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SET MATRIX THEORY AS A PHYSICALLY MOTIVATED 
GENERALIZATION OF ZERMELO-FRAENKEL SET THEORY

MARCOEN J.T.F. CABBOLET and HARRIE C.M. DE SWART

ABSTRACT

Recently, the Elementary Process Theory (EPT) has been developed as a set of 
fundamental principles that might underlie a gravitational repulsion of matter and 
antimatter. This paper presents set matrix theory (SMT) as the foundation of the 
mathematical-logical framework in which the EPT has been formalized: it is, 
namely, objectionable to use Zermelo-Fraenkel set theory (ZF) as such. SMT is a 
generalization of ZF: whereas ZF uses only sets as primitive objects, in the frame-
work of SMT finite matrices with set-valued entries are objects sui�generis, with a 
1  ×  1 set matrix [x] being identical to the set x. It is proved that every set that can 
be constructed in ZF can also be constructed in SMT: as a mathematical founda-
tion, SMT is thus not weaker than ZF. In addition, it is shown that SMT is more 
suitable than ZF for the intended application to physics. The conclusion is that 
SMT, contrary to ZF, is acceptable as the mathematical-logical foundation of the 
framework for physics that is determined by the EPT.

1. Introduction

It is a mathematical fact that Zermelo-Fraenkel set theory (ZF) can be used 
as foundation for virtually all of modern mathematics: this paper is best 
started by emphasizing that this fact is left unquestionable in the remainder 
of the text — there is no mathematical motivation to replace ZF.

Recently, however, the Elementary Process Theory (EPT) has been devel-
oped as a formal axiomatic system that can be applied as a foundational 
framework for physics under the condition that matter and antimatter repulse 
each other gravitationally, cf. [1, 2, 3]. Currently there is no proof that such 
repulsion exists, but on the other hand there is also no proof that it doesn’t 
exist: the AEGIS collaboration at CERN aims to establish the coupling of 
antimatter with the gravitational field of ordinary matter; results are expected 
in 2015/20161. The work on the EPT entailed a search for first principles 
that are consistent with the main consequence of the assumed existence of 
gravitational repulsion, being — as shown in [3] — that antimatter then 

1 M. Doser, CERN, personal communication (2013).
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necessarily has positive rest mass and negative gravitational mass as 
observable properties. This is of fundamental interest, as this combination 
of properties is absolutely� impossible in the framework of contemporary 
physics. Thus speaking, if the AEGIS collaboration establishes that anti-
matter is repulsed by the gravitational field of the earth, then the contem-
porary foundations of physics are experimentally falsified and a new foun-
dational framework for physics is then required. In broad lines, that is the 
motivation for the development of the EPT. This work thus implies the 
position that it is true that experimental successes compel one to accept that 
Quantum Theory has merit, but that it nevertheless is not the final answer 
regarding the physics of the microcosmos; it also implies the belief that the 
key lies in gravitational repulsion: if this is a fact of nature, then the most 
fundamental principles governing the universe are particularly simple — as 
the EPT demonstrates.

The point is now that any attempt to formalize the EPT within the frame-
work of ZF, that is, with the usual language of mathematics, is liable to 
objection. The feature of ZF, namely, that everything has to be a set causes 
philosophical — not mathematical! — difficulties that are both unavoidable 
and unsolvable within the framework of ZF2. There are then precisely two 
options to choose from:

 (i) one can maintain ZF, meaning that one has to swallow that the formali-
zation of the EPT is surrounded with difficulties;

 (ii) one can solve the issues with the formalization of the EPT, meaning that 
one has to reject ZF on philosophical grounds.

There is no metaprinciple that compels one to choose either one of these 
options: it is, thus, a free choice. Obviously, the second option is then the 
more logical one to choose in the research program on the EPT. This choice 
entails, thus, the view that mathematics in�the�first�place is meant to provide 
a language for the natural sciences: if the language of mathematics (in�casu 
that of ZF) fails in its purpose, then it has to be adjusted. This view cor-
responds with the adage ‘mathematica�ancilla�physicae’ (mathematics is the 
servant of physics).

With the above subtle motivation, it was decided to develop a new foun-
dational theory for mathematics; a condition was that the resulting theory 
should not be weaker than ZF, that is, every set that can be constructed in 
ZF must also be constructible in the framework of the new theory. It turned 
out that it was sufficient to generalize ZF to a theory based on matrices of 
sets instead of sets alone. For that matter, it was decided to merge the prim-
itive notion of a matrix with axiomatic set theory into a new mathematical 

2 This work is interdisciplinary: it finds itself at the intersection of mathematics, physics 
and philosophy!
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theory; the resulting theory was called set matrix theory (SMT). The primi-
tive notion used is that of a m  ×  n matrix, that can be described as an ordered 
rectangular object, consisting of mn entries tij arranged evenly spaced in�

m rows and n columns within square brackets, as in 
m

1t

t

t

tm

n

n

1

1

1g

g
h h> H. In SMT,  

the entries tij of matrices are allowed to be pij  ×  qij matrices themselves, but 
in the end every matrix has to consist of a finite number of simple entries 
(sets). Axioms were identified for the matrices, as well as for sets. The idea 
was to describe sets axiomatically in such a way, that matrices could be 
elements of sets. For that matter, generalizations of the axioms of ZF, given 
e.g. in [5], could be used.

The remainder of this paper is organized as follows: section 2 presents 
the arguments against ZF in detail; section 3 introduces SMT axiomatically, 
and section 4 demonstrates (i) that SMT is not weaker than ZF as a foun-
dational theory for mathematics, and (ii) that SMT solves the issues with 
the formalization of the EPT. Conclusions are given in section 5.

2. The arguments against ZF

In the aforementioned research that led to the development of the EPT, the 
assumption that gravitational repulsion exists was not based on empirical 
data, but on what Descartes called une�idée�claire�et�distincte: an idea that 
presents itself so clearly and distinctively to the mind that there is no reason 
to doubt it. This idea cannot be expressed easily in usual language, but its 
essence is captured in these two sentences:

 (i) if a coin has fallen down from one’s hand onto a table, then in opposite 
time-direction an anticoin has fallen upwards from the antitable into the 
antihand3;

 (ii) this tendency to ‘fall upwards’ is preserved in antimatter that exists in 
‘our’ time-direction.

