( )f C DÎ y .

For any object A in C, the functor ( )A-  acts on arrows :f C D®  as 

	 ,=Af f e


for evaluation : AC A Ce ´ ® . In particular, 

	 ( ) ,=A
BBi id d e

for : ( )AB B A B Be ´ ´ ® ´  evaluation at A. Thus, for any pair 

	 , ( ) ( ) Hom( , ),=AB B C C A B Bh á ñÎ ´ ´ ´y

we have 
	 ( ) ( , ) ( , 1 ) , .= =AB B BCi i id e h  d e h  d h *á ñ ´ á ñ

Here we use that , : ( )AC B Bh  *á ñ ® ´y  corresponds under Yoneda to the 
element , ( ) ( ) Hom( , )=AB B C C A B Bh á ñÎ ´ ´ ´y  and that ,h  *á ñ  is equal 
to the exponential transpose of ,h á ñ. Accordingly, 

( ) ( , ) ( ) ( , )=A
BC C CB Ci id h  d e h " "


( , )= C Bid h " á ñ

{ ( ) | ( )( ) ( ) ( ( , ), ( , )), for all= D B D D Ds C g s i g b g bd h * *ÎW W £


( : , ( ))},g D C b A D® Î

On the other hand, the classifying map of the diagonal on a functor B : 
op ®C Sets is computed as 

	 ( ) ( , ) { : | ( ) ( ) ( ) ( )},= =B C x y f D C B f x B f yd ®

for all pairs ( , ) ( ) ( )x y B C B CÎ ´ . It is the maximal sieve C  on C just in 
case x = y.

Now let C be the finite category 

	   ,
   

gC D

and define a functor : opG ®C Sets as follows:5 

5  Although :g C D®  may be seen as the two-element poset with resulting presheaf 
topos ®Sets , we will not need that description. The objects and arrows in C merely play the 
role of indices, so it seems better to use the more neutral notation C, D, g.
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	 ( ) { }, ( ) { , }, ( ) ( ) .= = =G D u G C v w G g u v

Furthermore, choose , ( )GG Dh  Î  such that h ¹ . Observe that, while 
necessarily 
	 : ( ) ( ) ( )=D D D D G D G Dh  ´ ®y

with assignment 
	 (1 , ) ,D u u

we can chose ,h   in such a way that ( , ) ( , )C Cg x g xh ¹ , for some pair 
( , ) ( ) ( )g x D C G CÎ ´y . Specifically, since the first component g is fixed, the 
choice is only about ( )x G CÎ  which in turn must concern ( )w G CÎ . For 
naturality requires that 

	 ( ) (1 , ) ( ( ) ( )) (1 , ) ( , ),= =D D C C D CG g u D g G g u g vh h h´y

so that since ( ) (1 , ) ( ) ( )= =D DG g u G g u vh , we must have ( , ) =C g v vh ; 
similarly ( , ) =C g v v . However, no constraint is put on the values ( , )C g wh  
and ( , )C g w , respectively.

Then: 

	 ( ) ( , ) { : | ( )( ) = ( )( )} Ø.==G
G G

DG x X D G x G xd h  h ® � (8)

For if x = g, observe 

	 ( )( ) ( 1 ) ( 1 ) ( )( ),= =G G
G GG g g g G gh h  ´ ¹ ´y y 

because 

	 ( 1 ) (1 , ) ( , ) ( , ) ( 1 ) (1 , ),= =G C C G C CC C C Cg w g w g w g wh h  ´ ¹ ´y y

where the inequality holds by construction. But also, if 1= Dx , then 
( )( ) ( )( )= =G GG x G xh h  ¹ , where the inequality holds by assumption 

again.
On the other hand, 

( ) ( , ) { ( ) | ( )( ) ( ) ( ( , ), ( , ))} {1 }.= =G
D DG D X G X X Xi s D x s i x b x bd h  d h * *" ÎW W £



� (9)

for all pairs ( : , ( ))x X D b G X® Î  from C. It is clear that {1 }= Ds  satisfies 
the condition on the underlying set of the union, since for 1= Dx , 

(1 ) ({1 }) {1 }=D D D*W

                   ( ) ( (1 , ), (1 , )).=D D DDD G D Di u ud h Í 
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On the other hand, for x = g, it is trivially always the case that 

	 ( )({1 }) Ø ( ) ( ( , ), ( , )),=D G C C Cg g b g bd h *W Í

for all ( )b G CÎ .
Furthermore, note that if g sÎ , for some ( )s D*ÎW , then 

	 ( ) ( ) {1 }.= = CCg s*W 

So if g sÎ , for some s in the underlying set of the union (9), we had to have 

	 ( ) ( ) ( ) ( ( , ), ( , )),=C C G C C Cg s i g b g bd h *W £

for all ( )b G CÎ . However, since by assumption ( , ) ( , )C Cg w g wh ¹ , 

	 ( ) ( ( , ), ( , )) Ø,=G C C Cg w g wd h 

and so 

	 ( ) ( ) ( ) ( ( , ), ( , )).GC C C Cg s i g w g wd h *W 

Thus g sÏ , for all ( )s D*ÎW  in the underlying set of ( ) ( , )G
D G Did h " . 

