“O4pizzi”
2013/11/30
page 425

e

Logique & Analyse 224 (2013), 425-438

BIMODAL FRAGMENTS OF CONTINGENCY LOGICS

CLAUDIO PI1ZZI

Abstract

The paper aims at identifying the modal fragments of systefns
contingency logic whose language includes a propositiooastant

7. It turns out that the language of such systems allows defimn
necessity operators of different strendgfhand O. It is proved that
in the weakest contingency syster\Kw the 7-free fragment con-
taining O-wffs is K and that an analogous result holds for O-wffs;
that in KA the fragment for both is KD; that in K& the fragment
containingdd-wffs is KT and the one containing O-wffs is KD. Such
results are derived from the central result of the paperchwbon-
cerns the bimodal fragments ofA<w, KA7, KTAT, here called
KOO, KDOO and KTJO. The axiomatic bases for such systems
consist in the unions of the axioms of the related monomadagf
ments extended with the bridge axiarnp O Op.

81. The present paper aims at providing a detailed treatofemtresearch
program started in Pizzi [2007] and partially developed izzF[2013]. In
Pizzi [2007] a system called Xrw was viewed as a minimal system for the
operator of non-contingency or absoluteness (symbolized bif the A-
based language is extended with a suitably axiomatizedopitignal con-
stantr and with a contingency operat& introduced by the standard defi-
nition VA =p; —~AA. The following is an axiomatization of A7w where
the constant is axiomatized by only one axiom (K4).!

KADOQ. All the tautologies of the propositional calculus PC

KAL Ap=A-p

KA2. (ApAAq) D A(pAgq)

KA3. (Ap AV (=pVr)) DA(pVq)

KA4. At D Ap

1The problem of assigning an intuitive meaningrtanay be the object of some non-
trivial philosophical discussion, but lies outside thepof this paper. As a suggestion for
the readerr may be interpreted in K7w as “what | believe to be true is true” and i<
as “the moral code is respected”.
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Rules:

(US) Uniform Substitution

(MP) FA/FADB—FB
(ANec)- A —+ AA

(AEQ) FA=B—++FAA=AB

The system which is obtained from&&«w by omitting the axiom K\4 is
called KA in Kuhn [1995] and is the minimal system of contingentialitog
written in a language without propositional constants.

In Pizzi [2007] it is proved that Krw is sound and complete with respect
to the class of K\7w-models, where a Krw-model is any 4-ple M = <W,
W7, R, V> which is defined as follows:

YW #£go
(W™ C W
(i) R is weakly T-forked, which means
(°) Va(—FyzRy V Jy1Ty2((zRy1 Ay1 € WT) A (xRys A ya & WT)))
(iv) V is defined as usual for truth-functional wffs and foetbther wffs it is
defined by the following two clauses:
(V) V(r,z) =1iff 2 € W™
(iv2) V(AA, z) = 1 iff, for every y such thattRy and everyy’ s.t. zRy/,
V(A,y) =V(A,Y)
Obviously in place of (iv2) we could have
(iv2') V(VA,z) = 1 iff, for somey such thatrtRy and some)’ s.t. zRy/,
V(A,y) #V(A.Y)
Let us now extend K7w with the following two definitions:
[Defd] OA =pt AAANA(T D A)
[DefO] OA =pt A(T D A)

Note that the dual operatofsA (=p; —[1-A) and PA ps ~O—A) turn
out to be equivalent t& A v V(7 A A) andV (7 A A) respectively.

The decision procedure for Xrw presupposes the definitional equiva-
lence of KATw with a system, Klrw, which is the(J-based normal system
K extended with the following axiom:

@Orw) (Or vO-7) > 0Op
and with the definition
[DefA] AA =pf DA v [0-A?

