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BIMODAL FRAGMENTS OF CONTINGENCY LOGICS
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Abstract
The paper aims at identifying the modal fragments of systemsof
contingency logic whose language includes a propositionalconstant
τ . It turns out that the language of such systems allows defining two
necessity operators of different strength,� and O. It is proved that
in the weakest contingency system K∆τw theτ -free fragment con-
taining�-wffs is K and that an analogous result holds for O-wffs;
that in K∆τ the fragment for both is KD; that in KT∆τ the fragment
containing�-wffs is KT and the one containing O-wffs is KD. Such
results are derived from the central result of the paper, which con-
cerns the bimodal fragments of K∆τw, K∆τ , KT∆τ , here called
K�O, KD�O and KT�O. The axiomatic bases for such systems
consist in the unions of the axioms of the related monomodal frag-
ments extended with the bridge axiom�p ⊃ Op.

§1. The present paper aims at providing a detailed treatmentof a research
program started in Pizzi [2007] and partially developed in Pizzi [2013]. In
Pizzi [2007] a system called K∆τw was viewed as a minimal system for the
operator of non-contingency or absoluteness (symbolized by ∆) if the ∆-
based language is extended with a suitably axiomatized propositional con-
stantτ and with a contingency operator∇ introduced by the standard defi-
nition ∇A =Df ¬∆A. The following is an axiomatization of K∆τw where
the constantτ is axiomatized by only one axiom (K∆4).1

K∆0. All the tautologies of the propositional calculus PC
K∆1. ∆p ≡ ∆¬p
K∆2. (∆p ∧∆q) ⊃ ∆(p ∧ q)
K∆3. (∆p ∧ ∇(¬p ∨ r)) ⊃ ∆(p ∨ q)
K∆4. ∆τ ⊃ ∆p

1The problem of assigning an intuitive meaning toτ may be the object of some non-
trivial philosophical discussion, but lies outside the scope of this paper. As a suggestion for
the reader,τ may be interpreted in K∆τw as “what I believe to be true is true” and in K∆τ

as “the moral code is respected”.
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Rules:
(US) Uniform Substitution
(MP) ⊢ A, ⊢ A ⊃ B → ⊢ B
(∆Nec)⊢ A → ⊢ ∆A
(∆Eq) ⊢ A ≡ B → ⊢ ∆A ≡ ∆B

The system which is obtained from K∆τw by omitting the axiom K∆4 is
called K∆ in Kuhn [1995] and is the minimal system of contingential logic
written in a language without propositional constants.

In Pizzi [2007] it is proved that K∆τw is sound and complete with respect
to the class of K∆τw-models, where a K∆τw-model is any 4-ple M = <W,
Wτ , R, V> which is defined as follows:
(i) W 6= ∅

(ii) W τ ⊆ W
(iii) R is weakly τ -forked, which means
(◦) ∀x(¬∃yxRy ∨ ∃y1∃y2((xRy1 ∧ y1 ∈ Wτ ) ∧ (xRy2 ∧ y2 /∈ Wτ )))
(iv) V is defined as usual for truth-functional wffs and for the other wffs it is
defined by the following two clauses:
(iv1) V(τ, x) = 1 iff x ∈ Wτ

(iv2) V(∆A, x) = 1 iff, for every y such thatxRy and everyy′ s.t. xRy′,
V(A, y) = V(A, y′)
Obviously in place of (iv2) we could have
(iv2′) V(∇A, x) = 1 iff, for somey such thatxRy and somey′ s.t. xRy′,
V(A, y) 6= V(A, y′)

Let us now extend K∆τw with the following two definitions:
[Def�] �A =Df ∆A ∧∆(τ ⊃ A)
[DefO] OA =Df ∆(τ ⊃ A)

Note that the dual operators♦A (=Df ¬�¬A) and PA (=Df ¬O¬A) turn
out to be equivalent to∇A ∨ ∇(τ ∧ A) and∇(τ ∧ A) respectively.