Therefore 
	 ( ) ( , ) {1 },=G

D G DDid h "

as claimed, and in contrast to (8): 

	 ( ) ( , ) Ø.=GD DGi d h 

(Of course, ({1 }) Ø=Dt , as lemma 3.4 predicts).� □

Remark 3.8.  There is an alternative, more combinatorial way of presenting 
the previous proof. The idea is to formulate the proof in terms of loop 
graphs rather than presheaves. For presheaves on the category {   }

   
gC D  

can equivalently be regarded as labelled graphs that consist only of loops 
and points, for instance: 

	

Here, G(D) is the set of edges and G(C) the set of vertices, while G(g) 
assigns to an edge a point, its “source”. Thus every loop has a unique source 
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but each point may admit several edges on it. W is the following graph 
which is easily seen to classify subgraphs: 

	

The labelling expresses the imposed algebraic structure of W with 0 < 1 and 
 iff &xy uv x u y v£ £ £ . Intuitively, in presheaf terms, 1 stands for the 

maximal sieve on C and 0 for the empty sieve; similarly pairs xy encode 
sieves on D, where x = 1 if and only if g is in the sieve and y = 1 if and 
only if 1D is in it. Then the source of an edge xy is just x. For instance, the 
sieve { }g  on D is encoded by 10. Then ( ) ({ }) {1 }= Cg gW  which is encoded 
by 1. Note also that the set of edges is the three-element Heyting algebra 
from example 1.5.

By contrast *W  is the graph

	

Here the additional edge 01 corresponds to the fact that {1 } ( )D D*Î W . Thus 
the set of edges is the four-element Boolean algebra with the source map 

22 2®  induced by the inclusion 1 ↪ 2.
The functor G from before becomes the graph 

	

while GG is 

	

The graph WG then looks like this: 
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again with the pointwise ordering.6
The graph G

*W  is: 

	

The vertices are the four element Boolean algebra 22 with the pointwise 
ordering, and the same for the edges 23. The source map xyz xy  is the 
map 232 2®  induced by the inclusion 2 3  that projects out the first two 
arguments of an element of 23.

As it turns out, for : ( )G GG G Gd ®´ W : 

	 0 1( ) ( , ) 101.=G
Dd q q

On the other hand, ( ) =C x xxD  and ( ) =D xy xxyD , and so 

	 ( ) { ( ) | },=D xyz st D sst xyz*" ÎW £Ú

and similarly for W. Thus (101) {00,01} 01= =D" Ú , for : ( ) ( )G
D D D* *" W ® W , 

while (101) {00} 00= =D" Ú , for : ( ) ( )G
D D D" W ® W .

Note finally that function extensionality is valid in constant domain 
models. (See next section for the connection between topos semantics and 
Kripke models.) For instance, consider a loop graph where ( ) 2 ( ).G D G C@ @  
An element in WG(D), as a natural transformation :D D Gh ´ ® Wy , is com-
pletely determined by the two values (1, ), (1, )D Da bh h , for { , } ( )=a b G D . 
Thus, edges in WG can be represented by sequences xyzw, where xy and zw 
are the respective edges (1, )D ah  and (1, )D bh  in W(D), using the binary 
notation from before. The source of an edge xyzw is xz. On the other hand, 
the map : ( ) ( )G

D D DD W ® W  can be computed as ( ) =D st ststD . Now note 

6	  The labelling can of course systematically be translated into one such that e.g. edges 
are labelled by natural transformations : D Gh ´ ® Wy  as before. For any such h is uniquely 
determined by the values (1 , )DD uh  and ( , )C g wh . Vertices are just 22, as there are exactly 
four natural transformations C G´ ® Wy , each one defined by the pair xy of values of the 
component at C ( ( ) 2=CW ). Their intuitive meaning in terms of sieves on D is as before.  
In turn, the notation xyz is chosen in such a way that the source is xy. Thus, xyz is to be read 
so as to mean (1 , ) =DD u xzh  and ( , ) =C g w yh . For by definition the source of an edge h in 

GW  is ( )( ) ( 1 )=G
Gg gh hW ´y . Its component at D is empty while for C, and x = v

	 (( ) 1 )(1 , ) ( , ) ( ( ) ( ))(1 , ) (1 , ),= = =C DC C GC C C D Dg v g v D g G g u g uh h h h*´ ´y y  

where the last identity holds by naturality of h. Thus the source is the pair ( (1 , ), ( , )).DD Cg u g wh h*