Therefore, in the world view based on the EPT, the physical universe consists 
of a world and an antiworld; a component of this universe is simultaneously 
a constituent of a world and a constituent of an antiworld. Thus, in the EPT 
matrices of the type x

y; E with set-valued entries x and y (set matrices) are 
used as designators of components of the physical universe consisting of a 
constituent x of the world and a constituent y of the antiworld.

3 For comparison: Feynman’s interpretation of a positron (i.e. an anti-electron) is, that 
a positron is an electron traveling backwards in time, cf. [4].
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The first complication arises from the truth-condition of knowledge, 
which is an essential aspect of every theory intended as a foundation for 
physics. For the EPT, as a formalized theory, to represent knowledge of the 
physical universe, the condition was set that there had to be a direct relation 
between components of the physical universe and the theoretical terms 
referring to these components: entities that occur in the ontology for phys-
ics had to be designated by entities that occur as such in the ontology for 
mathematics. A conflict then arises from the fact that in the framework of 
ZF, a matrix can not be considered as something existing in its own right 
as a square array of entries, because everything has to be a set. Thus, in the 
framework of ZF a m  ×  n set matrix has to be formalized as a set, for exam-
ple, as a function on the cartesian product {1, …, m}  ×  {1, …, n}. Thus, a 
2  ×  1 set matrix x

y; E can be defined as a function f, given by the following 
function prescription:
 : 1,1f x7G H  (1)

 : ,f y12 7G H  (2)

Using the set-theoretical definition of a function, this function f as a set is 
thus given by
 ,1 , , ,1 ,1f x y2GG H H G H H= G" , (3)

The set-theoretical definition of an ordered two-tuple, cf. [5], is the follow-
ing:

 , , ,a a a bG H =b " "" , ,, (4)

Combining (3) and (4), this gives

 , ,G H G H, , 1,1 , , , ,f x y1 1 2 1 2 1G H G H= " "" " """ , ,, , ,,, (5)

Concluding, in the framework of ZF, the 2  ×  1 set matrix x
y; E is thus merely 

the notation for the set f in (5): the actual�object in the set-theoretical universe, 
namely, is f. With regard to the intended application as designators of com-
ponents of the physical universe, obviously this set f is not a direct designator 
of the physical component in question: the two constituents, designated by 
x and y, are not at all designated by f but by elements of elements of f. This 
complication does not disappear by defining a 2  ×  1 set matrix x

y; E otherwise 
as some set S: it remains the case that it is not the actual�mathematical�object 
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(actual because it exists as such in the universe of sets) that designates the 
physical object; it is merely the notation x

y; E of the mathematical object S 
that designates the physical object. Thus, the definition of 2  ×  1 set matrices 
x
y; E as (notations for) sets leads to mathematical designators that are not in 

a direct relation with the physical objects they designate. To put this in other 
words: in the context of the EPT, objects that exist in the physical universe 
cannot be designated by objects that exist in the mathematical universe if 
matrices have to be defined as sets. This was considered inappropriate; note 
that this is not a mathematical argument against the definition of matrices 
as sets.

A second complication arises from the maxim that every theorem of the 
formal axiomatic system containing the EPT has to yield a statement about 
the physical universe — which is intended to be true — by applying the 
interpretation rules. The point here is that the EPT contains bidirectional 
expressions of the type a

b; E   :   g
f

: D   E   x
y; E; these are first-order expressions 

Rabg that had to be formalized as well-formed formulas in a mathematical 
framework. The interpretation rule4 for such an expression is that the com-
ponent a

b; E mediates an equilibrium between the components g
f

: D and x
y; E, 

which is to say that the constituent a of the world effects a discrete transi-
tion in the world from the constituent f to the constituent x while the con-
stituent b of the antiworld effects a discrete transition in the antiworld from 
the constituent y to the constituent g. In other words, one has to think of 
two simultaneous but oppositely directed discrete transitions. Now let these 
bidirectional expressions be formalized in ZF, and let the 2  ×  1 set matrices 
a
b; E, g

f
: D, and x

y; E be identical to the sets S, T, and V, respectively. Using 
substitutivity of equality

 5( )C Cu t u t u+= = ] g6 @  (6)

it follows that in ZF a formula S  :  T  E  V can be derived, as in

 a
b; E   :   g

f
: D   E   x

y; E =ZF  S  :  T  E  V (7)

Thus, if the EPT is formalized in ZF, then expressions S  :  T  E  V are 
 theorems of the axiomatic system containing the EPT, but these cannot be 

4 It is emphasized that the words ‘component’, ‘constituent’ and ‘discrete transition’ in this 
interpretation rule thus all concern the physical universe, not the mathematical universe.
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translated into statements about physical reality because the interpretation 
rule doesn’t apply to such expressions without 2  ×  1 set matrices. In other 
words: a formalization of the EPT in ZF gives rise to what Redhead called 
weakly� surplus� structure — the formalism then contains uninterpretable 
elements [6]. The aforementioned maxim is then unattainable and this was 
considered unacceptable. If, on the other hand, a 2  ×  1 set matrix is defined 
as an object on itself, not identical to any set, then it is not possible to 
construct such nonsensical expressions of the type S  :  T  E  V from these 

expressions of the type a
b; E   :   g

f
: D   E   x

y; E.
This concludes the exposition on the arguments against ZF.

3. Axiomatic introduction of SMT

3.1. The language of SMT

Definition 3.1.1. The vocabulary for SMT is a first order language with 
identity, and consists of the following symbols:

 (i) the simple constant 4
 (ii) countably many variables ranging over sets, possibly sets of matrices: 

x, y, z, …
 (iii) countably many function symbols:

●  the unary function symbol f11, with f11 = f1  ×  1
●  the first binary function symbol f12 with f12 = f1  ×  2
●  the second binary function symbol f22 with f22 = f2  ×  1
●  the first ternary function symbol f13 with f13 = f1  ×  3
●  the second ternary function symbol, f23(x, y, z) = f1  ×  2( f1  ×  2(x, y), z)
●  the third ternary function symbol, f33(x, y, z) = f1  ×  2(x, f1  ×  2(y, z))
●  the fourth ternary function symbol, f43(x, y, z) = f1  ×  2( f2  ×  1(x, y), z)
●  the fifth ternary function symbol, f53(x, y, z) = f1  ×  2(x, f2  ×  1(y, z))

and so forth.
 (iv) countably many variables ranging over matrices: a, b, g …
 (v) the binary predicate symbols  !  and =
 (vi) the usual connectives J, &, +, /, 0  
 (vii) the usual quantifiers 6 and 7