The decision procedure for K∆τw presupposes the definitional equiva-
lence of K∆τw with a system, K�τw, which is the�-based normal system
K extended with the following axiom:
(�τw) (�τ ∨�¬τ) ⊃ �p
and with the definition
[Def∆] ∆A =Df �A ∨�¬A2

The proof of the equivalence is provided in Pizzi [2007]. Given that
(�τw), i.e. (�τ ∨ �¬τ) ⊃ �p, is equivalent to�τ ≡ �¬τ , the system

2 This definition is not the only definition of absoluteness granting the translation of the
two systems. In Pizzi [2013] the proposed definition is∆A =Df ((♦τ ∧ ♦¬τ ) ∧ (�A ∨

�¬A)) ∨ ((�τ ∨�¬τ ) ∧�A). The advantage of the latter definition is that, if it is applied
to axiom K∆4: ∆τ ⊃ ∆p, it yields exactly the axiom of K�τw (�τ ∨�¬τ ) ⊃ �p, not the
weaker wff(�τ ∨ �¬τ ) ⊃ (�p ∨�¬p) which would be the output of Def∆.

It can be shown, however, that in systems at least as strong asK∆τ (see page 7) the two
definitions are equivalent.
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K�τw is easily decidable thanks to a simple extension of the tableau method
for K, so K∆τw turns out to be decidable via a translation of K∆τw-wffs
into K�τw-wffs. The tableau procedure for K�τw provides a constructive
proof of the completeness of K�τw, so indirectly one for K∆τw.

Now we take into consideration a system which is named K�O in Pizzi
[2013]. K�O is a minimum normal bimodal logic extended with a bridge-
axiom whose language has, beyond truth-functional operators, the two prim-
itives� and O. We stipulate that the other primitives of the languageare⊥
and⊃, while¬, ∧, ∨ are defined as usually.

The axioms of K�O, to be subjoined to an axiomatic basis for the standard
propositional calculus PC, are:
K. �(p ⊃ q) ⊃ (�p ⊃ �q)
O. O(p ⊃ q) ⊃ (Op ⊃ Oq)
�O.�p ⊃ Op
Rules: Modus Ponens (MP), Uniform Substitution (US)
(Nec)⊢ A →⊢ �A
(Eq) Replacement of proved material equivalents

In what follows we are going to prove a fact which was formulated as a
conjecture in Pizzi [2013], i.e. that K�O is theτ -free fragment of K∆τw,
or in other words that K�O axiomatizes all and only the theorems of K∆τw
+ Def� + DefO containing only truth-functional operators,� and O.

The first step is to prove that K�O is included in K∆τw + Def� + DefO,
i.e. to prove what follows:
T1. For every K�O-wff A, if A is a thesis of K�O, A is a thesis of K∆τw +
Def� + DefO.
Proof. The proof is by induction on the length of proofs. In the basiscase we
prove that the translations of the three axioms obtained by applying Def�
and DefO are K∆τw-theorems. For the inductive step we prove that the
rules preserve the given property. The proof of K:�(p ⊃ q) ⊃ (�p ⊃ �q)
may be found in Pizzi [2007], §2. The proof of O(p ⊃ q) ⊃ (Op ⊃ Oq)
is derived from�(r ⊃ (p ⊃ q)) ⊃ (�(r ⊃ p) ⊃ �(r ⊃ q)) (a trivial
consequence of K), by replacingτ for r. �p ⊃ Op is equivalent to the
K-theorem�p ⊃ �(τ ⊃ p). The induction step is trivial. [Q.E.D.]

Two steps are now essential to perform the proof.
The first step consists in proving the soundness and completeness of K�O

w.r.t. the class of K∆τw-models, i.e. of 4-ples <W, R, Rτ , V> which are
defined by the following properties:
(i) W 6= ∅

(ii) for everyx, y in W, xRτy impliesxRy
(iii) V is as in K∆τw-models for truth-functional wffs and for the other wffs
is as follows:

(iiia) V(�A, x) = 1 iff, for every y s.t.xRy, V(A, y) = 1
(iiib) V (OA, x) = 1 iff, for every y s.t.xRτy, V(A, y) = 1
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We will call such models K�O-models.
We now prove soundness and completeness of K�O with respect to the

class of K�O-models.