In turn, (1 , )DDg uh*  is the first digit of (1 , )DD uh . Moreover, in the expression xyz, 
1 iff 1 ( , )= C Cy g whÎ . So the source of xyz is xy.
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that there can be no edge in WG of the form xy01 or 01zw, because 01 is not 
an edge in W (moreover that’s the only difference between WG and G

*W ).  
As a result, there is no edge in WG such that applying " to it is different 
from applying " to that same edge in G

*W . For the only reason this might 
happen is because 01 is in the underlying set of the join 

	 ( ) { ( ) | }.=D xyzw st D stst xyzw*" ÎW £Ú

However, if 0101 xyzw£ , for any edge xyzw in WG, then xyzw = 1111. But 
certainly " has the same value on 1111 for both WG and G

*W . Although the 
argument is for models with domain of cardinality 2, it easily generalizes 
to any n.

4.  Algebraic semantics from geometric morphisms

The canonical example of a model in the sense of def. 2.3 is the case where 
=H f* W , for a surjective geometric morphism :f ®   [4, 15, 20, 18]. 

We will continue to describe it in some detail to show that the known 
semantics for it really coincides with the one described in section 2, the 
crucial thing to check being the equality relation. To ease notation, we write 
A* for f A* , A*  for f A*  and *W  for f*W , if f is understood.

Proposition 4.1.  For any geometric morphism :f ®  , the object *W   
is a complete Heyting algebra in . 

Proof.  The object *W  is a Heyting algebra under the image of f*, since f* 
preserves products. The same algebraic structure is equivalently determined 
through Yoneda by the external Heyting operations on each Sub ( )A*

  under 
the natural isomorphisms 

	 Sub ( ) Hom ( , ) Hom ( , ).A A A* *
*@ W @ W   

Completeness means that *W  has I-indexed joins and meets, for any object I 
in . One way to see this is to first note that there are isomorphisms (natu-
ral in E) 

	 Hom( ,( ) ) Hom( , ) Hom( , ) Hom( , ) ,IIE E I E I E
** * *

* *W @ ´ W @ ´ W @ W 

where we use that f * preserves finite limits. Composition with 

	 : I
I

*
*" W ® W 
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hence yields a function 

	 * ( )
Hom ( ,( ) )  Hom( , )  Hom( , )  Hom ( , ),  

            
IIIE E E E

* " -@ @* *
**W W W W



  

 

all natural in E. Thus, by the Yoneda lemma, there is a unique map 

	 : ( )I
I * *" W ® W

such that the function 

	 Hom ( ,( ) ) Hom( , )IE E* *W ® W

from above is induced by composition with "I.
"I is indeed right adjoint to : I

I * *D W ® W . For : I
I

*
*D W ® W   induces, 

by composition, a function 

	 * ( )Hom( , ) Hom( , )  Hom( , )
      

I IE E E
*D -* *

* @W W W


 

with 
	 ( ) ( ). I I* *D - " - 

This adjunction in turn is the one that corresponds by Yoneda under the 
isomorphism (4) to the adjunction 11  pp* " : 

	
1 1: Sub ( ) Sub ( ) : ,E I Ep p* * * *" ´ 

where 1p* is pulling back along 1 : E I Ep * * *´ ® . I-indexed joins are treated 
similarly. 

The modal operator is given by the uniquely determined structure 

	 :  : ,it *W W � (10)

where t is the classifying map of 

	 ( ) : 1 .= f ** ® W 

Lemma 4.2.  The internal adjunction (10) is induced via the Yoneda lemma 
by an external adjunction 

	 :  Sub ( ) Sub ( ) :A AA f A*D G  � (11)

which is natural in A.7 

7  Cf. e.g. [18].
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Proof.  Here, AD  is f * restricted to subobjects of A. It follows that AD  is 
an injective frame map, as f * is a faithful left exact left adjoint. On the 
other hand, ( , )A X mG , for any mono :m X f A* , is by definition the left-
hand map in the following pullback 

	

The resulting two functions, natural in A, have the form:

Hom ( , ) Sub ( ) Sub ( ) Hom ( , ) Hom ( , ).A A f A f A A* *
*W @ @ W @ W     

� (12)

By Yoneda they determine maps 

	 :  : ,d g*W W 

internally adjoint given that A AD G , for each A in  . The map d is monic, 
because each AD  is injective. It readily follows that d = 1 and g = t. For d 
is a monic frame map and d g , while the arrow 

	 :  g *W ® W

obtained through the Yoneda lemma as above actually is the classifying 
map of the top element : 1f ** ® W .� □

Lemma 4.3.  The internal structure *W  is a faithful frame, i.e. the canonical 
frame map :i *W ® W  is a monomorphism. 