The proof of the equivalence is provided in Pizzi [2007]. &ivthat

(O7rw), i.e. (Or v O-7) D Op, is equivalent td1r = O-r, the system

2This definition is not the only definition of absolutenessngireg the translation of the
two systems. In Pizzi [2013] the proposed definitiomNd =ps ((O7 A O—7) A (HOA V
0-A)) v ((Or v O-7) AOA). The advantage of the latter definition is that, if it is apgli
to axiom KA4: AT D Ap, ityields exactly the axiom of Kirw (O7 v O—7) D Op, not the
weaker wif(Or v O-7) D (Op vV O-p) which would be the output of DéX.
It can be shown, however, that in systems at least as strog\as(see page 7) the two
definitions are equivalent.
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KOrw is easily decidable thanks to a simple extension of thetabmethod
for K, so KArw turns out to be decidable via a translation ahKw-wffs
into KOrw-wffs. The tableau procedure forlkrw provides a constructive
proof of the completeness oftkrw, so indirectly one for K\ Tw.

Now we take into consideration a system which is nhamétKin Pizzi
[2013]. KOO is a minimum normal bimodal logic extended with a bridge-
axiom whose language has, beyond truth-functional opexatee two prim-
itives [J and O. We stipulate that the other primitives of the languagel
andD, while -, A, Vv are defined as usually.

The axioms of KJO, to be subjoined to an axiomatic basis for the standard
propositional calculus PC, are:

K. O(p > ¢q) > (Op > Og)

0.0(p D q) > (Op > Ogq)

0O.0p D Op

Rules: Modus Ponens (MP), Uniform Substitution (US)
(Nec)F A —»+ A

(Eq) Replacement of proved material equivalents

In what follows we are going to prove a fact which was formedaas a
conjecture in Pizzi [2013], i.e. that[KO is ther-free fragment of K\Tw,
or in other words that KIO axiomatizes all and only the theorems cAKw
+ Def] + DefO containing only truth-functional operators,and O.

The first step is to prove thatlKO is included in KATw + Def] + DefO,
i.e. to prove what follows:

T1. For every KLIO-wif A, if Aisathesis of KOO, Aisathesis of KATw +
DefO + DefO.

Proof. The proof is by induction on the length of proofs. In the basise we
prove that the translations of the three axioms obtainedpmyang Def]]
and DefO are K\rw-theorems. For the inductive step we prove that the
rules preserve the given property. The proof of Kp D ¢) D (Op D Og)
may be found in Pizzi [2007], §2. The proof of(@> ¢) D (Op D Og)

is derived fromO(r D (p D ¢)) D (O(r D p) D O(r D q)) (a trivial
consequence of K), by replacingfor ». (Op O Op is equivalent to the
K-theoremdp D O(7 D p). The induction step is trivial. [Q.E.D.]

Two steps are now essential to perform the proof.

The first step consists in proving the soundness and completeof K10
w.r.t. the class of K\7w-models, i.e. of 4-ples <W, R,"RV> which are
defined by the following properties:

YW #£go
(i) for every z, y in W, zR"y implies xRy
(i) Vis as in KATw-models for truth-functional wffs and for the other wffs
is as follows:
(iiia) V(OA, z) = 1 iff, for every y s.t. zRy, V(A,y) = 1
(iiib) V (OA, z) = 1iff, for everyy s.t. 2Ry, V(A,y) =1
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We will call such models KIO-models.
We now prove soundness and completenessoOKwith respect to the
class of KJO-models.

T2. For every KOO-wff A, if Aisa KOO-thesis, A holds at all KZIO-models.
Proof. Trivial induction on the length of proofs.

T3. For every formula A, if A holds at all KLJO-models, A is a KOO-thesis.
Proof. The proof is provided by a suitable application of the Henkigthod.
The canonical model build over(®O is a 4-ple <W, RT, R™*, V*>

where
() Wt ={w,w' W ...} is the set of maximal KIO-consistent sets
(i) R™, R™™ are defined as follows:

(ila) wRTw iff for every w,w’ in W™, if CJA belongs to w, A belongs
tow

(iib) wRTTw' iff for every w,w’ in W if OA belongs to w, A belongs
tow
(iii) V (p,w) = 1if and only if p belongs to w.

The proof consists in proving that the canonical model i&a0<model.
The only non-trivial step is proving that the canonical moaeer KCIO is
such that R C R*. Suppose that WR'w. Thenw O {A : OA € w}.
AsOA D OA € w for all formulas A, it follows that{A : A € w} C
{A : OA € w}, and thus that WD {A : JA € w} —i.e. wRW as desired.