T2. For every K�O-wff A, if A is a K�O-thesis, A holds at all K�O-models.
Proof. Trivial induction on the length of proofs.

T3. For every formula A, if A holds at all K�O-models, A is a K�O-thesis.
Proof. The proof is provided by a suitable application of the Henkinmethod.

The canonical model build over K�O is a 4-ple <W+, R+, Rτ+, V+>
where
(i) W+ = {w,w′,w′ . . .} is the set of maximal K�O-consistent sets
(ii) R+, Rτ+ are defined as follows:

(iia) wR+w′ iff for every w,w′ in W+, if �A belongs to w, A belongs
to w′

(iib) wRτ+w′ iff for every w,w′ in W+ if OA belongs to w, A belongs
to w′

(iii) V (p,w) = 1 if and only if p belongs to w.
The proof consists in proving that the canonical model is a K�O-model.

The only non-trivial step is proving that the canonical model over K�O is
such that Rτ+ ⊆ R+. Suppose that wRτ+w′. Then w′ ⊇ {A : OA ∈ w}.
As �A ⊃ OA ∈ w for all formulas A, it follows that{A : �A ∈ w} ⊆
{A : OA ∈ w}, and thus that w′ ⊇ {A : �A ∈ w} — i.e. wRw′ as desired.
[Q.E.D.]

The next step of the proof consists in associating to every K�O-formula a
K∆τw-formulavia a mappingf defined as follows:
(i) f(p) = p
(ii) f(⊥) = ⊥
(iii) f(A ⊃ B) = f(A) ⊃ f(B)
(iv) f(OA) = ∆(τ ⊃ f(A))
(v) f(�A) = ∆f(A) ∧∆(τ ⊃ f(A))

This translation allows us to prove the following theorem.
T4. For every K�O-wff A, if A is a thesis of K�O, f(A) is a thesis of K∆τw.
Proof. By induction on the length of proofs. Thef -images of the axioms
of K�O are K∆τw-theorems and the rules of K∆τw preserve the K∆τw-
theoremhood of thef -images. [Q.E.D.]

The central problem is how to prove the converse of T4. In order to build
a proof we move from a K�O-model M = <W, R, Rτ , V> and define on its
base aderived model M* = <W*, W τ *, R*, V*> in this way:
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a) W* = W
b) Wτ * = {z ∈ W: for somex in W, xRτz}
c) xR*y iff xRy
d) If Wτ * 6= ∅, there is ay′ such thaty′ /∈ Wτ * andxR*y′

e) V* is as V as wffs with truth-functional operators are concerned. For the
other wffs:
e1) V*(∆A, x) = 1 iff for every y such thatxR*y and everyy′ such that
xR*y′, V* (A, y) = V* (A, y′)
e2a) For ally such thaty ∈ Wτ *, V* (τ, z) = 1
e2b) For ally such thaty /∈ Wτ *, V* (τ, y) = 0

Obviously, in place of (e1) we could have
e1′) V(∇A, x) = 1 iff, for some y such thatxRy and somey′ s.t. xRy′,
V(A, y) 6= V(A, y′)

We may now prove two lemmas:
Lemma 5.M* is a K∆τw-model.

The conditions defining the K∆τw-models are satisfied by M*, as one can
see from the following considerations.
(i) Since W*= W and W 6= ∅, W* 6= ∅