Proof.  Since the maps AD  in lemma 4.2 are injective, this means that D : 
Sub ( ) Sub ( ( ))f *- ® -   is a monic natural transformation. As :i *W ® W  
is obtained using the Yoneda lemma from the maps AD , it readily follows 
that i is monic, because the Yoneda embedding reflects monomorphisms. 
� □

Formulas j (in one free variable, say) are thus interpreted equivalently in 
any of the following ways (let M interpret the type of x): 

	
 

   Sub ( ),   ,   ,
      

f M M Mj j
j * *

*Î W W 

where the third one follows from definition 2.3.
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Moreover, let Md *  be the classifying map of the diagonal 〈 〉∗ ∗1 ,1 :M M  
.M M M* * *® ´  We will write its transpose along f f*

*  simply as

	   
   

M M d*
*´ W � (13)

when M is clear. Then we have:

Lemma 4.4.  The equality predicate for M* may be interpreted by the map 
(13), obtained as the transpose along f f*

*  of 

	 ( )   .   
M

M M M M
d *

* **´ @ ´ W



The proof is immediate, given the soundness of the interpretation with 
respect to Md *.

Definition 4.5.  By a geometric model we shall mean a model derived from 
a geometric morphism in this way; specifically, where :f ®   and 

* ( )=H f W .

To show, finally, that geometric models are a special case of algebraic ones, 
the main thing that needs to be verified is that equality is interpreted the 
same way in each case, i.e.: 

	 =  .Mid d* 

First, we make the following observation:

Lemma 4.6.  For any map : Da *® W , we have =it a a  iff the sub- 
object classified by the transpose a~ :  f D* ® W  of a is of the form 

:f m f A f D* * * , for some :m A D  in .� □

Proposition 4.7.  For any object D in , and any geometric morphism 
:f ®  :

	 =  .Did d* 

Proof.  We prove this by showing 

	 ,= Dt d d*

whence the statement follows from = = Di id t d d* *  
, where the identity 

= id t d* * 

 holds by applying lemma 4.6 to d*.
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The proof is essentially contained in the following diagram 

	

where 1 ,1=D D DD á ñ, h is the unit of f f*
* , and d, t denote the respective 

classifying maps. The square in the middle is a pullback, since f* preserves 
them. Moreover, by the definition of Dd , the large outer square is a pullback. 
Note further that ( )= D D Dd d h** * ´ , by the definition of d* as the transpose 
of Dd * along f f*

* . Thus the desired equality would follow if the unit 
square were a pullback, for then 

	 ( ) =D DDt d h t d* ** ´
 

would classify DD , and so = Dt d d* . This is in fact the case. For :f ®   
being surjective (i.e. f * faithful) implies that the unit components, and 
therefore D Dh h´ , are monic. A direct verification then shows that the 
square is a pullback.� □

Example 4.1.  Kripke Models. As is well known, any functor :F ®C D 
induces a geometric morphism 

	 : ,f f*
* ®C DSets Sets

where f * is precomposition with F, and f*  is a right Kan extension. 
Let | |=C D  and F the inclusion | | | |:i ®D D . Then the induced geometric 
morphism :i i*

* ®|D| DSets Sets  is surjective. The subobject classifier WD 
in SetsD consists, for each D, of the set of cosieves on D, which can be 
construed as the functor category 

	 /2 ,D D

where 2 is viewed as the poset {0 1}£ ; while | |( ) 2=DW D , for each D in D.
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On the other hand, by the definition of right Kan extension, i D∗Ω| | ( ) =D  
| / |

/ 2 = 2 D
h DÎÕ D

D , as can also be seen from 

	


| | | | | || |( ) Hom ( , ) Hom ( ( ), ).i D D i i D*
* *W @ W @ WD D DDD y y

The last set is (isomorphic to) the set of subfamilies of the functor 
( ) : | |i D* ®y D Sets , by the definition of the subobject classifier | |W D : each 

natural transformation 

	 ( ) Hom ( , ) 2= =i D D i D* - ®Dy y 

determines, for each D¢ in D, a set of arrows D D® ¢. On arrows : ,h D D® ¢¢
the functor | |i*WD  is the function | | | | | |( ) : ( ) ( )i h i D i D* * *W W ® W ¢¢D D D  defined 
as 
	 | |( ) ( ) { : | }.=i h A f D X f h A*W ® Î¢¢D 

The components of the (internal) adjunction | |:  :i i t*W WD D  then read 

	 | / |/: 2 2 : ,DD
D Di tDD 

where D Di t  “externally”. It is not hard to see that i is the inclusion, while 

	 / |( ) { 2 ( ) },= D
D DA S i S At Î £Ú D

by the definition of right adjoint to the frame map i (cf. (6)). In words, t 
maps any family of arrows with domain D to the largest cosieve on D  
contained in it. In particular, when D is a preorder, then / = ( )D D­D , the 
upward closure of D; while /2D D is the set of all monotone maps ( ) 2,D­ ®
i.e. upsets of ( )D­ , while | |/2 D D  is the set of arbitrary subsets of ( )D­ .

