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Probabilistic Merging Operators

Martin Adamčík and George Wilmers

Abstract

The present work presents a general theoretical framework for the study of opera-
tors which merge partial probabilistic knowledge from different sources which are 
individually consistent, but may be collectively inconsistent. We consider a number 
of principles for such an operator to satisfy including a set of principles derived from 
those of Konieczny and Pino Pérez [14] which were formulated for the different 
context of propositional merging. Finally we investigate two specific such merging 
operators derived from the Kullback-Leibler notion of informational distance: the 
social entropy operator, and its dual, the linear entropy operator. The first of these 
is strongly related to both the multi-agent normalised geometric mean pooling 
operator and the single agent maximum entropy inference process, ME. By contrast 
the linear entropy operator is similarly related to both the arithmetic mean pooling 
operator and the limit centre of mass inference process, CM∞.
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1.  Introduction

This work studies some of the global logical desiderata which a well-defined 
process for merging partial probabilistic knowledge should satisfy. The 
probabilistic knowledge is thought of as arising from a finite set of agents 
(or sources), each of which declares her own consistent probabilistic knowl-
edge base, while the probabilistic knowledge from all the agents together is 
typically inconsistent. The objective of such a merging process is to combine 
the probabilistic knowledge from a set of such agents into a single consistent 
probabilistic knowledge base, which best represents the declared knowledge 
of all the agents, on the assumption that each agent has incorporated all of 
her relevant knowledge into her declared knowledge base. 

In the present work we shall confine ourselves to considering the simplest 
notion of a probabilistic knowledge base, along lines previously formulated 
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by Paris and Vencovská in their foundational axiomatic approach to single 
agent probabilistic reasoning under uncertainty (see [18], [19], [20], [25]), as 
will be explained in more detail in the next section. In short, the probabilistic 
knowledge base of an individual agent will be assumed to consist of a set of 
mathematically well-behaved constraints on the possible probability func-
tions on a fixed finite set of atomic events; such a knowledge base will 
determine a non-empty closed convex set of probability functions, which 
represents the set of possible subjective belief functions which the agent 
may hold on the basis solely of her own knowledge.

We should emphasize the crucial importance in our general problematic 
of the assumption above that all the relevant knowledge of an individual 
agent is incorporated in the formal representation of her probabilistic 
knowledge base. This assumption is often referred to as the Principle of 
Total Evidence1. As was pointed out forcefully by Jaynes [12] in his work 
justifying the use of maximum entropy inference, in order to avoid hopeless 
confusion, it is essential that this assumption be respected in any discussion 
of the general axiomatic or logical characteristics of a mode of probabilistic 
inference, since otherwise the nature of the underlying problem can be sur-
reptitiously changed in an arbitrary manner, resulting in the generation of 
an inexhaustible supply of phony paradoxes or inconsistencies. However 
when applied to the formalisation of any real life problem considered by a 
human agent, the Principle of Total Evidence is never observed in practice. 
This banal fact of life has historically bedevilled theoretical discussion of 
probabilistic inference, because it is often extremely hard to give any real 
world example to illustrate an abstract principle of probabilistic inference 
without an opponent being tempted to challenge one’s reasoning using 
implicit or intuitive background information concerning the example, which 
has not been included in its formal representation. In the context of multi- 
agent probabilistic inference this situation has resulted in a heavy concentration 
of research on computationally pragmatic approaches to specialised prob-
lems of probabilistic inference, and a notable neglect of the study of more 
abstract axiomatic or foundational frameworks. This neglect appears to the 
authors to be unfortunate, not least because the foundations of artificial 
intelligence would seem to demand that the Principle of Total Evidence be 
taken seriously. 

The result of applying a merging process as above will not in general 
determine a single probability function, but rather a non-empty closed 
convex set of such functions which is intended to represent the collective 
declared knowledge of the agents as if from the standpoint of an unbiased 
external observer with no knowledge of her own. The aim is that the merging 

1  This terminology is due to Carnap [4]. It is also sometimes called Bernoulli’s Maxim after 
an early formulation of the idea in [3]. In [18], [19], [20] it is also called the Watts Assumption.
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process should have an intersubjective character; by this we mean that if 
we assume (i) that each agent is reporting exactly the same subjective prob-
abilistic knowledge as the observer would have access to if in the agent’s 
place, and (ii) that the external observer has no knowledge concerning the 
agents other than the probabilistic knowledge bases which the latter report, 
then the merging process itself should have an objective character which is 
justified by certain rational principles. Finally, if for pragmatic purposes a 
single probability function must be chosen as the “social” belief function 
of the collective, then this choice can be made at a second stage by apply-
ing whatever single-agent inference process is preferred to the merged 
probabilistic knowledge base.

Much axiomatic analysis has been done previously on the very special 
case of probabilistic pooling (or aggregation) operators2, where each indi-
vidual agent’s probabilistic knowledge base determines a unique probability 
function. Furthermore many different algorithms have been suggested for 
sub-problems or variants of the far more complex case of probabilistic merg-
ing considered in the present work3. However few authors have considered 
the global desiderata which such general probabilistic merging should  
satisfy, and where such desiderata have been considered, many authors 
have not clearly distinguished the operation of merging the probabilistic 
knowledge bases from the goal of choosing a unique probability function 
to represent the merged knowledge. One exception in this respect is Wil-
liamson [22] who stresses the philosophical distinction between these two 
processes, and has sought to adapt4 to the probabilistic context the norms 
for propositional merging which were first formulated by Konieczny and 
Pino Pérez in [14].

We believe that Williamson’s distinction above is a useful one. In this 
paper we formulate a probabilistic adaptation of the Konieczny and Pino 
Pérez principles. We then investigate in this context the properties of two 
particular probabilistic merging operators, social entropy, and linear entropy, 
which are respectively generalisations of the normalised geometric mean 
and linear pooling operators. Social entropy was defined in [25], and was 
shown in [26] to bear a natural relationship to the well-known5 maximum 
entropy inference process ME. On the other hand linear entropy, which is 
a dual merging operator to social entropy, bears a corresponding natural 
relationship to CM∞, the limit centre of mass inference process6.

2  See e.g. [10] for a survey.
3  See e.g. [13],[17],[21],[23],[24],[25].
4  See also [23],[24].
5  See [18] or [20] for a detailed characterisation of ME.
6  See [18] for a definition of CM∞.
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Konieczny and Pino Pérez in [14] proposed an axiomatic framework, 
referred to below as KPP, for expressing the desiderata required of a merg-
ing operator in a non-probabilistic context. Such an operator D acts on a 
sequence of knowledge bases 1, , nT T  to generate a single knowledge base. 
The resulting merged knowledge base 1( , , )nT TD   should be consistent, 
and the operator D should satisfy certain general principles. In [14] the case 
was considered where a knowledge base is interpreted to mean a consistent 
set of sentences of a given finite propositional language L. However, as 
noted there, the general idea of a merging operator can easily be applied to 
other types of knowledge base, and there exists a large literature concerning 
such generalisations7.