Definition 3.1.2. The syntax of the formal language is defined as follows:

 (i) if t is a simple constant or a variable ranging over sets, then t is a term;
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 (ii) if t1, …, tn are n terms and fi
n is an n-ary function symbol, then

fi
n(t1, …, tn) is a composite term;

 (iii) if t1 and t2 are terms and P is one of the binary predicate letters  !  or =, 
then t1 Pt2 is an atomic formula (infix notation);

 (iv) if F is a formula, then JF is a formula;
 (v) if F and C are formulas, then (F  &  C), (F  /  C), (F  0  C) are formulas;
 (vi) if F is a formula, Q a quantifier 7 or 6, and x a variable ranging 

over sets, then Qx (F) is a formula;
 (vii) if F(x) is a formula in which the variable x ranging over sets occurs 

not bounded by a quantifier, Q is a quantifier, and a is a variable 
ranging over matrices, then Qa(F(a)) is a formula, where F(a) results 
from F(x) by replacing x everywhere by a.

Remark 3.1.3. The list in Definition 3.1.1(iii) of function symbols is 
exhaustive. That is, for every composite term t, constructed by applying the 
clauses 3.1.2(i) and (ii) finitely many times, there is a term fi

n(x1, …, xn) of 
which x1, …, xn are interpretable as sets, such that t = fi

n(x1, …, xn). For 
example, the composite term f12( f12(x, y), z) can also be written as the term 
f23(x, y, z). This exhaustive enumeration of function symbols is very useful 
for the formulation of the axioms.

Remark 3.1.4. The following are standard notations for terms (set matri-
ces) and formulas:
 (i) outer parentheses ‘(’ and ‘)’ can be omitted.
 (ii) t1 z  t2 denotes J t1  !  t2
  (iii) t1  ≠  t2 denotes J t1 = t2
  (iv) [ x ] denotes f1  ×  1(x)
 (v) [ x y] denotes f1  ×  2(x, y)

  (vi) x
y; E denotes f2  ×  1(x, y)

 (vii) [ x y z] denotes f1  ×  3(x, y, z)
and so forth.

Remark 3.1.5. The following substitution rule is logically valid for the var-
iables ranging over matrices:

 ifa a( ) , ...,C x xn1&6 C n^ __h ii (8)

The substitution rule (8) applies to any function symbol fin and any n sets 
x1, …, xn; here the formula C( fin(x1, …, xn)) is the formula that results from 
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C (a) by replacing a everywhere by fin(x1, …, xn). Note that the variables 
a ranging over matrices occur only in quantified formulas; using such 
variables in open formulas is not needed for the present axiomatization 
(Ockham’s razor).

3.2. The axioms of SMT

Axiom 3.2.1. (Set�Matrix�Axiom�Scheme):

6x1 … 6xn7a (a = fin(x1, …, xn))

The Set Matrix Axiom Scheme is a countably infinite scheme, consisting 
of an axiom for every function symbol fin. This axiom scheme guarantees 

that for any m  ·  n sets x11, …, xmn there is a set matrix 
m

1x

x

x

xm

n

n

1

1

1g

g
h h> H with these 

sets as entries; in addition, it guarantees that for any m  ·  n set matrices a11, 

…, amn there is a set matrix 
m

1a

a

a

am

n

n

1

1

1g

g
h h> H with these set matrices as entries.

Axiom 3.2.2. (Reduction�Axiom):

6x ([x] = x)

The purpose of the Reduction Axiom is to equate set matrices having one set 
as sole entry with that set itself. Hence, any set x is identical to the set matrix 
[x] of dimension one by one. For example, the empty set 0 is identical to 
the one by one set matrix [0] containing the empty set 0 as sole entry.

Axiom 3.2.3. (Omission�Axiom�Scheme):

6a11 … 6amn 
m m

1 1a

a

a

a

a

a

a

am

n

n m

n

n

1

1

1 1

1

1g

g

g

g
=h h h hf >> >HH H m  ·  n  $  2

The Omission Axiom Scheme is a countably infinite scheme consisting of 
an axiom for every function symbol fm  ×  n with m  ·  n  $  2. The Omission 

Axiom Scheme is to formalize that a matrix 
m

1t

t

t

tm

n

n

1

1

1g

g
h h> H, constructed by 

placing an existing matrix 
m

1t

t

t

tm

n

n

1

1

1g

g
h h> H as sole entry in square brackets 

‘[’ and ‘]’, is identical to the existing matrix 
m

1t

t

t

tm

n

n

1

1

1g

g
h h> H. It should be 
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noted that this includes the case that the entries tij are sets: the Reduction 
Axiom, namely, equates a 1  ×  1 set matrix [z] with the set z. The notion
of a matrix is thus different from the notion of a set, where {x}  ≠  x for 
any set x.

Axiom 3.2.4. (Epsilon�Axiom�Scheme):

6a11 … 6amn6b11 … 6bpq 
pqm p1

1 1a

a

a

a

b

b

b

bm

n

n

q1

1

1 1 1g

g

g

g
gh h h hf p> >H H  p  ·  q  $  2

The Epsilon Axiom Scheme is a countably infinite axiom scheme consist-
ing of an axiom for every function symbol fm  ×  n and for every function 
symbol fp  ×  q with p  ·  q  $  2.

Axiom 3.2.5. (Division�Axiom�Scheme):

6x1 … 6xn6y1 … 6ym( fin(x1, …, xn)  ≠  fj
m(y1,… , ym))  for n  ≠  m  0  i  ≠  j

The Division Axiom Scheme is a countably infinite axiom scheme, consist-
ing of an axiom for every choice of different function symbols fin and fjm.

Remark 3.2.6. The Epsilon Axiom Scheme together with the Division 
Axiom Scheme formalize that

 (i) set matrices, consisting of more than one set, have no elements in the 
sense of the  !-relation;

 (ii) set matrices, consisting of more than one set, are different from any set.

As a consequence, set matrices of other dimensions than 1  ×  1 are objects 
sui�generis: contrary to the universe of ZF, the universe of SMT contains, 
thus, objects� that� are� not� sets. It will be shown in section 4.2 that this
is essential for solving the problems with the formulation of the EPT. So 
concretely, for any sets x and y, the set matrix x

y; E is different from any 
1  ×  1 set matrix [z], which by the Reduction Axiom 3.2.2. is identical to 
the set z. So concerning the  !-relation, only expressions of the type

 i ( )f yn1 !, ...,x xn  (9)

with a set y to the right of the  !-symbol are contingent.