(ii) W τ * = {z ∈ W: for somex in W, xRτz} is included in W*. In fact, if
Wτ * is ∅, this property is vacuously satisfied. If Wτ * is not ∅, given that
Rτ ⊆ R and R= R*, the members of Wτ * must belong to W*.
(iii) in order to show that R* isweakly τ -forked, i.e. that
(◦) ∀x(¬∃y xR*y ∨ ∃y1∃y2((xR*y1 ∧ y1 ∈ Wτ ) ∧ (xR*y2 ∧ y2 /∈ Wτ )))
we take into consideration an arbitraryx and consider two cases:
(1) R* = ∅. This means that no worldy is R*-seen byx, so¬∃y xR*y and,
quantifiying overx, we conclude that (◦) holdsa fortiori.
(2) R* 6= ∅. In this case there is any such thatxR*y. There are two possible
subcases.
(2a) V(τ, y) = 1. This means thaty belongs to Wτ * and that Wτ * is not
∅. So by clause d) of the above definition of a derived model there is an
y′ such thaty′ /∈ Wτ andxR*y′. But Wτ * = {z ∈ W: for somex in W,
xRτz} and, given that, for everyx andy, xRτy impliesxR*y, it follows that
∃y1∃y2((xR*y1 ∧ y1 ∈ Wτ * ) ∧ (xR*y2 ∧ y2 /∈ Wτ *)), soa fortiori R* has
the property (◦).
(2b) V(τ, y) = 0, soy /∈ Wτ *. If W τ * is ∅, this means that¬∃y xR*y, so
we are back to case 1). Otherwise there is at least a membery1 of Wτ *, so we
are again in conditions to assert, as for (2a), that for anyx ∃y1∃y2((xR*y1∧
y1 ∈ Wτ *) ∧ (xR*y2 ∧ y2 /∈ Wτ *)). R* is then weaklyτ -forked.
(iv) As the properties of V* are concerned, the clauses defining V in K∆τw-
models are satisfied by e) and e2) and vacuously satisfied by e2a) and e2b),
sinceτ does not occur in the language of K∆τw. [Q.E.D.]
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Now we may prove the second Lemma:

Lemma 6.Let M be a K�O-model and M* a model derived from M. Then,
for every K�O-wff A, V(A, x) = 1 in M iff V*(f(A), x) = 1 in M*.
Proof. By induction on the complexity of wffs. Let us suppose that the
equivalence holds for any arbitrary K�O-wff A. The non-trivial step is in
proving that the equivalence holds for the wffs OA and�A.
(ia) Suppose V(�A, x) = 1 in the K�O-model M. Then at every worldy
such thatxRy, V(A, y) = 1 and by Induction Hypothesis, V*(f(A), y) = 1
in M*; since R= R*, this holds at every worldy in W* such thatxR*y,
which means V*(∆f(A), x) = 1 in M*.

Also, V(�A, x) = 1 implies V(OA, x) = 1, by axiom�O of K�O,
so at every worldy in W such thatxRτy V(A, y) = 1. Thus, by con-
struction of Wτ * and Induction Hypothesis, ify ∈ Wτ *, V* (f(A), y) = 1
and V*(τ ⊃ f(A), y) = 1. Since V(τ, y) = 0 for everyy not in Wτ *,
V* (τ ⊃ f(A), y) = 1 at everyy in W*-W τ *, so V*(τ ⊃ f(A), y) = 1 at
everyy in W*. So V*(∆(τ ⊃ f(A), x) = 1. Since we already established
that V*(∆f(A), x) = 1 in M*, by clause (iv) of the definition off it follows
that V*(f(�A), x) = 1.

(ib) Suppose conversely that V*(f(�A), x) = 1 in the derived model M*.
Then, by clause (v) of the definition off , V* (∆(τ ⊃ f(A)), x) = 1 and
V* (∆f(A), x) = 1. The latter conclusion is compatible with two alterna-
tives: that at everyy s.t.xR*y V* (f(A), y) = 0 or that at everyy s.t.xR*y
V(f(A), y) = 1.

According to the first alternative, by Induction Hypothesiswe have
V(A, y) = 0 at everyy of M such thatxRy. So V(�¬A, x) = 1. By
the preceding result proved in (ia) this would imply, jointly with the sup-
position that V*(f(�A), x) = 1, also V*(f(�¬A), x) = 1. This im-
plies V*(∆(τ ⊃ f(A), x)) = 1 and V*(∆(τ ⊃ ¬f(A), x)) = 1, so
by axiom K∆2 V*(∆((τ ⊃ f(A)) ∧ (τ ⊃ ¬f(A))), x) = 1 and by PC
V* (∆¬τ, x) = 1: so, by K∆1, V*(∆τ, x) = 1.