According to the KPP framework described above a minimal set of 
desiderata which a merging operator D should satisfy is embodied in the 
following six principles:

For every , 1n m ³  and every propositional language L and knowledge 
bases 1 1, , , , ,n mK K F F   for L: 

(A1)	 1( , , )nK KD   is a (consistent) knowledge base, 

(A2)	 If 1, , nK K  are jointly consistent then 1( , , )nK KD   is logically 
equivalent to 1=

n
ii K



, 

(A3)	 If 1, , nK K  and 1, , nF F  are such that there exist a permutation p of 
the index set {1, , }n

 such that Ki is logically equivalent to ( )iFp  for 
1 i n£ £ , then 1( , , )nK KD   is logically equivalent to 1( , , )nF FD  ,

(A4)	 If K1 and F1 are jointly inconsistent then 1 1 1( , )K F KD  ,

(A5)	 1 1 1 1( , , ) ( , , ) ( , , , , , )n m mnK K F F K K F FD ÈD D    ,

(A6)	 If 1 1( , , ) ( , , )n mK K F FD ÈD   is consistent then 

1 1 1 1( , , , , , ) ( , , ) ( , , ).m mn nK K F F K K F FD D ÈD   

In the next section we will reformulate the ideas behind the KPP principles 
above in order to apply them to the different context of the merging of 
probabilistic knowledge bases, or more explicitly, to the search for a ratio-
nally justified method of merging probabilistic knowledge from distinct 
sources as described above.

Before continuing our discussion we will first formulate the prerequisite 
concepts which we need in order to define precisely the general notion of 
a probabilistic merging operator. 

7  See [15] for a survey paper and bibliography.
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2.  From Non-Probabilistic to Probabilistic Merging

Let 1{ }= hL p p  be a finite propositional language where 1, , hp p  are 
propositional variables. We denote the set of all propositional sentences 
which can be defined over L by SL. By the disjunctive normal form theorem 
any sentence in SL is logically equivalent to a disjunction of atomic sentences 
(atoms) where each atom is of the form 1=

h
i ip±Ù , and ip±  denotes either pi 

and ipØ . We denote an enumeration these 2h atoms in some fixed order by 
1, , Ja a , where J = 2h. The set 1{ , , }Ja a  of all atoms of L will be denoted 

by At(L). The atoms of At(L) are thus mutually exclusive and exhaustive. 
A probability function w over L is defined as a function : At( ) [0,1]L ®w  

such that 1= ( ) 1.=J
jj aå w  A value of w on any SLj Î  may then be defined 

by setting
( ) ( ).=

j

j
a j

j aåw w


Whenever a sentence SLj Î  is not satisfiable we set ( ) = 0jw . We will 
denote the set of all probability functions over L by L . For the sake of 
simplicity we will often write jw  instead of ( )jaw , but note that this makes 
sense only for atoms. Given a probability function LÎw  , a conditional 
probability is defined by Bayes’s formula

	
( )( | ) =

( )
j y

j y
y
Ùww

w

for any , SLj y Î  such that ( ) = 0yw  and is left undefined otherwise.
A probabilistic knowledge base K over L is a set of constraints on  

probability functions over L such that the set of all probability functions 
satisfying the constraints in K forms a nonempty closed convex subset LVK  
of L . We shall abbreviate the term probabilistic knowledge base by  
p–knowledge base. LVK  may be thought of as the set of possible probability 
functions in L  of a particular agent which are consistent with her p–knowl-
edge base K. We shall generally write VK instead of LVK  unless there is 
any ambiguity about which language is referred to. Note that this standard 
formulation ensures that linear constraint conditions such as w(q) = a, 

( | ) ,= bf yw  and ( | ) cy q £w , where , , [0,1]  and , ,a b c SLq f yÎ Î  are sat-
isfiable L-sentences, are all permissible in a p–knowledge base K provided 
that the resulting constraint set K is consistent with the laws of probability. 
Note that a constraint such as ( | ) cy q £w  is interpreted as ( ) ( )cy q qÙ £ ×w w  
which makes sense as a linear constraint even though ( )qw  may take the 
value zero (see [18] for details).

If K1 and K2 are such that 1 2=V VK K  we shall say that K1 and K2 are 
equivalent. In practice we shall only be interested in constraint sets up to 
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equivalence, and consequently we will informally identify a p–knowledge 
base K with its extension VK, and with slight abuse of language we may 
also refer to a non-empty closed subset of L  as a p–knowledge base. Note 
that the non-emptiness of VK corresponds to the assumption that K is con-
sistent with the laws of probability, while if K and F are p–knowledge bases 
then the set of constraints ÈK F  corresponds to =V V VÈ ÇKK F F, and so 
forms a p–knowledge base provided that the latter intersection is non-empty. 

The set of all p–knowledge bases VK over L is denoted by CL. A more 
restricted notion of p–knowledge base is a p–knowledge base which bounds 
probability functions away from zero. This is a p–knowledge base CLÎK  
such that VK satisfies a set of constraints on VÎ Kw  of the form 

	 { :1 }j ja w j J£ £ £

where 0 < < 1ja  for all 1=j J
. We call such a p–knowledge base bounded, 

and we will denote the set of all bounded p–knowledge bases for a given 
language L by BCL. A somewhat more general notion is that of a p–knowl-
edge base CLÎK  which does not “force” any atom to take the value zero. 
More precisely we call K weakly bounded if for every 1 j J£ £  there is 

VÎ Kw  such that 0jw ¹ . The set of weakly bounded p–knowledge bases for 
L will be denoted by WBCL. Note that BCL WBCL CLÌ Ì  and that by 
convexity if WBCLÎK  then there exists some VÎ Kw  such that 0jw ¹  for 
all 1=j J

.
There are at several possible motivations for studying p–knowledge bases 

with a boundedness condition imposed. Broadly speaking, the imposition 
of such a condition may avoid some of the potentially intractable technical 
and philosophical difficulties which arise from treating zero probabilities 
in certain contexts. In this paper we will confine ourselves to stating and 
proving some theorems concerning particular merging operators for certain 
classes of p–knowledge bases, but will not consider further the epistemo-
logical status of the various notions of p–knowledge base. 

Let D denote an operator defined for all 1n ³  and all L as a mapping 

	 : ( )L
L

n
CL CL´ ´D ®


 

where ( )L  denotes the power set of L . We will call such a D a proba-
bilistic merging operator, abbreviated to p–merging operator, if it satisfies 
the following 

(K1)  Defining Principle.

If 1, , n CLÎK K  then the set 1( , , )L n CLD ÎK K .
Note that (K1) is a natural counterpart to (A1); just as (A1) ensures that 

a propositional merging operator applied to a sequence of knowledge bases 
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yields a knowledge base, so (K1) ensures that a p–merging operator applied 
to a sequence of p–knowledge bases yields a p–knowledge base.

In general we shall suppress the subscript L in DL except where an ambi-
guity could be caused by such an omission. We may sometimes slightly 
abuse the above terminology by referring to an operator D as a p–merging 
operator even though the domain over which D is properly defined may be
a certain subclass of the 

n
CL CL´ ´


 . Whenever we do this however the cor-
rect restriction of the domain of application will always be made apparent. 

We now set about reformulating the remaining KPP principles so as to 
make them applicable to the context of a p–merging operator D. We express 
the remaining five principles as follows:

For every 1n ³  and every propositional language L 

(K2)	 Consistency Principle.  For all 1, , n CLÎK K  if 1= i
n L
i V ¹ ÆK

 then 
11 =( , , ) = i

n L
n i VD KK K



.