An arrow | |/
| |: 2=E ij -

*® W D
D  in DSets  defines an indexed subfamily P 

of the functor F, and conversely. Explicitly, given such | |: E ij *® W D , 
define subsets ( ) ( )P D E Dj Í , for each D in D and ( )a E DÎ , by 

	 ( )  iff 1 ( ).D Da P D aj jÎ Î � (14)

Conversely, given maps ( ) 2E D ® , i.e. components of an arrow | |i E* ® W D  
in | |DSets , or equivalently a subfamily P of E, define a natural transforma-
tion | |:P E ij *® W D  by 

	 ( ) ( ) { : | ( ) ( ) ( )},=DP a f D C E f a P Cj ® Î � (15)

These constructions are mutually inverse and so describe the canonical 
isomorphism 
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	 | || |Hom( , ) Hom( , ) Sub( ).E i i E i E* *
*W @ W @D D

Note also that the transpose =j ej* of : Ej *® W  along the adjunction 
f f*

*  actually is the classifying map in | |DSets  of the subobject Pj  of f E*  
defined in (14):

	

( ) 1 iff 1 ( )=
iff 1 ( )
iff ( ),

CC C C

C C

a a
a

a P Cj

e j j
j

* *Î
Î

Î
	
for any ( )a E CÎ .

On the other hand, considering /2= DW D
D  instead of | |/2 D D , the same 

definitions (14) and (15) establish a correspondence between subfunctors 
of E and their classifying maps in DSets . In particular, the classifying map 
of a subfunctor of E factors through | |Ki*W  via t.

Thus, when D is a preorder, algebraic models in the complete Heyting 
algebra | |Ki*W  are precisely Kripke models on D. The “domain” of the model 
is given by the functor E, while each E(D) is the domain of individuals at 
each world D. Each formula determines, as an arrow | |: KE ij *® W , a sub-
family of E, that is a family ( ( ) ( ))P D E Dj Í . Then t determines the largest 
compatible subfamily of that family, i.e. a family closed under the action 
of E. Indeed, for ( )x E DÎ , 

	 ( ) iff 1 ( ) ( ).D Dx P D xtj tjÎ Î

Now ( ) ( )D xtj  is the maximal sieve on D just in case ( )D xj  is. So, if satisfied, 
the right-hand side means that ( )x P DjÎ  and moreover ( ) ( ) ( )F f x P CjÎ , for 
all C D³ . Semantically speaking, x satisfies tj (at D) just in case x (or rather 
its “counterpart” ( )CDF x ) satisfies j in all worlds accessible from D.

Thus we recovered the natural adjunction 

	 : Sub( ) Sub( ) : EE E i E*D G

that succinctly describes the algebraic structure of Kripke models.
Lastly, presheaf semantics reduces to standard Kripke semantics for 

propositional modal logic in the following sense. In the latter, propositional 
formulas are recursively assigned elements in ( )K , for a preorder K. Let 

( ( )) = *¯ W-  be the composite functor 

	 ( )  .        
op-¯

K Sets Sets 



Observe that 
	 ( ) Hom (1, ( ( ))),op@ ¯ -KSetsK 
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via assignments (where ( )j Í K ) 

	 ( ( ) | )=k k k Kj j j¯ Ç Î


and 

	 ( | ) .k k
k

kj jÎ K 



Thus modelling formulas (in one variable, say) by maps of presheaves 

	 ( ( )) =M *® ¯ - W

yields precisely the familiar Kripke model idea for propositions, i.e. closed 
formulas. Moreover, for constant domains: 
	
Hom ( , ( ( ))) Hom ( , lim ( ( ))) Hom ( , ( )).op M M M K@ @D ¯ - ¯ -K Sets SetsSets 

  

Here, : op
D ® KSets Sets  is the functor ( ) ( ) =M k MD , for any set M and 

k Î K . A function : ( )M Kj ®   assigns to each individual in the domain 
M a set of worlds for which the individual satisfies the formula represented 
by j.