[Q.E.D]

The next step of the proof consists in associating to evémpkiormula a
KATw-formulavia a mappingf defined as follows:
(i) f(p) =
(i) f(L) =
(iii) f(AD B) = f(A) D f(B)
(iv) f(OA) = (T D f(A))
(V) f(OA) = Af(A) ANA(T D f(A))

This translation allows us to prove the following theorem.
T4. For every KOO-wif A, if Aisathesis of KOO, f(A) isathesis of KATw.
Proof. By induction on the length of proofs. Thi&images of the axioms
of KOO are KArw-theorems and the rules ofA&«w preserve the K\rw-
theoremhood of th¢-images. [Q.E.D.]

The central problem is how to prove the converse of T4. Inotaéuild
a proof we move from a KIO-model M = <W, R, R, V> and define on its
base aerived model M* = <W*, W 7*, R*, V*> in this way:
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a) W =W
b) W* = {z € W: for somez in W, zR" z}
c) zR*y iff xRy
d) If W™ £ &, there is &/ such that/ ¢ W™ and zR*y/
e) V*is as V as wffs with truth-functional operators are cermmed. For the
other wffs:
el) V¥(AA,x) = 1 iff for every y such thatzrR*y and everyy’ such that
zR*y, V¥ (A, y) = V*(A,y)
e2a) For ally such thaty € W™, V* (1,z) =1
e2b) For ally such thaty ¢ W™, V* (1,y) =0
Obviously, in place of (e1) we could have
el) V(VA,z) = 1 iff, for somey such thatzRy and somey’ s.t. zRy/,

V(A y) #V(AY)

We may now prove two lemmas:
Lemma 5.M* isa KArw-model.

The conditions defining the Xrw-models are satisfied by M*, as one can
see from the following considerations.
() Since W*=W and W=# @, W* £ &
(i) W™ = {z € W: for somezx in W, zR" z} is included in W*. In fact, if
W™ is @, this property is vacuously satisfied. 1f"Wis not @, given that
R™ C R and R= R*, the members of W* must belong to W*.
(iii) in order to show that R* isveakly r-forked, i.e. that
(°) Va(=3Fy zR*y V Jy1 Jy2 ((xR*y1 Ayr € W) A (zR*y2 Aya ¢ WT)))
we take into consideration an arbitraryand consider two cases:
(1) R* = @. This means that no worlglis R*-seen byr, so—Jy xR*y and,
guantifiying overr, we conclude that’) holdsa fortiori.
(2) R* £ @. In this case there is ansuch thattR*y. There are two possible
subcases.
(2a) V(r,y) = 1. This means thay belongs to W* and that W* is not
&. So by clause d) of the above definition of a derived modeletlie@an
y' such thaty’ ¢ W™ andzR*y’. But W* = {z € W: for somez in W,
xR”z} and, given that, for every andy, xR"y implieszR*y, it follows that
Jy1Fy2((xR*y1 Ayr € W) A (zR*ya Ay ¢ WT*)), soafortiori R* has
the property ).
(2b) V(7,y) = 0, soy ¢ W™, If W™ is &, this means thatJy zR*y, so
we are back to case 1). Otherwise there is at least a memb&W™*, so we
are again in conditions to assert, as for (2a), that foraaBy; 3y, ((zR*y; A
y1 € W) A (zR*ys A ya € WT*)). R* is then weaklyr-forked.
(iv) As the properties of V* are concerned, the clauses dajfiM in KA 7w-
models are satisfied by e) and e2) and vacuously satisfiedd)yaed e2b),
sincer does not occur in the language of\«w. [Q.E.D.]
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Now we may prove the second Lemma:

Lemma 6.Let M be a KLJO-model and M* a model derived from M. Then,
for every KOO-wif A, V(A z) = 1in M iff V¥(f(A),z) = 1 in M*.

Proof. By induction on the complexity of wifs. Let us suppose that th
equivalence holds for any arbitraryCBO-wff A. The non-trivial step is in
proving that the equivalence holds for the wifs OA dané4.