	 (K2) can be interpreted as saying that if the p–knowledge bases of a 
set of agents are collectively consistent then the merged p–knowledge 
base should simply consist of all the knowledge of the agents col-
lected together. If there is only one agent, with p–knowledge base K, 
the principle just asserts that ( ) = LVD KK .

(K3)	 Equivalence Principle.  If 1, , n CLÎK K  and 1, , n CLÎF F  are 
such that there exist a permutation p of the index set {1, , }n

 such 
that ( )= ii

L LV V pK F  for 1 i n£ £ , then 11( , , ) = ( , , )n nD DK K F F  .

	N otice that (K3) has the effect that for any D which satisfies it, the 
order in which the p–knowledge bases occur when D is applied is 
immaterial, and therefore we can loosely refer to D as being applied 
to a multiset of p–knowledge bases instead of a sequence of such 
p–knowledge bases. On the other hand repetitions of p–knowledge 
bases will in general be significant, so the sequence (or multiset) of 
p–knowledge bases cannot be considered simply as a set; the D we 
consider behave somewhat analogously to the majority merging oper-
ators of the KPP framework [14] in the sense that adding further 
agents whose p–knowledge bases are copies of the p–knowledge base 
of some particular agent generally has the effect of increasing the influ-
ence of that p–knowledge base on the resulting merged p–knowledge 
base.

(K4)	 Disagreement Principle.  Let 1, , n CLÎK K  and 1, , m CLÎF F
. 

Assume that 1= =i
m L
i V ÆF

.

	T hen 1 1( , , ) ( , , ) =n mD ÇD ÆK K F F   implies that 

	 1 1 1( , , , , , ) ( , , ) .=mn nD ÇD ÆK K F F K K  
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	 (K4) represents a significant but natural strengthening of (A4), 
adapted to the p–merging context. Intuitively the principle says that 
if the merged p–knowledge base K of a set of agents is inconsistent 
with the merged p–knowledge F of a distinct set of agents, where the 
p–knowledge bases of the latter set are collectively consistent, then 
the result of merging the p–knowledge bases of all the agents together 
is also inconsistent with K. Expressed more pithily, if less exactly, 
we could say that a consistent group who disagree with another group 
and then merge with them can be sure that they have influenced the 
opinions of the combined group.

(K5)	 Agreement Principle.  If 1 1( , , ) ( , , ) =n mD Ç D ÆK K F F   then 

	 1 1 1 1( , , ) ( , , ) ( , , , , , ).=n m n mD ÇD DK K F F K K F F   

	 (K5) combines the ideas of (A5) and (A6) into a single principle 
adapted to the probabilistic context. In particular (K5) implies that if 
each of two distinct sets of agents arrive at the same set of possible 
conclusions then the result of considering the p–knowledge bases of all 
the agents together should result in the same set of possible conclusions.

The intuitive idea behind p–merging is that the probabilistic knowledge from 
a set of agents should be shared by some objective collaborative process, 
which takes full account of the declared p–knowledge base of each agent, 
including the implicit ignorance of an agent whenever she has not specified 
a singleton probability function as constituting her p–knowledge base. The 
result of this process should be a new “social” or merged p–knowledge base, 
which represents the collective knowledge of the set of agents, just as if the 
set had merged to form a single agent. It is clear that if (K2) is to be satis-
fied then this merged p–knowledge base will not in general be a singleton.

This general intersubjective approach to probabilistic merging was 
expounded in a slightly different form by the second author in [25], and 
accords well with certain philosophical ideas elaborated independently by 
Williamson [22], [23]. Both stress the advantages of initially merging the 
p–knowledge bases of a set of agents into a single p–knowledge base, as 
opposed to merging the default belief functions of the individual agents into 
a single probability function, where by the default belief function of an 
agent we mean the unique probability function which that agent may hypo-
thetically arrive at solely by considering her own p–knowledge base and 
applying to it a standard inference process8 such as the maximum entropy 
inference process ME.

8  See e.g. [18] for a comprehensive account of single agent inference processes, including 
ME.
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Our reformulation of the KPP principles into a probabilistic framework is 
a fairly straightforward translation with the exception, as noted above, of (K4). 
In the sequel we will show that the hitherto known p–merging operators 
which satisfy perhaps the most attractive desiderata other than (K1)-(K5) 
do in fact satisfy the above principles (K1), (K2), (K3), and satisfy (K4) and 
(K5) at least when their application is restricted to bounded p–knowledge 
bases9. In particular, in [25] and [26] a specific p–merging operator is defined, 
which we will here call the social entropy operator, denoted by DKL, which 
is strongly related to Kullback-Leibler divergence. This was introduced as 
the first stage of a merging process called the social entropy process, SEP, 
which for any multiset of p–knowledge bases chooses a unique merged prob-
ability function. The first stage of SEP consists of applying DKL, while the 
second stage of SEP simply chooses the unique maximum entropy point in 
the resulting merged p–knowledge base.

In the following section we will examine in detail some of the properties 
of the operator DKL together with those of its dual, the linear entropy 
operator D̂KL.

3.  Two Probabilistic Merging Operators

3.1.  The Social Entropy Operator DKL

In order to define the social entropy operator we first need to define Kull-
back-Leibler divergence KL : [0, ]L L´ ® +¥  . This may be thought of 
as a function which measures the (asymmetric) “informational distance” 
from one probability function to another, and returns a value in the interval 
[0, ]+¥ . The asymmetry of this notion is the reason for the use of the term 
“divergence” rather than “distance”. The Kullback-Leibler divergence from 

LÎw   to LÎv   is defined as +¥ whenever = 0jv  and = 0jw  for some 
atom ja . If this is not the case we say that w dominates v and write w v . 
Let Sig( ) { : 0}== jj ww . Then the Kullback-Leibler divergence from w to 
v is defined by

	 Sig( )
log if ,

KL( ) =
otherwise.

j

j

v
j w

j
v

Î

ìïïïíïï+¥ïî

å
w

w v
v w





9  We remark here that whereas, as noted above, Williamson previously advocated the 
relevance of the KPP principles in relation to probabilistic merging, in a recent paper [24] 
he criticises the KPP principles (A2), (A4), and (A6) as representing norms which are too 
strong to be applicable in this context. However in reaching this conclusion it appears that 
he is using an informal notion of evidence base which is very different from our restricted, but 
more formally defined, notion of p–knowledge base, and we do not feel that his criticisms 
are justified if applied to our framework.
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with the usual convention that x log x is defined to take the value zero at 
= 0x . It is easy to show that KL( )v w  is always non-negative, that 

KL( ) 0=v w  if and only if v = w, and that KL( )v w  is finite if and only 
if w v

. (See e.g. [18].)
Given p–knowledge bases 1, , n CLÎK K  let 

1 1

( )(1)( )
, ,

1=
min{  KL( ) : ; , , }.=n n

n
nL LLi

i
C V VÎ Î ÎåK K K Kv w v w w



 

It is easy to see that this is well-defined (see [26]). Note that this value lies 
in the interval [0, ]+¥ . Also 