But this is incompatible with the semantic condition described by the
clause∃y1∃y2((xR*y1 ∧ y1 ∈ Wτ *) ∧ (xR*y2 ∧ y2 /∈ Wτ * )), since by
V* (∆τ, x) = 1 τ should have value 1 or 0 everywhere in the accessibility
sphere ofx. Now since every K∆τw-model has the property described in
(◦), this means¬∃y xR*y. In this case, given that R= R*, we have also
¬∃y xR y in M; so V(�A, x) = 1.

According to the second alternative, in everyy s.t.xR*y V(f(A), y) = 1.
Thus by Induction Hypothesis we have V(A, y) = 1 at everyy of M such
thatxRy. So, even in this case, V(�A, x) = 1.
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(iia) Suppose V(OA, x) = 1 for somex of the K�O-model M. Then at every
world y in M such thatxRτy, V(A, y) = 1; so, by Induction Hypothesis,
V* (f(A), y) = 1 in the derived model M*. Sincey is Rτ -accessible tox,
V(τ, y) = 1 by clauses b) and e2) of the definition of M*, and V*(τ ⊃
f(A), y) = 1. Wτ * is by definition the set of the worldsz such that, for
somex, in M xRτ z, so at all worldsz in Wτ * V* (τ ⊃ f(A), z) = 1. But at
every worldy′ in W*-W τ * V (τ, y′) = 0, so V*(τ ⊃ f(A), y′) = 1 by the
truth-functionality of⊃. Thus, for everyy′′ in M*, V* (τ ⊃ f(A), y′′) = 1.
Then V*(∆(τ ⊃ f(A)), x) = 1, so V*(f(OA), x) = 1 in M*.
(iib) Suppose conversely V*(f(OA), x) = 1 in the model M* derived from
M. This by definition off is the same as V*(∆(τ ⊃ f(A)), x) = 1.

Then at all worldsy of M* such thatxR*y, V* (τ ⊃ f(A), y) = 1 or
V* (τ ⊃ f(A), y) = 0. Let us consider separately the two alternatives.
(iib1) In the former alternative V*(τ, y) = 1 implies V*(f(A), y) = 1.
This means that, ify is a world belonging to Wτ *, V* (f(A), y) = 1. By
Induction Hypothesis, then, in suchy of M, V(A, y) = 1. By definition
of Wτ * this means that at everyz in M such thatxRz, V(A, z) = 1, so
V(OA, x) = 1.
(iib2) The second alternative implies that V*(τ ⊃ f(A), y) = 0 at all worlds
y of M* such thatxR*y, this implying that at every suchy V* (τ, y) = 1 and
V* (f(A), y) = 0. But this is possible only when the R*-accessibility sphere
is empty, i.e.¬∃y xR*y. Now, since R*= R, this means that in model M
the relations R and Rτ (included in R) are both empty, so V(OA, x) = 1 in
M. [Q.E.D.]

We have now simply to prove:
T7. If f(A) is a thesis of K∆τw, A is a thesis of K�O.
Proof. Suppose for a contradiction that A is not a thesis of K�O. Thanks to
the completeness of K�O, then, at some worldx of some K�O-model M
V(A, x) = 0. But, according to Lemma 2 above, there is a worldx of the
K∆τw-model M* such that V*(f(A), x) = 0. So, by the completeness of
K∆τw, f(A) is not a thesis of K∆τw. [Q.E.D.]

T4 and T5 jointly yield the required result:
T8. For every K�O-wff A, A is thesis of K�O iff f(A) is a thesis of K∆τw.

§1.1 A by-product of the preceding theorem T8 concerns the monomodal
fragments of K∆τw + Def� + DefO, i.e. the fragments of this system con-
taining only� or only O beyond truth-functional connectives. As a matter of
fact, such fragments are also fragments of the bimodal system K�O, so the
attention may be limited to this fragment of K∆τw. The reader can quickly
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find a proof of the following two theorems T9 and T10, where K isthe well-
known minimal normal system axiomatized as PC + K +⊢ A → ⊢ �A, and
KO is the system axiomatized as PC + O +⊢ A → ⊢ OA.