Kripke-Joyal forcing:  Another way of seeing the close relation between 
presheaf semantics and Kripke semantics is via the notion of “Kripke-Joyal 
forcing” [14, 12]. For any topos  one can define a forcing relation  to 
interpret intuitionistic higher-order logic. Given an arrow : Mj ® W , let 
Sj be the subobject of M classified by j. Then for any :a X M® , define 

	 ( ) iff factors through .X a a Sjj � (16)

This holds iff = Xaj t , where Xt  is the arrow ! : 1X X ® ® W  . The idea 
is that j corresponds to a formula, while a is a generalized element of M, 
thought of as a term : | :x X a M . In fact, j and a are terms in the internal 
language of , reinterpreted into  by the forcing relation. The relation  
satisfies certain recursive clauses for all the logical connectives [14, 12]. 
Conversely, starting with an interpretation of the basic symbols of a higher-
order type theory in a topos  (as maps into W ), then these recursive 
clauses determine when a formula is true (“at an object X”). When a is a 
closed term, i.e. a constant, for which one may assume X = 1, then this says 
that the two arrows 

	



628	 steve awodey, kohei kishida & hans-christoph kotzsch

are equal; i.e. the closed sentence [ / ]a xj  is “true”. In general, the forcing 
relation thus defines when formulas are true (at X), much as in Kripke 
semantics, as we now illustrate.

Consider presheaf toposes of the form opCSets . In this case, the forcing 
relation ( )X aj  can be restricted to objects X in  forming a generating 
set.8 For presheaf toposes opCSets  the representable functors yC form a gen-
erating set, so one may assume that X = yC, for some object C in C. Also, 
by the Yoneda lemma, generalized elements :a C M®y  may be replaced 
by actual elements ( )a M CÎ . To say that :a C M®y  factors through a 
subobject Sub ( )S MÎ   is then equivalent to saying that the corresponding 
element ( )a M CÎ  actually lies in S(C). As a result, the forcing condition 
becomes 

	 ( ) iff ( ),yC a a S Cϕϕ ∈

where, as before, j classifies the subobject Sj of M. We shall hereafter 
write C   instead of Cy  .

Now consider the standard *W -valued model for classical higher-order 
modal logic in a presheaf topos opCSets , associated with the canonical  
geometric morphism | | op®C CSets Sets . We define another forcing relation 

* ( )C aj  which takes this modal logic into account.

Definition 4.8.  For any presheaf topos opCSets , define a forcing relation *  
for arrows : Mj *® W , objects C in C, and elements ( )a M CÎ  by: 

	 * ( ) ( ),C a iff C aj j  � (17)

where  on the right-hand side is the usual forcing relation w.r.t. | |CSets  (as 
defined in (16)), and ( )-  indicates transposition along f f*

* . 

Further analysing the right-hand side of (17) gives: 

	 ( ) iff ( )C a a S Cjj Î � (18)

where Sj  is the subobject of  *M  classified by j  in | |CSets .

Proposition 4.9.  Let *  be the forcing relation of Definition 4.8. Then for 
all , : Mj y *® W  and ( )a M CÎ  the following hold:

8  Cf. [12]. One says that a set S of objects from  is generating, iff for any :f g A B¹   
in , there is an arrow :x X A® , for some X SÎ , such that fx gx¹ .
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*

*

* * *

* * *

* * *

* *

* *

*

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( , ) ( , ) ( )
( , ) ( , ) ( )

( )

C always
C never
C a a iff C a and C a
C a a iff C a or C a
C a a iff C a implies C a
C x x a iff C b a for all b M C
C x x a iff C b a for some b M C

C a iff

j y j y
j y j y
j y j y

j j
j j

j

^
Ù
Ú
Þ

" Î
$ Î



 

  
  
  
 
 

 *

*

( ) :
( ) ( ) (1 , ( )) ( ( )) ,

for : :
C C C C

N

D p a for every p D C
C t a u a iff t a u a

t M N and u M

j *

*

®
Î Î

® ® W




where = it , and xj"  is the arrow     
      

MMM j "
* *W W  , with j the exponen-

tial transpose of   
   

M M j
*´ W , and similarly for ( , )x x aj$ . 

Remark 4.10.  Although *  is a relation between objects C and arrows 
: Mj *® W , it also makes sense to think of the j as formulas, with the 

clauses above holding w.r.t. the arrow  j  assigned to the formula j as 
in section 2. For instance, interpreting a syntactic expression ( , )x x yj$  
(by 2.3) yields an arrow 

 M j$ . When C is a preorder this is then not 
merely similar to, but actually is the Kripkean satisfaction relation between 
worlds and formulas, extended to higher-order logic. 

Proof.  We shall just do a few exemplary cases for the purpose of illus- 
tration. Consider * ( ) ( )C a aj yÚ , which by definition 4.8 means that 

( )a S Cj yÚÎ . Here,   
   
Ú

* * *W ´W W  is the join map. Recall from proposi- 
tion 4.1 that Ú actually is of the form *Ú , for the join map   

   
ÚW´W W  in 

| |CSets . Thus the following commutes, by naturality of the counit e: 

	

That is to say, 
	 = ,j y j yÚ Ú

and so =S Sj yj yÚ Ú . Since | |CSets  is a Boolean topos, by the definition of 
Sj yÚ  in | |CSets  we have: 
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( ) iff ( )  or ( ),a S C a S C a S Cjj y yÚÎ Î Î

i.e. if and only if * *( )  or ( )C a C aj y  . The argument for the other 
logical connectives is similar. 