(ia) Suppose VA, xz) = 1 in the KJO-model M. Then at every worlg
such thatrRy, V(A, y) = 1 and by Induction Hypothesis, \(¥(A),y) = 1

in M*; since R = R*, this holds at every world, in W* such thatzR*y,
which means VA f(A),z) = 1 in M*,

Also, V(OA,z) = 1 implies V(OA,z) = 1, by axiomJO of KOO,
so at every worldy in W such thatzR"y V(A,y) = 1. Thus, by con-
struction of W* and Induction Hypothesis, if € W™, V* (f(A),y) = 1
and V¥t D f(A),y) = 1. Since 7,y) = 0 for everyy not in W'*,
V*(r D f(A),y) = 1 at everyy in W*W7™* so V*(r D f(A),y) = 1at
everyy in W*. So V*(A(7 D f(A),z) = 1. Since we already established
that V*(Af(A),xz) = 1in M*, by clause (iv) of the definition of it follows
that V*(f(OA), z) =

(ib) Suppose conversely that Yf(CA),z) = 1 in the derived model M*.
Then, by clause (v) of the definition ¢f, V*(A(r > f(A)),z) = 1 and
V*(Af(A),z) = 1. The latter conclusion is compatible with two alterna-
tives: that at every s.t. zR*y V* (f(A),y) = 0 or that at every s.t. zR*y
V(f(A),y) = 1.

According to the first alternative, by Induction Hypothesi® have
V(A,y) = 0 at everyy of M such thatzRy. So V(O-A,z) = 1. By
the preceding result proved in (ia) this would imply, joyntkith the sup-
position that VA f(TA), z) 1, also V*(f(O—-A),z) = 1. This im-
plies V¥*(A(r D f(A),z)) 1 and V¥A(r D —f(A),z)) = 1, so
by axiom KA2 V*(A((T D f( )) (tr D ﬂf( ))),z) = 1 and by PC
V* (A—-7,x) = 1: s0, by KAL, V* (AT, x) =

But this is incompatible with the semantlc condition ddsed by the
clausedy; Jya((xR*y1 A y1 € W™*) A (xR*ya A yo ¢ W™)), since by
V*(Ar,xz) = 1 7 should have value 1 or O everywhere in the accessibility
sphere ofx. Now since every K\7w-model has the property described in
(®), this means-dy xR*y. In this case, given that B R*, we have also
—-Jy zRyin M; so V(OA,z) = 1.

According to the second alternative, in everg.t. z:R*y V(f(A),y) = 1.
Thus by Induction Hypothesis we haveA/, y) = 1 at everyy of M such
thatzRy. So, even in this case,(VA, z) = 1.
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(ila) Suppose VOA, z) = 1 for somer of the KJO-model M. Then at every
world y in M such thatzR™y, V(A,y) = 1; so, by Induction Hypothesis,
V*(f(A),y) = 1in the derived model M*. Sinceg is R™-accessible ta,
V(r,y) = 1 by clauses b) and e2) of the definition of M*, and (¢* D
f(A),y) = 1. W™ is by definition the set of the worlds such that, for
somezr, in M zR" z, so at all worlds: in W™* VV* (7 O f(A),z) = 1. But at
every worldy’ in W*W7™ V (7,y') = 0, so V¥(r D f(A),y’) = 1 by the
truth-functionality ofD>. Thus, for every” in M*, V* (r O f(A),y") = 1.
Then V¥(A(T D f(A)),z) = 1,s0 V*(f(OA),z) = 1in M*.

(iib) Suppose conversely \(¥(OA), z) = 1 in the model M* derived from
M. This by definition off is the same as A (7 D f(A)),z) = 1.

Then at all worldsy of M* such thatzR*y, V*(r > f(A),y) = 1 or
V* (1 D f(A),y) = 0. Let us consider separately the two alternatives.
(iibl) In the former alternative Vfr,y) = 1 implies V*(f(A),y) = 1.
This means that, ify is a world belonging to W, V* (f(A),y) = 1. By
Induction Hypothesis, then, in sughof M, V(A,y) = 1. By definition
of W™* this means that at every in M such thatzRz, V(A z) = 1, so
V(OA z) = 1.

(iib2) The second alternative implies that#*> f(A),y) = 0 at all worlds

y of M* such thatzR*y, this implying that at every suchV* (r,y) = 1 and
V*(f(A),y) = 0. But this is possible only when the R*-accessibility sphere
is empty, i.e.—~3y xR*y. Now, since R*= R, this means that in model M
the relations R and R(included in R) are both empty, S(®A, z) = 1in

M. [Q.E.D.]

We have now simply to prove:

T7.1f f(A) isathesisof KATw, Aisathess of KOO.