1, , 0=nCK K

 if and only if (1) ( )= = = nv w w  
in the definition above in which case the 1, , nK K  are jointly consistent. 
Also 

1, , nCK K

 is finite if and only if the following holds:

There is some atom aj such that for no i is it the case that
 for all w  Î  V  LKi w (aj) = 0.� (1)

The p–merging operator DKL is now defined as follows: for any L and any 
1, , n CLÎK K  kL

1( , , )L nD K K  is defined as 

	 11
(1) ( ) ( )

, ,
1=

{ :  , , s.t.  KL( ) = }.nn

n
L LL n i

i
V V CÎ $ Î Î å K KK Kv w w v w



 

In [26] it is shown that for any 1, , n CLÎK K  this set 1( , , )KL
L nD K K  is 

always a non-empty closed convex region of L , and hence it follows that 
the p–merging operator DKL satisfies (K1). We note however that although 
DKL is everywhere defined10 it is really only interesting as a merging oper-
ator for those 1, , n CLÎK K  for which the relatively undemanding condi-
tion (3.1) above is satisfied, since otherwise applying DKL simply returns 
the whole space L . The fact that the social entropy operator DKL satisfies 
(K2) follows at once from the fact noted above that 

1, , 0=nCK K

 if and only 
if (1) ( )= = = nv w w  in the definition of 

1, , n
CK K

. Moreover DKL satisfies 
(K3) trivially by definition.

DKL turns out to have many other desirable properties, some of which 
closely resemble the axiomatic properties which have been used to charac-
terise the ME inference process in [20], and [18]. (See [1], [25], [26] for 
details.) In particular we mention the following:

10  In the presentation in [26] the region 1( , , )KL
L nD K K  is only defined assuming that 

condition (1) holds, but this does not significantly affect the results.
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1.	 Language Invariance

	 Suppose L L¢Ì  and 1, , n CLÎK K . 1, , nK K  may also be regarded 
as p–knowledge bases in CL¢ . For any L¢¢Îw   denote by  L¢w   the 
marginalisation of ¢w  to L . Then

	 kL kL
1 1( , , ) {   : ( , , )}=L n nLL ¢¢ ¢D Î DK K w w K K 



	 Language Invariance means that if we change a multiset of p–knowledge 
bases only by adding propositional variables to the language in which 
they are formulated but add no new knowledge, then the restriction of 
the new merged p–knowledge base to the original language is the same 
as the original merged p–knowledge base. The fact that DKL satisfies 
language invariance is proved in [1].

2.	 The Consistent Irrelevant Information Principle.

	 Let 1 2=L L LÈ  where L1 and L2 are disjoint propositional languages.  
Let 1, , nK K  and 1, , nF F  be knowledge bases formulated for the lan-
guages L1 and L2 respectively, and suppose that 1, , nF F  are jointly 
consistent. Then 

	 kL kL
1 111 1( , , )  = ( , , )  .L Ln n nL LD È È DK F K F K K 

 

	 where 1T L  denotes the set of marginalisations to L1 of probability func-
tions over L belonging to a given set T of such probability functions. 
The above property of DKL follows from Lemma 5.2 of [1]. Together with 
language invariance, it ensures that if a set of agents have p–knowledge 
bases formulated in the language L1 then their merged p–knowledge 
base remains the same if each agent acquires additional new knowledge 
formulated in a disjoint language L2 and the newly merged p–knowledge 
base of all the agents is then restricted to the language L1, provided that 
all the new knowledge in the language L2 is jointly consistent.

3.	 DKL Generalises the LogOp Pooling Operator

	 In [25] the following equivalence between (i) and (ii) below is given, 
which provides an alternative characterisation of DKL in the case when 
condition (1) above is satified:

	 (i)  The L-probability functions v, ( )(1), , nw w  minimize 

	 ( )

1=
KL( )

n
i

i
å v w

subject only to 1
(1) ( ), , n

nV VÎ ÎK Kw w . 
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(ii)	 The L-probability functions ( )(1), , nw w  maximize 
1( )

11 ==
 (  ) ,n

J n
k

j
kj

wå Õ
	

	 subject only to 
1

(1) , ,VÎ Kw   ( )
n

n VÎ Kw , and

		
1

1

( )
1

( )
1 1

( )
 for all 1  .= =

( )

n

n

n k
jk

j nJ k
jj k

w
v j J

w
=

= =

Õ
å Õ



� (2)

	 Whenever (2) holds we write ( )(1)( )= nv LogOp w w

. LopOp is 
of course just the normalised geometric mean, or “logarithmic”, 
pooling operator familiar to decision theorists. Thus we see that for 
v to be in DKL there must exist some ( )

i
i VÎ Kw  which maximise 

the normalising factor in the definition of logarithmic pooling, and 
for which ( )(1)( )= nv LogOp w w . In the very special case when 
each each agent i specifies a single probability function ( )iw  then 

kL
1( , , )L nD K K  is just the singleton (1) ( ){ ( , , )}nLogOp w w . Notice 

that condition (1) is exactly the condition required to ensure that the 
LopOp pooling operator is defined.

4.	 DKL is a Natural Companion to the ME Inference Process
	 At first sight this assertion might seem strange, since if DKL is applied 

to the p–knowledge base K of a single agent X it simply returns the 
same p–knowledge base in the form VK, which does not help X to 
choose a single preferred point in VK. However let us imagine that X 
now appoints a fanatically unbiased oracle Y with p–knowledge base 

1 1 1{( , )}= J J JF  , in order to help her to choose a preferred point in her 
p–knowledge base. Y advises X to imagine cloning herself n times, for 
some large n, and forming a committee of n  + 1 members consisting of 
the n clones of X, together with Y as chairman. Finally Y advises X to 
compute the result of applying DKL to the n  + 1 p–knowledge bases of 
the members of An and then to let n ® ¥. The result of this procedure 
is that the merged p–knowledge bases converge towards a single point, 
the maximum entropy point of VK. (See [26] for a proof11).

The following theorem is our first main result of the present work.

Theorem 3.1.  The p–merging operator DKL satisfies the principles (K1), 
(K2) and (K3). Furthermore DKL satisfies (K4) and (K5) provided that the 
p–knowledge bases to which DKL is applied are restricted to WBCL. 

11  In [26] a similar more general result is proved which holds for any number of agents.
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 The fact that (K1), (K2) and (K3) hold for DKL has been established above. 
The rest of the theorem will be proved in section 4.
� □

3.2.  The Linear Entropy Operator D̂KL

The Linear Entropy operator D̂KL is a p–merging operator which may 
naturally be considered as the dual of the DKL p–merging operator defined 
above.

In brief, whereas DKL  1( , , )nK K  comprises those v which globally 
minimise 
	 ( )

1=
KL( ) ,

n
i

i
å v w

D̂KL  1( , , )nK K  comprises those v which globally minimise

	 ( )

1=
KL( ).

n
i

i
å w v

Given p–knowledge bases 1, , n CLÎK K  let 

	
11

( ) ( )(1)
, ,

1=

ˆ min{ KL( ) : ; , , }.= nn

n
L Li nL

i
C V VÎ Î Îå K KK K w v v w w



 

As in 3.1 it is easy to see that this is well-defined, non-negative, and zero 
if and only if (1) ( )= = = nv w w  in the definition of 1, ,

ˆ
nCK K

. However 
unlike the case for DKL we may note that 1, ,

ˆ
nCK K

 is always finite since any 
v all of whose coordinates are non-zero will always give a finite non-zero 
value to ( )

1= KL( )n i
iå w v .