Remark 3.2.7. Because matrices are viewed as objects existing in their 
own right in the framework of SMT, the common notation 〈 x1, …, xn 〉 for 
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an ordered n-tuple of sets can be applied as a special notation for a 1  ×  n 
set matrix:
 〈 x1, …, xn 〉  :=  [x1 … xn] (10)

But by the Division Axiom Scheme, for any three sets x1, x2, and x3,

 [x1 x2 x3]   !   [[x1 x2] x3] (11)

Therefore, accepting a 1  ×  n matrix with n sets as entries as the definition 
of an ordered n-tuple requires the rejection of the recursive definition of an 
ordered n-tuple of sets 〈 x1, …, xn 〉

 〈 x 〉  : =  x (12)

 〈 x1, …, xn + 1 〉  : =  〈〈 x1, …, xn 〉, xn + 1〉 (13)

given in the literature, cf. [5]. In the remainder of this text, equation (10) 
will be used.

Axiom 3.2.8. (Extensionality�Axiom�Scheme�for�Set�Matrices):

6a11 … 6amn6b11 … 6bmn 
mm m1

1 1a

a

a

a

b

b

b

bm

n

n

n

n

1

1

1 1 1

&

g

g

g

g
=h h h hf > >H H   

 
a a...b bm m11 11 / /= =n np

The Extensionality Axiom Scheme for Set Matrices is a countably infinite 
scheme, with an axiom for every functional symbol fm  ×  n with m  ·  n > 1. 
The purpose of the Extensionality Axiom Scheme for Set Matrices is to 
formalize that two set matrices of the same type are identical if and only if 
the corresponding entries are identical: this reduces the identity of matrices 
to a conjunction of identities of sets.

Definition 3.2.9.

6x6y (x  3  y + 6a (a  !  x  &  a  !  y))

The interpretation of this definition is that a set x is a subset of a set y if 
and only if every matrix that is an element of x is also an element of y.
Note that this includes the case that x and y are sets of sets: quantification 
over matrices includes quantification over sets (vide�supra).

Axiom 3.2.10. (Generalized�Extensionality�Axiom�for�Sets): 
6x6y ( x = y + x  3  y  /  y  3  x ) 
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The Generalized Extensionality Axiom for Sets is not exactly the same as 
the extensionality axiom for sets of ZF, because the definition of x  3  y is 
different in the current framework.

Axiom 3.2.11. (Generalized�Axiom�of�Emptiness): 

7x6a (a " x)

This axiom formalizes that there is a set x, such that no matrix is an element 
of x. Suppose, there were two such sets x and y. Then by axiom 3.2.10,
x = y. Hence there is precisely one set x such that 6a (a " x). This set is 
called the empty set, denoted by the constant 0 or { }, which by the Reduc-
tion Axiom 3.2.2 is identical to [0] or [{}].

Remark 3.2.12. As remarked earlier, for all n > 1, set matrices fin(x1, …, xn) 
have no elements on account of the Epsilon Axiom Scheme 3.2.4: this is thus 
a property they share with the empty set. These set matrices fin(x1, …, xn) 
with n > 1 are, however, not identical to the empty set 0 on account of
the Division Axiom Scheme 3.2.5: these set matrices are objects that are 
not sets.

Axiom 3.2.13. (Generalized�Axiom�Scheme�of�Separation): 

6x7y6a (a  !  y + a  !  x  /  Φ (a))

This axiom scheme formalizes that for every set x and for every property 
Φ there is a subset y of x made up of precisely those elements of x that have 
the property Φ. Hereby the symbol Φ (a) represents any well-formed for-
mula with an occurrence of a not bounded by a quantifier 6 or 7. The 
fact that every well-formed formula has to be finite implies that such a 
property Φ (a) can contain only finitely many function symbols fin, of which 
there are infinitely many. And this implies, that for infinite sets, having 
elements fin(x1, …, xn) for an infinite number of function symbols fin, cer-
tain properties can not be formulated in a single formula Φ. Of such sets, 
certain subsets, also having elements fin(x1,…, xn) for an infinite number of 
function symbols fin, can thus not be singled out directly by applying the 
Generalized Axiom Scheme of Separation only once. In section 4.3 this is 
further elaborated.

Axiom 3.2.14. (Generalized�Pair�Axiom):

6a6b7x6g (g  !  x + g = a  0  g = b )

The Generalized Pair Axiom formalizes that for every pair of matrices a and 
b there is a set x such that the matrices a and b are precisely the elements 
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of x. From the Generalized Extensionality Axiom for Sets 3.2.10 it follows 
that this set x is unique, and it can be denoted by x = {a, b}. Because 1  ×  1 
set matrices [y] and [z] can be taken as value for the matrices a and b, it 
follows from the Reduction Axiom 3.2.2 that the Generalized Pair Axiom 
applies to sets y and z, yielding x = {y, z}.

Axiom 3.2.15. (Set�of�Matrices�Axiom�Scheme):
 
6x7y (6a11 … 6amn (a11  !  x  /  …  /  amn  !  x  &   

m

1a

a

a

am

n

n

1

1

1g

g
h h> H !  y)/  

 
6b (b  !  y  &7g11  …7gmn( b = 

m

1g

g

g

gm

n

n

1

1

1g

g
h h> H  /  g11  !  x  / … /  gmn  !  x)))

The Set of Matrices Axiom Scheme is a countably infinite axiom scheme, 
with an axiom for every function symbol fm  ×  n. On the one hand, every such 
axiom guarantees that for every mn elements a11, …, amn of x there is a 

matrix 
m

1a

a

a

am

n

n

1

1

1g

g
h h> H in y; on the other hand, it guarantees that there are no�

other elements in y since for every element b of y there have to be mn ele-

ments g11, …, gmn in x such that b = 
m

1g

g

g

gm

n

n

1

1

1g

g
h h> H. In every such axiom the 

set y occurring in it is unique, and can be denoted Mm  ×  n(x), the set of all 
m  ×  n matrices with elements of x as entries.