Proof. Suppose for a contradiction that A is not a thesis 6f® Thanks to
the completeness of KO, then, at some world of some KJO-model M
V(A,z) = 0. But, according to Lemma 2 above, there is a warldf the
KA7w-model M* such that V{f(A),z) = 0. So, by the completeness of
KATw, f(A) is not a thesis of K\7w. [Q.E.D.]

T4 and T5 jointly yield the required result:
T8. For every KOO-wff A, Aisthesis of KOO iff f(A) isathesis of KATw.

81.1 A by-product of the preceding theorem T8 concerns theamwodal
fragments of KA7w + Defl] + DefO, i.e. the fragments of this system con-
taining onlyd or only O beyond truth-functional connectives. As a matfer o
fact, such fragments are also fragments of the bimodal sy&fglO, so the
attention may be limited to this fragment of¥w. The reader can quickly
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find a proof of the following two theorems T9 and T10, where khis well-
known minimal normal system axiomatized as PC + KA — + [JA, and
KO is the system axiomatized as PC + @A — - OA.
T9. Let A be any wiff containing only O or truth-functional operators. Then
Alisatheorem of KATw + Def(J if and only if A is a K-theorem.

(Sketch of the proof). We introduce two mapping$,andg. f° is defined
on K-language and is as the mappifigf page 4 with the following differ-
ence in clause (v):

(v%) f°(OA) = Of°(A) A Of°(A)

Then, observing thallp = (Op A Op) is a KOJO-theorem equivalent to
the bridge AxionTJO, it is easy to prove the following theorem by induction
on the length of proofs:

Lemma 10.If Ais A K-theorem, f°(A) isa KCO-theorem.

The second mappingis defined on KIO-language. Neglecting the trivial
clauses for truth-functional wifs, the distinctive classge as follows:
(v**a) g(OA) = Og(A)

(v*b) g(OA) = Lg(A)

Again by induction on the length of proofs we prove
Lemma 11.If Aisa KOO-theorem, g(A) is a K-theorem.

The last step of the proof aims to proving that there is a defiral equiv-
alence between the two axiom systems:

Lemma 12.For every K-wff A, A= gf°(A) isa K-theorem.

(The proof is by induction on the complexity of A)

A second result concerns the fragment containing only @xidas.

T13. Let A be any wif containing only O or truth-functional operators. Then
Alisatheorem of KA7Tw + DefO if and only if A isa KO-theorem.

The proof is along the lines of the preceding one in T9-T1& wie only
difference that, in the light of the equivalence & Op Vv Up, the definition
of f°is characterized by the following clause:

(V™) f°(OA) = Of(A) v Of(A).

while for the definition ofg the last clause is as in (v&) and (v**b), with
the symbol] on the RHS replaced by O.

§2. The preceding bimodal systenilO has been derived as a fragment
of a minimal monomodal contingency system extended withxaona ex-
pressing the minimal properties of a propositional cortstéris natural to
suppose that extendingd&w with other axioms involving the same propo-
sitional constant, a bimodal fragment stronger thatXcould be identified.

The most simple result which can be found in this directiothésfollow-
ing. We extend K\7w with the axiom
KAS5. AT D Vp

— D
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Clearly the conjunction of K5 and KA4 is equivalent to an unigue axiom
whichisA7 D 1, which in its turn is equivalent to the simple
KVr.Vr

The system K\Tw extended with KAS or, alternatively, the system PC +
KAl — KA3 + KV, will be called KAr. Since the axiom K7 may be
proved to be underivable in Xrw, the two systems K7 and KArw are
distinct systems. Our claim is now that, preserving the guety definition
of theJ, the bimodal fragment of K is KOO extended with the following
couple of axioms:

D. Op>Jp
DO.Op D Pp

The new system will be called KDO since it has the structure of a bi-
modal deontic logic.

The proof that KIDJO is ther-free fragment of K is obtained by a suitable
modification of the preceding proof forlKO.

In order to avoid a tedious replication of the known schemprobdf, we
limit ourself to a sketch enhancing the changes to be intedwvith respect
to the preceding proof.