The p–merging operator D̂KL is now defined as follows: for any L and 
any 1, , n CLÎK K  kL

1
ˆ ( , , )L nD K K  is defined as

	
1 1

(1) ( ) ( )
, ,

1=

ˆ{ :  , , s.t. KL( )  }.= nn

n
L LL n i

i
V V CÎ $ Î Î åK K KKv w w w v



 

It is easy to show (cf. section 4) that whenever

	
1

( )
, ,

1=

ˆKL( )  = n

n
i

i
Cå K Kw v





then (1) ( )( , , )= nv LinOp w w  where (1) ( )( , , )nLinOp w w  just returns 
the arithmetic mean of (1) ( ), , nw w . Hence D̂KL is a generalisation of the 
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arithmetic pooling operator LinOp, and indeed coincides with that operator 
in the special case when each Ki specifies a unique probability function.

It is straightforward to prove that Sig( ) logj j jj x x yÎå y  is a convex func- 
tion over the domain {( , ) : }L LÎ ´x y y x  . It follows that the set 

kL
1

ˆ ( , , )L nD K K  is nonempty, closed and convex for all 1, , n CLÎK K  and 
hence that the p–merging operator D̂KL satisfies (K1). As in the case of DKL, 
the fact that the operator D̂KL satisfies (K2) follows at once from the remark 
above that 1, ,

ˆ 0=nCK K

 if and only if (1) ( )= = = nv w w  in the definition 
of 1, ,

ˆ
nCK K

. Similarly D̂KL satisfies (K3) trivially by definition.
It can also be shown that, as in the case of DKL, Language Invariance 

and the Consistent Irrelevant Information Principle of section 3.1 also hold 
for the p–merging operator D̂KL. Finally if the “chairman” procedure of 
section 3.1, which related DKL to ME is instead applied using D̂KL then the 
point chosen in VK is not the maximum entropy point, but the CM ¥ point, 
or limit centre of mass point, of VK. These last results have been proved 
in [0].

Before stating our second theorem of this article we introduce the fol-
lowing natural strengthening of the Disagreement Principle (K4).

(K4*)  Strong Disagreement Principle.

Let 1, , n CLÎK K  and 1, , m CLÎF F .
Then 1 1( , , ) ( , , ) =n mD Ç D ÆK K F F   implies that 

1 1 1( , , , , , ) ( , , ) .=mn nD ÇD ÆK K F F K K  

Trivially the Strong Disagreement Principle implies the Disagreement Principle.

Theorem 3.2.  The p–merging operator D̂KL satisfies (K1), (K2), (K3) and (K5). 
Furthermore if the p–knowledge bases to which D̂KL is applied are restricted 
to BCL, then D̂KL satisfies the Strong Principle of Disagreement (K4*). 

The fact that (K1), (K2) and (K3) hold for D̂KL has been established above. 
The proofs for (K4*) and (K5) will be given in the next section.
� □

Historical Remarks.

Minimising Kullback-Leibler divergence from a convex set to a given prob-
ability function, or KL-projection, has long been used for updating and in 
machine learning algorithms (see e.g. [2], [5], [7], [8], [11] and [18]). Connec-
tions between the minimisation of sums of Kullback-Leibler divergences and 
the operators LinOp and LogOp have also been noted previously by several 
authors within somewhat different frameworks. In particular we should 
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mention the work of Matúš [16] who proved a number of convergence theorems 
covering the iteration of alternating operations of KL–projection or its dual to 
several compact convex sets followed by LinOp or, respectively, LogOp, and 
showing that under certain conditions these iterations converge to fixed points. 
These fixed points correspond respectively to particular points of D̂KL or DKL.

4.  Proofs of Results

In this section we prove the two main results of this paper – the theorems 3.1 
and 3.2. Since the properties (K1), (K2) and (K3) have already been estab-
lished for the two p–merging processes it remains to deal with the agree-
ment and disagreement principles. The proofs of the Agreement Principle 
(K5) are straightforward and are given in 4.5 below. However the proofs 
for the Disagreement Principle ((K4) or (K4*)) are more complex and are 
different in flavour for DKL and for D̂KL. The result for D̂KL is proved in 4.6 
and that for DKL in 4.8.

We start by reviewing some geometrical properties of the space of prob-
ability functions L  with respect to the divergence KL. First of all notice 
that for given LÎv   the Kullback-Leibler divergence KL( )w v  is a 
strictly convex function in the first argument over the domain specified by 
v w . Owing to this if LÎv   is given and LW Í  is a closed convex set 
such that there is at least one probability function in W which v dominates, 
then we can define the KL-projection of v to W. This is defined as that 
unique point WÎw  which minimizes KL( )w v . For more details see [2].

The following theorem is due to Csiszár [7]. 

Theorem 4.1.  (Extended Pythagorean Theorem)  Let w be the KL-pro-
jection of LÎv   to a closed convex set LW Í . Let WÎa  be such that 
v w a  . Then 

	 KL( ) KL( ) KL( ).+ £a w w v a v  

� □
 
The following theorem is well known in information theory, see for 
instance [6]. 

Theorem 4.2.  (Parallelogram Theorem).  Let (1) ( ), , ,n LÎw w v   be such 
that ( )iv w  for all 1 i n£ £ . Then

( ) ( ) (1) ( )

1 1= =
KL( ) KL( ( , , ))=

n n
i i n

i i
+å åw v w LinOp w w  

(1) ( )KL(  ( , , ) ).nn+ × LinOp w w v 

� □
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Lemma 4.3.  Let (1) ( ), , n LÎu u   and (1) ( ), , Ln Îa a   be such that

	 ( ) ( )

1 1= =
KL( ) > KL( ),

n n
i i

i i
å åu v a a 

where (1) ( )( , )= nv LinOp u u  and (1) ( )( , )= na LinOp a a . Assume that 
( ) ( )i iu a  for all 1 i n£ £ . Then 

	 ( ) ( ) ( )

1 Sig( )=
( ) (log log ) < 0.

n
i i i

j j j j
i j

a u u v
Î

- × -å å
v 

 
Proof.  First of all notice that by the assumption ( ) ( )i iu a  for all 1 i n£ £  
we have that 

	 ( ) ( ) ( )( ) ( ) ( ) ( )

Sig ( )
KL( ) KL( ) KL( ) ( ) (log log ).= i i ii i i i

j j j j
j

a u u v
Î

- - - × -å
v

a v u v a u  

� (3)

The above makes sense since ( )iv u  for all 1 i n£ £ . By the parallelo-
gram theorem
 
	 ( ) ( )

1 1= =
KL( ) KL( ) KL( ).=

n n
i i

i i
n+ ×å åa v a a a v  

Figure 1.  The illustration of the extended Pythagorean theorem.