Axiom 3.2.16. (Generalized�Sum�Set�Axiom): 

6x (6a(a  !  x  & 7u (u = a))  & 7y6b(b  !  y + 7z(z  !  x  /  b  !  z)))

The Generalized Sum Set Axiom formalizes that for every set of sets x 
there is a set y made up precisely of the elements of the sets that are in x. 
Universal quantification over sets of sets is achieved by the restricted quan-
tification 6x (6a (a  !  x  & 7u (u = a))  & , because then only sets x are 
considered such that for every matrix a in x there is a set u identical to that 
matrix a. From the Generalized Extensionality Axiom for Sets 3.2.10 it 
follows that the set y is unique, and it can be denoted by y = ' x.

As an example, consider the set S given by

 0 0 0
0
0

, ,S = 6 ;@ E" '' , 11 (14)
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The set  ' S is then the set that contains the elements of the sets { 0, [ 0  0 ]} 

and 0
0
; E' 1 in S, and is by axiom 3.2.16 thus given by:

 0 0 0
0
0

, ,S = 6 ;@ E' 1'  (15)

This set ' S, however, is no longer a set of sets, cf. remark 3.2.12. There-
fore, it does not follow from the Generalized Sum Axiom that there is a
set ' ( ' S). If the restricted quantification in axiom 3.2.16 would be replaced 
by a quantification 6x over sets, then one would have ' ( ' S) = 0 because 
none of the objects in the set ' S of equation (15) has any elements. How-
ever, in this axiomatization we have chosen for restricted quantification, 
because it makes no sense to talk about collecting elements of set matrices, 
of which by axiom 3.2.4 is already known that they can’t have elements in 
the sense of the !-relation.

Remark 3.2.17. At this point the cartesian product x  ×  y of two sets x and
y can be introduced:

 b g7a a ab g b gx y x y+# / /6 7! ! ! =^^ hh6 @  (16)

The set x  ×  y can then be denoted by {[b  g ]; b  !  x  /  g  !  y }. The exist-
ence of the set x  ×  y is guaranteed by the previous axioms of SMT. Namely, 
for any two sets x and y the set {x, y} exists on account of the Generalized 
Pair Axiom. The union x  ∪  y of the sets x and y then exists on account of 
the Generalized Sum Set Axiom:

 ,x y x y, = # -'  (17)

The set M1  ×  2 (x  ∪  y) then exists on account of the Set of Matrices Axiom 
Scheme:

    
b

g

a

71#

a ab b

g m n g m n m n

x y x y M x y

M x y x y x y

1 2

2

&

&

, / , , /

, / , / ,

6 6

6 7

! ! !

! !

#

!

_^

_ __

ih

i ii

6

8

@

A
 (18)

The set x  ×  y then exists on account of the Generalized Axiom Scheme of 
Separation:

a 1 7#a a ab g b g b gx y M x y x y2+# , / / /6 7! ! !=! _ ^^ i hh6 @  (19)

It should be noted that because of the Division Axiom Scheme, the sets 
x  ×  y  ×  z, (x  ×  y)  ×  z, and x  ×  (y  ×  z), are three mutually different sets; in 
the framework of ZF, these are also three mutually different sets.
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Axiom 3.2.18. (Generalized�Power�Set�Axiom):

6x7y (6a (a  !  y  &7u (u = a))  / 6z (z  !  y + z  3  x))

The Generalized Power Set Axiom says that for every set x there is a set
of sets y that is made up precisely of the subsets of x. This set y is unique 
on account of the extensionality axiom for sets; notation: y = POW(x). 
Existential quantification over sets of sets is achieved by the restricted 
quantification 7y (6a (a  !  y  & 7u (u = a))  /  …

Definition 3.2.19. 

Given any set x, there is a unique successor set with standard notation {x} 
defined by: 6a (a  ! {x} + a = x). 

This definition defines for every set x a singleton {x}, that has the set x as 
sole element. The singleton {x} is unique on account of the Generalized 
Extensionality Axiom for Sets 3.2.10, and its existence is guaranteed on 
account of the Generalized Pair Axiom 3.2.14. In the literature, the succes-
sor set {x} is also denoted by (x)+.

Axiom 3.2.10. (Generalized�Axiom�of�Countable�Infinity): 

7x (0  !  x  / 6y (y  !  x  &  {y} !  x))

Remark 3.2.21. Starting with the empty set 0, this axiom thus guarantees 
the existence of an infinite set N, defined by

 N := {0, {0}, {{0}}, …} (20)

The elements of N can then be numbered, using 0 := 0 and n  +  1 := {n}, 
yielding the set of natural numbers {0, 1, 2, …}. It should be noted that the 
infinite set N, given by (20), is not the only infinite set that satisfies the 
Generalized Axiom of Countable Infinity. For example, the set 0

0
,N ; E'' 11'  

also satisfies axiom 3.2.20. In the framework of ZF, there is also more than 
one set that satisfies ZF’s axiom of infinity.

Axiom 3.2.22. (Generalized�Substitution�Axiom�Scheme): 

6x (6a (a  !  x  & 7! b [Φ (a, b)])
    &7y (6b (b  !  y +7g (g  !  x  /  Φ(g, b)))))

For any set x, this axiom formalizes that if every matrix a in x is related to 
precisely one matrix b, then there is a set y made up of precisely those 
matrices b that are in relation Φ(g, b) with some matrix g in x. The axiom 
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is applicable for any well-formed formula Φ(a, b) that relates every matrix 
in x with precisely one matrix b. What has been said about separation 
applies also here: the fact that every well-formed formula has to be finite 
implies that such a formula Φ(a, b) can contain only finitely many function 
symbols fin, of which there are infinitely many. This means that for infinite 
sets, made up of set matrices fin(x1, …, xn) for an infinite number of func-
tion symbols fin, some “relations” would require an infinitely long formula 
Φ(g, b): the Generalized Substitution Axiom Scheme is then not directly 
applicable. In section 4.3 this is further elaborated.

Remark 3.2.23. At this point the space yx of all functions from a set x to 
a set y can be introduced:

6a (a  !  yx +7f
( f := a  /  f  3  x  ×  y  / 6b (b  !  x  & 7! g (g  !  y  /  [b g]  !  f ))))

The set yx is a subset of the power set of x  ×  y, so that its existence is guar-
anteed by the Generalized Axiom Scheme of Separation.

Axiom 3.2.24. (Generalized�Foundational�Axiom): 

6x (7a (a  !  x)  /  6b (b  !  x  & 7y (b = y))  &  
7z (z  !  x  / 6g (g  !  z  &  g  "  x)))

The Generalized Foundational Axiom formalizes that every nonempty set 
x of sets has an element z, which shares no elements with x. This axiom 
excludes in particular that there is a set x such that x = {x}.