1) In the first place we have to prove the completeness &fK The se-
mantics for this system is provided by defining\ik-models, which are not
weakly T-forked as KATw-models but simplyr-forked. In other words,
the only difference is that it is now excluded that the adbigyg sphere is
empty:Vz 3y 3y2 ((xRy1 A y1 € WT) A (zRy2 A ya & WT))

2) The decision procedure for&r presupposes the proof of the definitional
equivalence beweenXr and K7, which is K extended with the axiom
Ot A O—1 and the standard definition d&f. The completeness of Kr de-
pends then on the completeness of the equivalent systeim (Kee Pizzi
[2007]).

3) KDUOO is included in KAT + Defl] + DefO. The proof is as in T3 at
page 3, with the supplementary proof concerning the two neéangs D:
Op D ¢p and DO: @ D Pp. Note thatllp D Op is equivalent to)T,
so also (by Défl), to VT v V(7 A T) and then tovVr, while Op D Pp is
equivalent to F. Proceed then using DefO and truth-functional reasoning
to show that I is equivalent tovr.

4) KDOO-models are like KIO-models with the only difference that R and
R™ are both serial, i.e¥z3dy; Ry, andVzdy, xR™y,. KDOO is proved
to be sound and complete w.r.t. the class offlKD-models along the same
lines exposed at page 3. In particular, it must be provedti®atanonical
model over KIXIO is serial in the mentioned sense.

5) The derived model M* now is derived from KDO-model M and is de-
fined as at page 3. In place of Lemma 1 we have now to prove thas &*
KAT7-model, i.e. that R is-forked. The only difference, given that R R
and R is serial, is that the alternative B*& is not to be considered.
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6) In place of Lemma 2 we have now to prove:

Lemma 14. Let M be a KDLJO-model and M* a model derived from M.
Then, for every KDOO-wif A, V(A, z) = 1 in M iff V¥ (f(A),z) = 1in M*.

The proof runs as for Lemma 6 of page 4 with the following difece.
When we are under the supposition (VtOA), y) = 1, we consider the al-
ternative (ib), i.e. that V&f(A),y) = 0 for everyy such thattR*y. This
premise leads to the conclusion \&7,z) = 1. But M* is a KA7-model
and the axiomV T receives value 1 in all such models. So it is impossible
that V*(Ar,z) = 1.

A parallel argument holds for the supposition (OA, z) = 1 and the
alternative (iib2) implying that Vér > f(A),z) = 0 at all worldsy of M*
such thatrR*y; this means that at eveny such thatrR*y, V*(r,y) = 1
and V*(f(A),y) = 0. But it is impossible that V¢r,y) = 1 since M* is
7-forked, which means that \(¥,y) = 0 at somey accessible ta.

Given this simplified proof of the preparatory Lemmas, it timightfor-
ward to prove:

T15. If f(A) isathesis of KAT, Aisathesis of KDOIO.

By an argument which parallels the one of pp. 5-6 we are abedee
that thed-fragment of KA is equivalent to KD and that the O-fragment is
equivalent to KO + DO, which we shall call here KDO. In otherrds
T16. Let A be a wff containing only O and truth-functional operators. Then
Alisatheoremof KA7 + DefO if and only if A is a KD-theorem.

T17. Let A be a wif containing only O and truth-functional operators. Then
Aisatheorem of KAT + DefO if and only if A isa KDO-theorem.

REMARK. The metatheorems T9 and T16 have been already piliovg8
and 84 of Pizzi [2007], but with an utterly different method.

83. An interesting question concerns contingential systerhose modal
fragment is at least as strong as KT. A well-known result byntddomery
and Routley (1966) proves the definitional equivalence betwKT + DefA
and a contingential system extended with the definition
[Def'00] OA =pf AAANA

The axiomatical basis proposed by Montgomery and Routlethiorele-
vant contingential system is very elegant. This systent,ttiey call Ty, is
PC extended with two axioms
KAl Ap=A-p
KAG6.p D (A(p D q) D (Ap D Ag))
and with the only rule Ne&s: - A —F AA

We are here interested in relating the new definition/ Defith our initial
Defl], which is expressed in a language containing propositiooastants.
We need of course to express in contingential language tkie penciple
T: Op D p. This can be done by extending the minimal contingentiaiesys
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KA with the following axiom:

TA. (ApAA(T D p)) Dp

The new system is called KX7. It is easy to see that X7 is included in
KTAT:

1) (ATAA(T D7) DT TA, 7/p

2)AT DT 1),-A(r D7), Eq
(ATAA(T D —7)) D1 TA,—-7/p, KAL

DAT DT 3),FA(r D —7)=AT
5)Vr 2),4), PC

KT A7-models are K\7-models which are reflexive:

(°°) Vo (zRr A 3y13y2 ((R*y1 Ayr € WT) A (wR*ya Aya ¢ WT))

In other words, in KA7-models R is reflexive and alseforked: we will
say that it isr-reflexive. Clearly every-reflexive model isa fortiori reflex-
ive.

The soundness of this system with respect to the class ofreodels is
unproblematic.

T18.If AisaKTAr-thesis, AisKTAr-valid.

Proof. Since the axioms K0—4 hold in all KAT-models, a fortiori they hold

in all KT A7-models. So, given that the rules preserve the mentionga pro
erty, it is enough to prove thanA A A(7 D A)) D A holds in all KTA7-
models. Let us suppose by Reductio that, at some worMi(AA, z) = 1,
V(A(r D A),z) = 1 and V(A,z) = 0. Considering the assignment
V(AA, z) = 1 we have to consider three subcases:

1) A has value 1 at al} such that:Ry (from which it follows thatr > A has
also value 1, so the case in whietD A has value 0 is to be excluded). At
everyr-reflexive model we have thatRz; so a contradiction follows since
A receives value 1 and 0 at the same world\ fas then value 1 at al-
reflexive models.

2) A has value 0 at alj such thattRy andr O A has value 1 at any suah

so also at any belonging to W. Sor has also value 0 ip: contradiction.

3) A has value 0 at aly such thattRy and O A has value 0 in any suci,
sor has value 1 at all R-accessihjeBut this is incompatible with the con-
dition of beingr-forked, which implies that at least one R-accessible world
is a—~7-world. [Q.E.D.]

The converse of T18, i.e. the completeness ofXTwith respect to the
given semantics, will not be treated in the present paphioadh there is no
reason to suspect that the system lacks this property.

Since we are in search of the bimodal fragment of contingeggistems in
Oand O, an obvious preliminary consideration is thatBDis a subsystem
of KTA7, and thatJA D A, i.e. the translation ofAA A A(T D A)) DA,
is also a theorem of K& 7. Our conjecture is now that the bimodal fragment
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of the latter system, here called KID, is provided by the system KDO +
Cp D p.

Before proving the conjecture, it is of some interest to wkscthe follow-
ing problem. Given that the bdx received two different interpretations in
the literature —AA A A and AA A A(7 D A) — which is the position in
KT AT of the equivalencd\A A A = AA A A(7 D A)? As a matter of fact,
even lacking of a proof of the completeness of Xif we may prove what
follows:

T19.Ap Ap= Ap AN A(7 D p) isaKTAr-thess.

Proof. The basic step is in proving that the following wffs aré\K-valid:

() ((ApAA(T D p)) Dp) D (ApAp) D A(T D p))

(i) (ApAA(T D p)) Dp) D ((ApAA(T D p)) D p)

(i). Let us consider\p andp with value 1 atz and, by Reductio, VA(7 D
p,x) = 0. The assignment 1 tdp is compatible with two alternatives. If
the value ofp is everywhere 1 in the accessibility spherecat cannot hap-
pen that- O pis 0 at some accessible worlds,Aé¢r O p) should be 1 inc:
contradiction. On the other hand ithas everywhere value 0 in the sphere,
it cannot happen that A —p has somewhere value 1, what follows by the
property of R being -forked: contradiction. (i) is ther\k-valid.

(ii). (i1) is a substitution-instance of the tautologyo p.

Since both (i) and (ii) are Kr-valid, they are K\r-theses thanks to the
completeness of K7, soa fortiori they are KTAr-thesis. SincdAp A
A(T D p)) D pis a KTAr-thesis, by Modus Ponens we derive the two
consequents, so the two implicatiof&p A p) D (Ap A A(r D p)) and
(Ap A A(T D p)) D (Ap A p), so also their equivalence. [Q.E.D.]