KL-projection

KL (a  w) + KL (w  v) ≤ KL (a  v).
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Hence

( ) ( )

1 1= =
KL( ) KL( ) KL( )

n n
i i

i i
n+ × --å åa a u v a v  

( ) ( ) ( )( ) ( )

1= =1 Sig ( )
KL( ) ( ) ( log log ) .=

n n
i i ii i

jj j j
i i j

a u u v
Î

- - × -å å å
v

a u � (4)

Since KL( )w v  is a convex function in both arguments whenever v w , 
by the Jensen inequality 

	 ( ) ( )

1=
KL( ) KL( ) 0.

n
i i

i
n × - £åa v a u  � (5)

The inequality (5) together with the assumption that 

	 ( ) ( )

1 1= =
KL( ) > KL( )

n n
i i

i i
å åu v a a 

gives that left-hand side of the equality (4) is negative and so the right-hand 
side is too, whence 

	 ( ) ( ) ( )

1 Sig ( )=
( ) (log log ) < 0

n
i i i

j j j j
i j

a u u v
Î

- × -å å
v

as required.� □

Figure 2.  The illustration of lemma 4.3 for n = 2. 
Arrows indicate corresponding Kullback-Leibler divergences.
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Lemma 4.4.  Let (1) ( ), , Ln Îw w   be fixed. Then

(i)  ( )
1= KL( )n i

iå w v  is strictly minimal for (1) ( )( , , )= nv LinOp w w .

(ii)  ( )
1= KL( )n i

iå v w  is strictly minimal for (1) ( )( , , )= nv LogOp w w  pro-
vided that (1) ( )( , , )nLogOp w w  is defined, i.e. provided that for some j for 
all i ( ) 0i

j ¹w .
 
Proof.  (i) By the parallelogram theorem the minimality of  

( )
1= KL( )n i

iå w v  for fixed (1) ( ), , nw w  is equivalent to the minimality of 
(1) ( )KL( ( , , ) )nLinOp w w v  . Since for any fixed w KL( )w v  is strictly 

minimal when =v w, the first part of the lemma follows.

(ii)  The proof is straightforward, see e.g. [25].
� □

We will denote by kL
1

ˆ ( , , )L nG K K  the set of all n-tuples 1
(1) , ,LVÎ Kw   

( )
n

Ln VÎ Kw  such that for some kL
1

ˆ ( , , )L nÎ Dv K K  

	
1

( )
, ,

1=

ˆKL( ) = .n

n
i

i
Cå K Kw v





This notation will be useful in the following two proofs.
 
Theorem 4.5.  (i) The D̂KL p–merging operator satisfies (K5).

(ii) The DKL p–merging operator satisfies (K5) for all p–knowledge bases 
in WBCL.
 
Proof.  The proofs are very similar in both cases, so we shall just give the 
proof for D̂KL below.

Since we are assuming that kL kL
11

ˆ ˆ( , , ) ( , , )L Ln mD Ç D ¹ ÆK K F F  , there 
is some kL kL

1 1
ˆ ˆ( , , ) ( , , )L Ln mÎ D Ç Dv K K F F  . For any such v this is equiv-

alent to the assertion that for some kL(1) ( )
1

ˆ ( , , )n
L nÎ Gw w K K   and some 

kL(1) ( )
1

ˆ ( , , )m
L mÎ Gu u F F   

	 11
( ) ( )

, ,, ,
1 1= =

ˆ ˆKL( ) and KL( ) .= = mn

n m
i i

i i
C Cå å F FK Kw v u v





 

Then since by definition 1 1 1 1, , , , , , , , , 
ˆ ˆ ˆ

n m n mC C C+ £K K F F K K F F
  

 the same vec-
tors v, (1) ( )nw w , (1) ( )mu u  globally minimize the sum 

	 ( ) ( )

1 1= =
KL( ) KL( )

n m
i i

i i
+å åw v u v  � (6)
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subject to ( )
i

Li VÎ Kw , 1 i n£ £  and ( )
i
Li VÎ Fu , 1 i m£ £ .

Thus kL
1 1

ˆ ( , , , , , )L n mÎ Dv K K F F  , and

	
1 1 1 1, , , , , , , , ,

ˆ ˆ ˆ .=n m n m
C C C+K K F F K K F F   

� (7)

Since v was arbitrary we have proved that

	 kL kL kL
1 1 1 1

ˆ ˆ ˆ( , , ) ( , , ) ( , , , , , ).L L Ln m n mD Ç D Í DK K F F K K F F   

Now suppose kL
1 1

ˆ ( , , , , , )L n mÎ Dx K K F F  . Then for some (1) ( )ny y , 
kL( )(1)

1 1
ˆ ( , , , , , )m

L n mÎ Gz z K K F F    and

	
1 1

( ) ( )
, , , , ,

1 1= =

ˆKL( ) KL( ) = .
n m

n m
i i

i i
C+å å K K F Fy x z x

 

 

In view of (7) if we did not now have that 
1

( )
, ,1=

ˆKL( ) = n

n i
i Cå K Ky x



  and 
1

( )
, ,1=

ˆKL( ) =
m

m i
i Cå F Fz x



  then this would contradict the minimality of 
either 1, ,

ˆ
nCK K

 or 1, ,ˆ
mCF F

. Hence kL kL
1 1

ˆ ˆ( , , ) ( , , )L Ln mÎ D Ç Dx K K F F   and 
the result is proved.

The proof for DKL is similar except that the final argument involving the 
equation corresponding to (7) fails if either of the quantities 

1, , n
CK K

 or 
1, , mCF F

 is + ¥, which is the reason for the restriction of p–knowledge bases 
to WBCL, since with that restriction these quantities are necessarily finite.
� □

The following theorem proves that the D̂KL p–merging operator satisfies the 
Strong Disagreement Principle (K4*) if the p–knowledge bases are 
restricted to BCL. This together with theorem 4.5 above and the results of 
section 3.2 is sufficient to establish our theorem 3.2.
 
Theorem 4.6.  Let 1, , n CLÎK K  and 1, , m CLÎF F  be such that for every 

	 kL(1) ( ) (1) ( )
1 1

ˆ( , , , , , ) ( , , , , , )n m
L n mÎ Gv v u u K K F F   

there is kL(1) ( )
1

ˆ( , , ) ( , , )m
L mÎ Ga a F F   such that 

	 ( ) ( )   1 .i i for all i m£ £u a

Then kL kL
1 1

ˆ ˆ( , , ) ( , , ) =L Ln mD Ç D ÆK K F F   implies 

	 kL kL
1 1 1

ˆ ˆ( , , , , , ) ( , , ) .=L Ln m nD Ç D ÆK K F F K K  
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In particular the above condition that 

	 ( ) ( )  for all 1i i i m£ £u a

holds trivially if 1, , m BCLÎF F , so the theorem suffices to show that the 
Strong Disagreement Principle (K4*) holds in that case. 