For ", by definition, 

	 * ( , )  iff ( ),
M

C x x a a S Cjj "" Î

with

	  

* *|( ) ( ) { ( ) 1 ( ) ( )}= =M M MC CS C S C a M C aj j j" " Î Î "

defined as in (14). By the definition of *M" , and because | |C  is discrete:

	






*

*

1 ( ) ( ) iff  1 { ( ) | ( ) ( ) ( ) ( , ),
           for all : ,  ( )}

iff  1 { ( ) | ( ) (1 , ), for all ( )}
iff  1 ( , ), for all ( )
iff  ( , ) , for all ( )
iff  ( ,

C C DM C C

C CCC

C C

a s C f s a f b
f D C b M D

s C s a b b M C
a b b M C

a b S b M C
C a b

j

j j

j

j

j

* *

*

Î " Î ÎW W £

® Î

Î ÎW £ Î

Î Î
Î Î





 ), for all ( ).b M CÎ

	The last two equivalences hold by the definition of Sj  and * . To see the 
third equivalence, let : C Ma ®y  be the map that corresponds under 
Yoneda to ( )a M CÎ . Then, by the definition of j  (cf. (7)): 

	  ( ) (1 , ) ( 1 ) (1 , ) ( (1 ), ) ( , ).= = =CC C M C C C C C CC a b b b a bj a j a jj ´

Then, if 1C is in the union, it is in one of the ( )s C*ÎW , and thus 
1 ( , )C C a bjÎ , for all ( )b M CÎ . On the other hand, if 1 ( , )C C a bjÎ , for all 

( )b M CÎ , then 1C is in the union for {1 }= Cs . 
The clause for  follows from its definition: 

	

, { ( ) |1 , ( )}=
{ ( ) |1 ( ( ), ( ))}=
{ ( ) |1 ( ( )) (1 , ( ))},=

s t C C

C C C C

C C C C C

S a M C s t a
a M C s a t a
a M C s a t a

e e

e

á ñ Î Î á ñ

Î Î
Î Î 	

using the definition of the evaluation map : A Ae W ´ ® W. 
For □, as before, itg determines a subfamily of M with components 

	 ( ) { ( ) |1 ( ) ( )}.=i C CS C a M C i atj tjÎ Î
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But ( ) ( )Ci atj  is a sieve, as it factors through ( )CW , and so 

	 ( ) { ( ) | ( ) ( ) },==i CCS C a M C i atj tjÎ 

for C  the maximal sieve on C. However, by the defining properties of t 
and i, 
	 ( ) ( )  iff ( ) .= = CCC Ci a atj j 

Therefore, 

	

( ) = { ( ) | ( ) }=
= { ( ) | ( ) ( ) }=

= { ( ) |{ : | ( )} }=

= { ( ) | ( ), for all : }.

i CC

CS C

C

S C a M C a
a M C a

a M C p D C p a S D

a M C p a S D p D C

j

tj

j

j

j

c

*

*

Î

Î

Î ® Î

Î Î ®







In forcing terms: 

	

*

*

( ) iff ( )

iff ( ), for all :

iff ( ), for all : .

iC i a a S C

p a S D p D C

D p a p D C

tj

j

tj

j

*

*

Î

Î ®

®



 � □
	

Example 4.2.  Sheaf Models.  For a topological space X the (surjective) geo-
metric morphism 

	 : / Sh ( )i i X X*
* ®Sets

coming from the continuous inclusion | |:i X  ↪ X gives rise to modal sheaf 
semantics for classical S4 modal logic as described in [1]. This is most 
readily seen by viewing sheaves on X as local homeomorphisms over X.  
In this case, the adjunction (11) reads: 

	 //:Sub ( ) Sub ( ) :XLH X E i Ep p
*D GSets

where E X®  is a local homeomorphism. A subobject of i E*  in / XSets  is 
simply a commutative triangle of functions in Sets 
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which is entirely determined by a subset A EÍ . One obtains the largest 
subsheaf of E contained in A just by applying the interior operator of E to 
A EÍ : 

	

The horizontal inclusion is then continuous w.r.t. the subspace topology on 
intA. The composite is then a local homeomorphism, because the restriction 
of any local homeomorphism to an open subset of the total space (E) is one.