A consequence of the proof of T19 is that the two definitionthefbox pro-
vided by Def] and Def(] are equivalent in the new system KT, but they
are equivalent even in the weaker systefvK

REMARK. Note that @ > p is inconsistent with KDIO and KTJO. In
fact A(r D p) D pyieldsk A(r D 7) D 7, so by Modus Poneris 7 and
by NecA + Ar, which is the negation o¥/ 7.

The proof that the bimodal fragment of KN'is KTCIO results from an
easy adaptation of the one for KID. The relation R of the KIDO-models
<W, R, R, V> is as in KIJO but with the additional property of being
reflexive. (Note however that the properties 6f&e unvaried).

The mappingf is defined as at page 3.

The theorems that are expected to hold here are formulated@ss (the
proof are simply suggested).

T20. For every KTLIO-wff A, if Aisathesis of KTLIO, Aisathesis of KTA
+ Defd + DefO.
(As at page 3, adding thatp O p is derived from axiom T\ in KTA7.)
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T21.1f Aisa KTOO-thesis, A holds at all KTCIO-models.

(As in T2 with the further proof thaflp O p holds at all KTJO-models,
which belong to a subclass of reflexive models.)

T22.1f Aholds at all KTLJO-models, Aisa KTOO-thesis.

(The proof follows the lines of T3. The analysis of canonitadel requires
proving that the canonical model over KD is reflexive.)

T23.If Aisathesis of KTOO, f(A) isathesis of KTAT.

(Trivial)

The derived model M* = <W*, WW*, R*, V*> is defined as before. Since

zR*y iff zRy, it follows that R* is reflexive.

Lemma 24 M* isa KTAO-model.

(The only new problem is to show that Risreflexive, i.e. that/z(xRz A
Jy13y2((zRy1 Ayr € WT) A (zRy2 A ya ¢ WT))).) Since R is reflexive,
R* is such anda fortiori serial. This means that the accessibility sphere of
every worldz is never empty. The property of beingforked is common to
other contingential models and does not introduce changes.

Lemma 25.Let M bea KTOO-model and M* a model derived from M. Then,

for every KTOO-wff A, V(A z) = 1in Miff V*(f(A),z) = 1in M*.

T26.1f f(A) isathesisof KTAT, Aisathess of KTOIO.

It remains to take into consideration the proofs concerttisgnonomodal
fragments of the system KXr. The reader can reconstruct them along the
lines of T12 and T13. However, the result here is not comiyletgmmetric.
In fact we have:

T27. Let A be a wff containing only (J and truth-functional operators. Then
Aisa KTAr-theoremif and only if Aisa KT-theorem.

T28. Let A be a wif containing only O and truth-functional operators. Then
AisaKTA~-theoremif and only if Aisa KDO-theorem.

The third system KT\ has another peculiarity with respect to the weaker
ones. Thanks to the Montgomery-Routley result and to thedr#9, it turns
out that ther-free fragment of KA 7 containing only] and truth-functional
operators, i.e. KT, is definitionally equivalent to a sysig@® Montgomery-
Routley’s T;) containing onlyA and truth-functional operators.

One of the consequences of the mentioned result is thatensysghich is
definitionally equivalent to KOO and which will be named KAO is the
following, written in the operators, D, A, O.
1L.Ap=A—p
2.p D (A(p D g) D (Ap D Ag))

3.p D (Ap D> Op)

4.O(p > q) O (Op > Og)

5 0OpDPp

Rules: US, MP, NeA: F A —F AA

If contingency and absoluteness are considered modakhsabio the same
level of the notions represented in the Aristotelian sqoamppositions (and
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there are historical and theoretical reasons to defendldiim), the “mixed”
system KTAO may be considered in proper sensairaodal system. Note
that of course @ does not implyAp nor p, so the operator O cannot be read
as representing logical necessity: it might be read as atidemmerator but
also, say, as an operator for temporal necessity or for palysecessity. In
the latter case, defining a notion of physical contingency as

[DefV/] V/A =pt PAA P-A

might allow studying the interrelations between differantions of contin-
gency in a direct and analytically interesting way.
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