Proof.  Assume that kL
1

ˆ ( , , )L nÎ Dv K K  and

	 kL
1 1

ˆ ( , , , , , ).L n mÎ Dv K K F F 

Let kL(1) ( )
1

ˆ( , , ) ( , , )n
L nÎ Gv v K K   be an n-tuple associated with v; in par-

ticular then (1) ( )( , , )= nv LinOp v v .
Let 

	 kL(1) ( ) (1) ( )
1 1

ˆ( , , , , , ) ( , , , , , )n m
L n mÎ Gw w u u K K F F   

be an ( )n m+ -tuple associated with v; then 

	 (1) ( ) (1) ( )( , , , , , ).= n mv LinOp w w u u 

This can only happen when 

	 ( ) ( ) for all  1=i i i n£ £w v

since the projections of the fixed v to each iVK  are unique. Since in that case 

	 (1) ( )( , , )= nv LinOp v v

and 
	 (1) ( ) (1) ( )= ( , , , , , ).n mv LinOp v v u u 

we have that 

	 (1) ( )( , , ).= mv LinOp u u

Now let kL
1

ˆ ( , , )L mÎ Da F F  and kL( )(1)
1

ˆ( , , ) ( , , )n
L mÎ Ga a F F   an m-tuple 

associated with a be such that ( ) ( )  for all  1 .i i i m£ £u a  This is possible 
by the assumption of the theorem.

If kL
1

ˆ ( , , )L mÎ Dv F F  then

	 kL kL
1 1

ˆ ˆ( , , ) ( , , ) =L Ln mD Ç D ÆK K F F 
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and we are done. On the other hand we show that kL
1

ˆ ( , , )L mÎ Dv F F  leads 
to a contradiction. First of all notice that from this assumption it follows 
that 

	 ( ) ( )

1 1= =
KL( ) > KL( ).

m m
i i

i i
å åu v a a 

Then by the lemma 4.3

	 ( ) ( ) ( )

1 Sig( )=
 ( ) (log log ) < 0.

m
i i i

jj j j
i j

a u u v
Î

- × -å å
v

On the other hand by the extended Pythagorean theorem (theorem 4.1) and 
by equation (3) 

( ) ( ) ( ) ( )

1=
0 KL( ) KL( ) KL( ) =

m
i i i i

i
£ - -å a v u v a u  

( ) ( ) ( )

1 Sig( )=
 ( ) (log log ) < 0.=

m
i i i

jj j j
i j

a u u v
Î

- × -å å
v

which is a contradiction.
� □

The following counterexample shows that the restriction on the p–knowl-
edge bases in theorem 4.6 is necessary even if we are considering only the 
weaker Disagreement Principle (K4) in place of (K4*). 

Example 4.7.  Assume that | | 2=L , 1 {(1,0,0,0)}=VK , 
2 {(0,1,0,0)}=VK , 

1 {( ,0,1 ,0) : [0,1]}=V x x x- ÎF  and 2 {(0, ,1 ,0) : [0,1]}=V x x x- ÎF . Clearly
kL 1 1

1 2 2 2
ˆ ( , ) {( , ,0,0)}=LD K K  and kL

1 2
ˆ ( , ) {(0,0,1,0)}=LD F F . Therefore 

kL kL
1 2 1 2

ˆ ˆ( , ) ( , ) =L LD Ç D ÆK K F F . It can now be shown that 

	
kL

1 2 1 2
1 1ˆ ( , , , ) , , 0, 0= 2 2L

ì üæ öï ïï ï÷çD ÷í ýç ÷çï ïè øï ïî þ
K K F F

which suffices to contradict the Disagreement Principle.
� □

Before leaving the discussion of D̂KL we note that this p–merging operator 
is one of a large class of p–merging operators which all satisfy the same 
properties as D̂KL does in theorem 4.6. These are formed by the class of 
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operators generated by substituting any convex Bregman divergence12 in 
place of Kullback–Leibler divergence in the definition of D̂KL. This holds 
primarily because the well-known geometric properties of Bregman diver-
gences, such as the extended Pythagorean theorem above, are exactly what 
is required for the proof of (K4*). Amongst such Bregman divergences is 
the very special case of squared Euclidean distance E2, which has previ-
ously been considered in the context of probabilistic merging (see for 
instance [17]), and is defined by

	 2

1=
e2( ) ( ) .=

J

j j
j

w v-åw v

Since in the case of this divergence the zero points cause no discontinuity, 
the Strong Disagreement Principle holds without any restriction on the class 
CL for the e2D̂  p–merging operator defined for any 1, , n CLÎK K  as the 
set e2

1
ˆ ( , , )L nD K K  of probability functions LÎv   which globally mini-

mise the sum of squared Euclidean distances

	 ( )

1=
e2( )

n
i

i
å w v � (8)

subject only to the conditions that 
1

( )(1) , , n
L LnV VÎ ÎK Kw w

.
However what all the p–merging operators defined by convex Bregman 

divergences have in common is that they are generalisations of LinOp 
and reduce to LinOp when marginalised as pooling operators, see [0]. The 
social entropy operator DKL, which marginalises to the LogOp pooling 
operator therefore has very different characteristics from p–merging operators 
defined in this way.

Finally the theorem below proves that the DKL-merging operator satisfies 
the Disagreement Principle (K4) if the p–knowledge bases are restricted to 
WBCL. This together with theorem 4.5 above, and the earlier results of 
section 3.1, is sufficient to establish our theorem 3.1.
 
Theorem 4.8.  For all p–knowledge bases 1 1, , , , , mn WBCLÎK K F F   the 
social entropy operator DKL satisfies (K4).

Proof.  Let 1 1, , , , , mn WBCLÎK K F F   be such that 1= =
i

m
i V ÆF

.
We must show that 

	 kL kL
1 1( , , ) ( , , ) =mnD Ç D ÆK K F F 

12  For the definition of a Bregman divergence see [2].
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implies that 

	 kL kL
1 1 1( , , , , , ) ( , , ) .=n m nD Ç D ÆK K F F K K  

We prove the contrapositive. Suppose that for some fixed v we have that 
kL

1( , , )nÎ Dv K K  and kL
1 1( , , , , , )n mÎ Dv K K F F  . Let (1) ( ), , nv v  be 

such that they minimize ( )1 1= = log j
i

j

vJ n
jj i v

vå å  subject to 1
(1) ( ), , .n

nV VÎ ÎK Kv v

Then
	 ( )(1)( , )= nv LogOp v v � (9)

and furthermore by theorem 3.6(ii) of [26], since the constraint sets 
1, , nK K

 are weakly bounded, for each j with 1 j J£ £  the coordinates 
(1) ( ), , n

j j jv v v  are either all zero or all non-zero. 
Similarly let ( ) (1) ( )(1), , , , ,n mw w u u   be such that they minimize 

	 ( ) ( )
1 1 1 1= = = =
 log  log

J n J m
j j

j ji i
j i j ij j

v vv v
w u

+å å å å � (10)

subject to 1
(1) ( ), , n

nV VÎ ÎK Kw w  and 1
(1) ( ), , m

mV VÎ ÎF Fu u . Equivalently 
( ) (1) ( )(1), , , , ,n mw w u u   are such as to maximize

	
1

( ) ( )

1 11 = ==
  

J n m n mi i
j j

i ij
w u

+é ù
ê ú
ê úë û

å Õ Õ � (11)

subject to 1
(1) ( ), , n

nV VÎ ÎK Kw w  and 1
(1) ( ), , m

mV VÎ ÎF Fu u  and are such 
that 

	 (1) ( ) (1) ( )( , , , , , ).= n mv LogOp w w u u  � (12)

Again, as in the case of (9) above, the weak boundedness of the con- 
straint sets ensures that for each j with 1 j J£ £  the coordinates 