Remark 3.2.25. With the above axiomatization of SMT, there is for every 
axiom (or axiom scheme) of ZF a corresponding generalized axiom in 
SMT.

3.3. About the philosophy of mathematics

From the fact that ZF is adequate as a foundation for virtually all of modern 
mathematics derives the most widely accepted point of view on what math-
ematics is: mathematics may be viewed as the body of statements, that can 
be derived within ZF by means of logical reasoning. Corresponding with 
this view is the adage ‘everything�is�a�set’: every term of every statement 
is a set — there are no other terms. Having defined the framework of SMT, 
the general philosophy of what mathematics is may then be distilled from 
this view: mathematics is the body of statements that can be derived within 
the framework of SMT by means of formal deduction.
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In the framework of SMT, besides sets also set matrices occur as terms 
of the mathematical language. These set matrices are in general not sets, so 
that the adage ‘everything�is�a�set’ of ZF is certainly not valid in the frame-
work of SMT. However, because of the Reduction Axiom 3.2.2, in the 
framework of SMT every set x is identical to a 1  ×  1 set matrix [x]. As a 
result, the adage ‘everything�is�a�matrix’ holds in the framework of SMT. 
Concerning the terms of the language a nominalist position is taken, in the 
sense that these terms (sets and matrices of sets) in themselves are without 
any fundament in physical reality — that is, there is no Platonian domain 
in reality that is the universe of SMT.

Furthermore, given that the motivation for the development of SMT lies 
in physics, the point of view on the position of mathematics in the whole 
of science is reflected by the adage ‘mathematica�ancilla�physicae’. This 
implies the view that mathematics in the first place is meant to provide a 
language for the natural sciences.

4. Discussion

4.1. The relation between SMT and ZF

Remark 4.1.1. An undeniable observation is that the language LZF of ZF is 
properly contained in the language LSMT of SMT. Now let L� be the restriction 
of the language LSMT by leaving out the function symbols fin with n > 1, and let 
SMT |L� be the restriction of SMT to the language L�. Thus speaking, the 
only function symbol in L� is f11 with f11(x) = [x], and ‘=’ and ‘!’ are the 
only predicate letters in L�, so that the Omission Axiom Scheme 3.2.3, the 
Epsilon Axiom Scheme 3.2.4, the Division Axiom Scheme 3.2.5, and the 
Extensionality Axiom Scheme for Set Matrices 3.2.8 do not occur in SMT |L�.

Theorem 4.1.2. =SMT | L� 6x7! a (a = [x])  / 6a7! x (x = a)

Proof. In SMT |L� the Set Matrix Axiom Scheme 3.2.1 is reduced to

 x7a x6 =a] g6 @  (21)

Because of the absence of the other function symbols fin in SMT |L�, the vari-
ables ranging over matrices only range over these 1  ×  1 set matrices [x]. Using 
this completeness argument and the Reduction Axiom it then follows that

 a6 7x ax’SMT L =
;

= ^ h (22)

Uniqueness in (21) and (22) follows from symmetry and transitivity of the 
identity relation. ¡
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Theorem 4.1.3. =SMT | L� 6a (Φ(a)) + 6x (Φ(x))

Proof. This follows from theorem 4.1.2 and substitutivity of equality.
This means that in SMT |L� quantification over all matrices is equivalent to 
quantification over all sets. ¡

Theorem 4.1.4. =SMT | L� 6x6a (a  !  x  & 7y (y = a))

Proof. It has been demonstrated that  =SMT | L� 6a7! x (x = a) in theo-
rem 4.1.2. So in particular, expression 4.1.4 follows. ¡

Proposition 4.1.5. (Relation�between�SMT�and�ZF):
The restriction of SMT to L� is a conservative extension of ZF.

Proof. Using theorems 4.1.3 and 4.1.4, one can easily prove that  =SMT | L� A 
for every axiom A of ZF. In other words, one can easily prove for every 
formula C of ZF that if  =ZF C, then  =SMT | L� C. This shows that SMT |L� is an 
extension of ZF. In addition, using theorem 4.1.3 one can easily prove that 
SMT |L� is in fact equivalent to ZF in its original formulation plus the two 
new axioms (the one remaining axiom (21) of the Set Matrix Axiom 
Scheme 3.2.1 and the Reduction Axiom 3.2.2) for the new constants — the 
1  ×  1 set matrices [x]. This shows that SMT |L� is a conservative extension 
of ZF. ¡

Remark 4.1.6. The previous proposition proves that every set that can be 
constructed in ZF, can also be constructed in SMT. It should be noted, 
however, that (unrestricted) SMT is not an extension of ZF in the accepted 
sense of the word ‘extension’, cf. [7]. That is, it is not the case that every 
theorem of ZF is a theorem of SMT. For example, it is a theorem of ZF that 
there is precisely one set which has no sets as elements:

 x y xZF 7 b= 6! y^ h (23)

In SMT, this theorem does not hold. For example, the set 0
0
; E' 1 has no sets 

as elements (because its element 0
0
; E' 1 is not a set), but the set 0

0
; E' 1 ]} is 

not identical to the empty set on account of the Generalized Extensionality 
Axiom for Sets 3.2.10. Thus, in SMT there are at least two sets that have 
no sets as elements, which proves that the aforementioned formula 7! x6y 
(y  "  x) does not hold in SMT. Thus, SMT is not an extension of ZF.

Remark 4.1.7. Instead, SMT is to be viewed as a generalization of ZF.
A suggestion for a definition of this notion is the following: a theory T� (in 
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this case: SMT) is a generalization of a theory T (in this case: ZF) if and 
only if the following conditions are satisfied:

 (i)  the language LT� for T� is a proper extension of the language LT of T;
 (ii) the universe for LT� properly contains the universe for LT;
 (iii) there is a language L� (in our case LSMT without the function symbols 

fi
n with n > 1), such that L� is an extension of LT and LT� is an exten-

sion of L�, and such that the restriction of T� to L� is a conservative 
extension of T.

These conditions are precisely satisfied in our case.

4.2. Resolving the issues with the formalization of the EPT

The main reason for introducing SMT is that it is more suitable as a math-
ematical foundation for the EPT than ZF. The complications that arise from 
a formalization of the EPT in the framework of ZF have been discussed in 
section 1. In this section it will be shown that these complications do not 
exist in the framework of SMT.