This is therefore just the familiar topological semantics for propositional 
modal logic, given by the adjunction 

	 Sh( ) /:  Sub ( ) ( )  ( ) Sub ( ) : intX Xi E E E i E*@ @ Sets  

In this case the algebraic formulation via maps into the subobject classifier 
is perhaps less intuitive. The subobject classifier : Xw W ®  in Sh(X ) has 
the fibers:9 

	 1 lim( ) =
x U

x Uw-

Î
¯



where U¯  is the set of all open subsets of ( )U XÎ . On the other hand, 
viewing sheaves as a special kind of presheaves, the formulation is now 
more familiar. The subobject classifier takes the form ( ) =X U U¯W  (for 
V UÍ  this acts by V Ç-, i.e. the inverse image along the inclusion). Thus 

( ) ( )=X U UW   for the subspace topology on U. In turn, ( ) ( )=U U*W   
with the evident restriction along inclusions. Thus propositions are mod-
elled by natural transformations M ®   to the contravariant powerset-
functor, while the map : ( ) ( )U U Ut ®  , for any U XÍ , picks the largest 
open subset contained in a given subset of U, i.e. the interior.

With this description, sheaf semantics may be seen as the generalization 
of the familiar topological semantics for propositional modal logic to quan-
tified languages. The previous case of presheaves on a preorder K is actually 
a special case of this one by taking the Alexandroff topology on K. 

5.  Geometric models from algebraic ones

The foregoing shows that every geometric model gives rise to a logically equiv-
alent algebraic model in the sense of section 2. The following observation, 
obtained through general topos-theoretic considerations, states the converse.

9  See e.g. [14].
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Fact 5.1.  For any complete Heyting algebra H in a topos , the canonical 
structure 
	 : :H it W

( i t ) arises from a topos  and geometric morphism :g ®  , via 
=H g*W .

Proof.  (sketch) The topos  may be defined as the category Sh ( )H  of 
internal sheaves on H. A description of Sh ( )H  can be given in terms of 
locales in  (see [9] C1.3). A local homeomorphism over the locale H is  
an open locale map E H®  with open diagonal HE E E® ´ , where the 
codomain is the product of locale morphisms over H (in ). This is an 
internalization of the notion of local homeomorphism over the “space” H, 
in view of the fact that a continuous map : Y Xp ®  of topological spaces 
is a local homeomorphism just in case both p and its diagonal (over X ) are 
open maps. Alternatively, using the internal language of , the category 
Sh ( )H  may be described as consisting of internal presheaves on the site 
H (with the sup-topology) that satisfy the usual sheaf property in the inter-
nal language. See [9], C1.3 for details.

Next, recall that for any two frames X, Y in , there is an equivalence of 
categories 

	 ( , ) (Sh ( ), Sh ( ))Y X X YFr Top   � (19)

between frame homomorphisms Y X®  in  and geometric morphisms 
Sh ( ) Sh ( )X Y®   [9, 14]. Then : Sh ( )g H ®   arises under this equiva-
lence from the frame map i, noting that 

	 Sh ( ).W  

Externally, the idea of (19) is that the inverse image part g* of a geometric 
morphism : Sh( ) Sh( )g X Y®  restricts to a frame homomorphism 

	 Sh( ) Sh( ): Sub (1) Sub (1),Y Xg* ®

where 1 is the terminal object, respectively. Observing that for any sheaf 
topos  Sh( )X , we have Sh( )Sub (1) ( )X X@   gives the required frame map. 
On the other hand, it is also well-known that a frame map Y X®  induces a 
geometric morphism of the required form for the sup-topology on X and Y, 
respectively. These constructions are inverse and relativize to an arbitrary 
topos  instead of the usual category of Sets [9, 10]. Moreover, the geometric 
morphism g is surjective iff i is monic.
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Lastly, 

	 Sh ( ),HH g*@ W 

because Sh ( )H  coincides with the hyperconnected-localic factorization of 
g itself, which is determined (up to equivalence of categories) [10] as the 
sheaf topos 

	 Sh ( )Sh ( ),Hg*W


whence it follows that 

	 Sh ( ) ( )Sub (1) .H Sh HH g*@ @ W  �
□

This last observation applies in particular in case =H f*W  is already of 
the required form. Then ( )Sh *W  occurs in the hyperconnected-localic fac-
torization of f: 

	

and 

	 Sh ( ).ff g *W* *W @ W  

Externally, we have: 

	

Sh ( )

Sh ( ) Sh ( )

Sh ( )

Sub ( ) Hom ( , )
Hom ( , ))
Hom ( , )

Hom ( , )

Sub ( )

f

f f

f

f A f A
A f
A g

g A

g A

*

* *

*

* *

*

W*

*
W W

*
W

@ W

@ W

@ W

@ W

@

 

   

 

  

 



for all A in . This allows us to restrict attention to localic surjective geo-
metric morphisms. For instance, the geometric morphism 

	 | |: i i*
* ® DDSets Sets

considered in the previous section is localic.
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