(1) ( ) (1) ( ), , , ,n m
j j j j jv w w u u 

 are either all zero or all non-zero.
Now notice that the minimisation of (10) can only occur when for all j 

such that = 0jv  

	 ( ) ( )  for all  1=i i
j jw v i n£ £ � (13)

since, for fixed v, ( )Sig( ) log j
i

j

v
jj w

vÎå v  is a strictly convex function of ( )iw  for
those ( )iw  such that ( )i

jw  is non-zero if and only if Sig( )j Î v , and hence it 
has a unique minimizer subject to ( )

i
i VÎ Kw  for all 1 i n£ £ , and by the 

definition of v that minimiser must be ( )iv .
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Equation (12) can by (13) be rewritten as

	

1 1

1

( ) ( )
1 1= =

( ) ( )
1 11 = ==

=
n m n m

n m

n mi i
j ji i

j
iJ n m i

j ji ij

v u
v

v u

+ +

+
¢ ¢¢

é ù é ù
ê ú ê úë û ë û

é ù
ê úë û

Õ Õ

å Õ Õ
�

(14)

while from (9)

	
1

1

( )
1=

( )
11 ==

.=
n

n

n i
ji

j
iJ n

jij

v
v

v ¢¢

é ù
ê úë û

é ù
ê úë û

Õ

å Õ

�
(15)

Raising equation (14) to the power n m
m
+  and (14) to the power n

m , and divid-
ing the first by the second, we obtain for all Sig( )j Î v ,

� (16)

	

1

1

1

( )
1=

( ) ( )
1= 1 1= =

( )
1= 1=

.=
m

n m
m

n m

n
m

n

m i
ji

j
iJ n m i

j jj i i

iJ n
jj i

u
v

v u

v

+

+
¢ ¢¢

¢¢

é ù
ê úë û

é ùé ùê úê úë ûê úë û
é ùé ùê úê úë ûê úë û

Õ

å Õ Õ

å Õ �

Notice that in order to obtain (16) above the cancelation of a term 
1( )

1=[ ]mn i
ji vÕ  is required; however this is permissible since we know by the 

remark following (9) that this term is non-zero for Sig( )j Î v . For similar 
reasons the denominator on the right of (16) is finite and non-zero. On the 
other hand (16) holds even if Sig( )j Ï v  since by remarks above both sides 
are then zero.

Now since the denominator on the right of (16) is independent of j it 
follows at once that 
	 ( )(1)( , , ).= mv LogOp u u � (17)

Now let a be consistent with Fi for all i so that in particular

	 kL
1

1=
( , , ) .= i

m

m
i

VÎ D Fa F F



Consider 

	
1

( ) ( ) ( )

1 11 = ==
( )   ( ) .=

n mJ n m
i i i

jj j j
i ij

F v u a ul l
+é ùé ùê ú+ -ê úë ûê úë û

å Õ Õ
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We need to show that 

	 kL kL kL
1 1 1

1=
( , , ) ( , , ) = ( , , )  = .i

m

m nn
i

VD Ç D D Ç ÆFK K F F K K  



For this it is sufficient to prove that 0=| > 0d
d F ll  unless ( )(1) = = =nu u v . 

The idea here is that if the maximum value of F is obtained for ( )(1), , nu u  
which are not all equal then from the existence of the point 1= i

m
i VÎ Fa


 we 
can show that (0) < ( )F F l  for some > 0l ; this is a contradiction since  
by the convexity of the iVF  each ( )( ) ( ) i

ii Vl+ - Î Fu a u  so that (0) < ( )F F l  
contradicts the maximality of (11) given (13).

Note that by (17) 
1( )

1( )
=

im mji u
j Mv =Õ , where

	
1

( ) (1) ( )

11 ==
= < 1 unless .= =

mJ m
i m

j
ij

M u
é ù
ê ú
ê úë û

å Õ u u � (18)

Now

	
1

( ) ( ) ( ) ( )

1 1 1 1= = = = = , 1, ,=
( ) = [( ) ]

n mJ mn m
i i i i

jj jj j
j i i i i i i m

d F v u a u u
d

l l
l

+
¢

¢ ¢

éæ ö÷ç ê÷ + - +ç ÷ êç ÷è ø ë
å åÕ Õ Õ



	
1 1 ( ) ( )2

1= = , 1, ,=

1( )  [( ) ] ( )  .n m
m

i i
j j j

i i i i m
O a u u O

n m
l l+ - ¢

¢ ¢

é ù
ù ê ú+ × - + ×ú ê úû +ë û

å Õ


We obtained this by expanding

	 ( ) ( ) ( ) ( ) ( ) 2

1 1 = , 1, ,1= = ==
[ ( )] [( ) ] ( ).=

mm m
i i i i i

j j jj j j j
i i i i i mi

u a u u a u u Ol l l¢

¢ ¢
+ - + - +åÕ Õ Õ



Furthermore 

	
1

11( )
0=

11 ==

1( ) |  ( )=
n m

n m
J n

i m
jj

ij

d F v Mvn md ll
l

+
+- +é ù é ùê ú× ×ê úë û+ ê úë û

å Õ

	 ( )
( )

11 1 == =
 ( ( ) ( ) ) = ( ) 1 =

n m
n m n m

m J mm m ji m m m m
jj j j j i

ii j j

a
a u M v M v C v

u
+ +- + + é ùé ù ê úê ú× - × -ê úê úë û ê úë û

å å å

	

( )
1

( )
1=

( ) ( )
11 1 1== = =

=  ,=

mm k
J m J m jkj j

ji i
jj i ij j

uavC m C a m
u u M

é ù
ê úé ù ê úê ú× - × -ê úê ú ê úê úë û ê úë û

Õ
åå å å
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where
1 1( )1

11 ==(  [  ] )=
n

n m n mnn iJ
jijn mC M v+ +

+ × × å Õ  is a positive constant.

Note that if ( ) 0=i
ju  and = 0ja  for some 1 i m£ £  and some j then 

( )F l ® +¥  as 0l +® . On the other hand if also 0=ja  then we can just 
leave out that index j from the summation. Finally by the arithmetic– 
geometric inequality13

	

( )
1

( )
1=

( )
1=1=

1   

mm k
J m jk

j i
i jj

u
C a m

Mu

é ù
ê ú
ê ú× - ³ê ú
ê ú
ê úë û

Õ
å å

	

( )
1

1 ( )
1=

( )
1 1= =

1 1   .=

m
m m k

J m jk
j i

j i j

u MC a m m Cm
M Mu

é ù
ê úæ ö -÷çê ú÷ç³ × × -÷ê úç ÷ç ÷çê úè ø
ê úë û

Õ
å Õ

By (18) the last term is greater than 0 unless (1) ( )= = mu u , which con-
cludes the proof.
 
The following counterexample shows that the theorem above fails if WBCL 
is replaced by CL.

Example 4.9.  Let 1
1 2
3 3{(0,0, , )}=LVK  and 1

1 2 4
3 9 9{(0, , , )}=LVF .

Obviously kL kL
1 1( ) ( ) =D Ç D ÆK F .

However kL 1 2 1 2 4 1 2
1 1 3 3 3 9 9 3 3( , )  [(0,0, , ), (0, , , )] (0,0, , ).= =D K F LogOp  

� □
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