First of all, in the framework of SMT the 2  ×  1 set matrices x
y; E exist as 

such in the mathematical universe; on account of the Division Axiom 
Scheme these set matrices are not identical to any set. Therefore, such 2  ×  1 
set matrices can be used as direct designators of components of the physical 
universe, consisting of a constituent of the world (designated by the
entry x in the first row) and a constituent of the antiworld (designated by 
the entry y in the second row). Thus speaking, by taking SMT as the math-
ematical foundation for the EPT, the demand for the truth condition of 
knowledge can be met that entities that occur in the ontology for physics 
are to be designated by entities that occur as such in the ontology for math-
ematics: the complication that arises from a formalization of the EPT in the 
framework of ZF is thus absent in the framework of SMT.

Next, expressions of the type a
b; E   :   g

f
: D   E   x

y; E can be formalized in the 

framework of SMT as a standard notation for a ternary relation R:

  : , ,a
b

f
g

x
y

a
b

f
g

x
y RE + !; < = ; < =E F F E F F  (24)

Such a formalization is also possible in ZF, but the point is that the 2  ×  1 

set matrices a
b; E, g

f
: D, and x

y; E are not identical to sets S, T, and V in the 
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framework of SMT because of the Division Axiom Scheme. Thus, in the 
framework of SMT one gets5

 SMT: :a
b

f
g

x
y S T VE E E; < =E F F  (25)

Clearly, expression (25) is in contrast with expression (7): if SMT is thus 
taken as the mathematical foundation for the EPT, then the axiomatic sys-
tem containing the EPT has no theorems of the type S : T E V, which can 
not be translated into a statement about the physical universe by the inter-
pretation rules and are thus physically uninterpretable. This shows that
the second complication that arises from a formalization of the EPT in the 
framework of ZF, is absent in the framework of SMT.

4.3. Resolving infinities arising in separation and substitution

Example 4.3.1. Let the set N* = N – {0} = {1, 2, 3, …}. Consider the sets 
Mm  ×  n(N) given by

 ,x m N
m

1
( ) ; ...,M N

x

x

x

x
m n

m

n

n

n

1

1

1

11

g

g
!=# h h x> H* 4 (26)

Let {Mm  ×  n(N); m, n  !  N*} be the set of all these sets Mm  ×  n(N), and let 
the set S =  '  m, n  !  N*{Mm  ×  n(N)}. In words, S is the set of all matrices of all 
dimensions m  ×  n with entries from the set of natural numbers N. It is then 
not possible to single out the subset T of all matrices of all dimensions 
m  ×  n with entries from the set 2N +1 = {1, 3, 5, …} of odd natural numbers, 
by applying the Generalized Axiom Scheme of Separation only once to the 
set S. Namely, the formula

  m, ...,x 2
m m

!x
1 1x

x

x

x
y

x

x

x

x
S N 1

m

n

n m

n

n

n

1

1

1 1

1

1

11+ /7
g

g

g

g
! ! +h h h hy f p> >H H  (27)

5 Suppose that S : T E V can be deduced. Given expression (24), this would imply that 
〈S, T, V 〉  !  R. But the set R is well defined in [1]: it only contains three-tuples of the form 

, ,a
b

f
g

x
y; < <E F F . And given the Division Axiom Scheme 3.2.5, such a three-tuple is not 

identical to a three-tuple 〈S, V, T 〉. Thus, 〈S, V, T 〉 is not in R. Contradiction. Thus, S : T E V 
cannot be deduced from the axioms of the EPT in the framework of SMT.
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is not an instance of the Generalized Axiom Scheme of Separation if m and n 

are undetermined, because the term 
m

1x

x

x

xm

n

n

1

1

1g

g
h h> H then can not be constructed 

using the clauses of definition 3.1.2. However, for every set Mm  ×  n(N) defined 
by (26) the formula

(M N m, ...,x 2
m m

!x
1 1

)
x

x

x

x
y

x

x

x

x
N 1

m

n

n m

n

n

m n n

1

1

1 1

1

1

11+ /7
g

g

g

g
! ! +#h h h hy f p> >H H

 
(28)

is a well-formed formula for fixed m and n, if x11, …, xmn  !  2N + 1 is as 
usual viewed as an abbreviation of x11 !  2N + 1  / … /  xmn  !  2N + 1. 
The set y is then unique, and y = Mm  ×  n(2N + 1). The requested subset T of 
S is then defined by

 
*,m

1m#T M 2n
n N

= +
!

N] g" ,'  (29)

It thus takes infinitely many applications of the Generalized Axiom Scheme 
of Separation to construct the set T as a subset of S. ¡  

From the previous example it seems that the Generalized Axiom Scheme 
of Separation has less power in the framework of SMT than its counterpart 
has in the framework of ZF, due to the occurrence of the metavariable Φ. 
The point is that Φ represents a first order formula, and thus has to be 
finite: for a set with infinitely many different types of matrices as elements, 
it thus becomes impossible to formulate certain properties covering all ele-
ments in a single finite formula, purely because the starting set is made up 
of infinitely many different types of matrices.

The next proposition shows that this seeming loss of power does not lead 
to an incompleteness in the framework of SMT: it is merely the case that 
in the framework of SMT the Generalized Axiom of Separation has to be 
applied infinitely many times to single out certain subsets of sets, made up 
of infinitely many different types of set matrices. But that can still be done 
within the framework.

Proposition 4.3.2. Let x be a set, made up of infinitely many different 
types of set matrices. Then any subset y  1  x, the construction of which 
would require an instance Φ( fin(x1, …, xn)) of a well-formed formula Φ(a) 
for infinitely many function symbols fin, is constructible in the framework of 
SMT.
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Proof. To start with, for any set x, subsets xin of x can be singled out on 
account of the Generalized Axiom Scheme of Separation:

 x a a a a [ ]x x x x1
1

1
1

1 1+ /6 7 6 7! ! =x ^^ hh (30)

 x a a a a [ ]x x x x x1 1 1 1 2
2 2

2+ /6 7 6 7 7! ! =x x ^^ hh (31)

 x a
1

22 a a ax x x
x
x

2 2
1 2

2
+ /6 7 6 7 7! ! =x x dd nn= G  (32)

and so forth. So, x1
1 is the set of all sets in x, x1

2 is the set of all matrices in 

x of the form [x1  x2], x2
2 is the set of all matrices in x of the form 1x

x2
< F, etc. 

Because the list of function symbols fin is complete, cf. remark 3.1.3, every 
element a of x is in at least one such subset xin, and because of the Division 
Axiom Scheme 3.2.5 every element a of x is in at most one such subset xin.

Next, for every such subset xin of x a subset yin can be singled out on 
account of the Generalized Axiom Scheme of Separation:

i i ii ff in+( ( , , ) ( , , ) ( ( , , )))x x x x y f x x x x xn n
n n

n1 1 1 1/6 f6 f f f! ! Fn n n

 (33)

The point here is that the elements of xin all use the same function symbol fin 
so that a term fin(x1, …, xn) occurring in Φ ranges over all elements of xin.

Finally, let I be the set of all indices 〈 n, i 〉 that occur in function sym-
bols fin; then for each element 〈 n, i 〉 of I there is precisely one set yin.
On account of the Generalized Substitution Axiom Scheme 3.2.22 there is 
thus a set {yin ; 〈 n, i 〉  !  I } made up of these sets yin. On account of the 
Generalized Sumset Axiom there is thus a set y that satisfies

 i ,y y n i I!= n" ,'  (34)

This is precisely the set y requested: this proves the proposition. ¡

Similarly, also with the Generalized Substitution Axiom Scheme 3.2.22 a 
seeming loss of power is connected, again because of the occurrence of the 
metavariable Φ for formulas. As the next example 4.3.3 shows, for a set 
made up of infinitely many different types of matrices some functional 
“relations” would require infinitely many first-order formula Φ, purely 
because the set is made up of infinitely many different types of matrices. 
The Generalized Substitution Axiom Scheme is then not directly applica-
ble to construct the image of such a set under a function. However, as 
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proposition 4.3.4 will demonstrate, there is no incompleteness involved 
with the Generalized Substitution Axiom Scheme: an infinite scheme sim-
ilar to that in Proposition 4.3.2 can be applied.

Example 4.3.3. Consider once more the set S of all matrices that can be 
constructed from the set N, cf. example 4.3.1. Now for each matrix a in S, 

for which a = 
m
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t

tm

n

n

1

1

1g

g
h h> H, there is exactly one matrix b = 2a in S for 

which b = 2  ·  
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x

x2

m

n

n

1

1

1g

g
h h> H for x11, …, xmn  !  N. This functional relation, however, 

cannot be formalized in a finite formula Φ, because there are infinitely 
many different types of matrices a. Namely, the expression

i ia a( ( , , ) ( (2 , ,2 )))bf x x x N x N f x xn n n1 1 1&/ / /6 f f 7 f! != ! a2b = =n n

(35)

is not a well-formed formula because n and i are undefined: this expression 
can thus not appear in an instance of the Generalized Substitution Axiom 
Scheme. ¡

Proposition 4.3.4. Let x be a set, made up of infinitely many different types 
of set matrices. Then any image set y, the construction of which would 
require an instance Φ( fin(x1, …, xn), fj

m(y1, …, ym)) of a well-formed func-
tional relation 6a   !  x 7! b Φ(a, b) for infinitely many combinations of 
function symbols 〈 fin, fj

m 〉 (with at most one such combination for each 
function symbol fin), is constructible in the framework of SMT.

Proof. To start with, for any set x, subsets xin of x can be singled out on 
account of the Generalized Axiom Scheme of Separation; see proposi-
tion 4.3.2. Next, for every such subset xin of x an image set yin can be con-
structed on account of the Generalized Substitution Axiom Scheme: this 
set yin is the collection of matrices fjm(y1, …, ym), for which there is an ele-
ment fin(x1, …, xn)  !  xin such that Φ( fin(x1, …, xn), fj

m(y1, …, ym)) — note 
that Φ is assumed to be a functional relation. Again on account of the Gen-
eralized Substitution Axiom Scheme 3.2.22 there is thus a set {yin ; 〈n, i〉  !  I } 
made up of these sets yin, where the set I is defined as in proposition 4.3.2. 
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On account of the Generalized Sumset Axiom there is thus a set y that 
satisfies 
 H,ni I|y y in

!= G# -'  (36)

This is precisely the image set y requested: this proves the proposition. ¡

5. Conclusions

The first conclusion is that SMT is better suited than ZF as a foundation 
for mathematics in the research program on the EPT. It has been shown that 
a formalization of the EPT in the framework of ZF leads to unsolvable 
complications such as weakly surplus structure, and it has been demon-
strated that SMT resolves these complications by expanding the ontological 
repertoire of the language of mathematics in the sense that set matrices exist 
as such in the mathematical universe of SMT. 

The second conclusion is that SMT is not better suited than ZF as a 
foundation for mathematics from the point of view of pure mathematics.
It is true that SMT is not weaker than ZF, as is demonstrated by the fact 
that a restriction of SMT is a conservative extension of ZF: all sets that can 
be constructed with ZF can thus also be constructed with SMT. It is also 
true that SMT yields an incremental improvement, because n-ary structures 
fit more elegantly in the ontology corresponding with the framework of 
SMT than in the ontology corresponding with the framework of ZF. That 
is, binary structures such as groups and topological spaces are simply 1  ×  2 
set matrices in the framework of SMT, ternary structures such as fields are 
1  ×  3 set matrices, etc.: it is not the case that these structures can not be 
represented in the framework of ZF, but their representation is less elegant. 
A group, for example, is a two-tuple 〈 G, * 〉 so that strictly speaking a group 
is a set {{G}, {G, *}} in the framework of ZF; a 1  ×  2 set matrix [G *] is 
then a more elegant representation of a group than this set {{G}, {G, *}}. 
The crux, however, is that SMT does not make the foundation of math-
ematics in itself more powerful: the basic set-theoretical questions, that are 
unsolvable in ZF, remain unsolved in SMT.

The bottom line is that SMT is preferred over ZF in the research pro-
gram on the EPT. The motivation for this preference is also used elsewhere: 
Teller argues in [8] that Fock space is preferred as the Hilbert space for 
Quantum Field Theory, because it eliminates the problem of weakly surplus 
structure that arises when a tensor product of one-quantum Hilbert spaces 
is used to describe two-particle states. Currently the scope of the present 
results is limited to the research program on the EPT, but as it concerns
the very foundations of mathematics, the inappropriateness of ZF for the 
formalization of the EPT may have implications beyond its current limit in 
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the eventuality that the research program on the EPT supersedes the other 
research programs in physics.
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