T9. Let A be any wff containing only � or truth-functional operators. Then
A is a theorem of K∆τw + Def� if and only if A is a K-theorem.

(Sketch of the proof). We introduce two mappings,f◦ andg. f◦ is defined
on K-language and is as the mappingf of page 4 with the following differ-
ence in clause (v):
(v*) f◦(�A) = �f◦(A) ∧ Of◦(A)

Then, observing that�p ≡ (�p ∧ Op) is a K�O-theorem equivalent to
the bridge Axiom�O, it is easy to prove the following theorem by induction
on the length of proofs:
Lemma 10.If A is A K-theorem, f◦(A) is a K�O-theorem.

The second mappingg is defined on K�O-language. Neglecting the trivial
clauses for truth-functional wffs, the distinctive clauses are as follows:
(v** a) g(�A) = �g(A)
(v** b) g(OA) = �g(A)

Again by induction on the length of proofs we prove
Lemma 11.If A is a K�O-theorem, g(A) is a K-theorem.

The last step of the proof aims to proving that there is a definitional equiv-
alence between the two axiom systems:
Lemma 12.For every K-wff A, A ≡ gf◦(A) is a K-theorem.
(The proof is by induction on the complexity of A)

A second result concerns the fragment containing only O-formulas.
T13. Let A be any wff containing only O or truth-functional operators. Then
A is a theorem of K∆τw + DefO if and only if A is a KO-theorem.

The proof is along the lines of the preceding one in T9–T12 with the only
difference that, in the light of the equivalence Op ≡ Op ∨�p, the definition
of f◦ is characterized by the following clause:
(v***) f◦(OA) = Of(A) ∨�f(A).
while for the definition ofg the last clause is as in (v**a) and (v**b), with
the symbol� on the RHS replaced by O.

§2. The preceding bimodal system K�O has been derived as a fragment
of a minimal monomodal contingency system extended with an axiom ex-
pressing the minimal properties of a propositional constant. It is natural to
suppose that extending K∆τw with other axioms involving the same propo-
sitional constant, a bimodal fragment stronger than K�O could be identified.

The most simple result which can be found in this direction isthe follow-
ing. We extend K∆τw with the axiom
K∆5. ∆τ ⊃ ∇p
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Clearly the conjunction of K∆5 and K∆4 is equivalent to an unique axiom
which is∆τ ⊃ ⊥, which in its turn is equivalent to the simple
K∇τ . ∇τ

The system K∆τw extended with K∆5 or, alternatively, the system PC +
K∆1 − K∆3 + K∇τ , will be called K∆τ . Since the axiom K∇τ may be
proved to be underivable in K∆τw, the two systems K∆τ and K∆τw are
distinct systems. Our claim is now that, preserving the preceding definition
of the�, the bimodal fragment of K∆τ is K�O extended with the following
couple of axioms:
D. �p ⊃ ♦p
DO. Op ⊃ Pp

The new system will be called KD�O since it has the structure of a bi-
modal deontic logic.

The proof that KD�O is theτ -free fragment of K is obtained by a suitable
modification of the preceding proof for K�O.

In order to avoid a tedious replication of the known schema ofproof, we
limit ourself to a sketch enhancing the changes to be introduced with respect
to the preceding proof.
1) In the first place we have to prove the completeness of K∆τ . The se-
mantics for this system is provided by defining K∆τ -models, which are not
weakly τ -forked as K∆τw-models but simplyτ -forked. In other words,
the only difference is that it is now excluded that the accessibility sphere is
empty:∀x∃y1∃y2((xRy1 ∧ y1 ∈ Wτ) ∧ (xRy2 ∧ y2 /∈ Wτ))
2) The decision procedure for K∆τ presupposes the proof of the definitional
equivalence beween K∆τ and K�τ , which is K extended with the axiom
♦τ ∧ ♦¬τ and the standard definition of∆. The completeness of K∆τ de-
pends then on the completeness of the equivalent system K�τ (see Pizzi
[2007]).
3) KD�O is included in K∆τ + Def� + DefO. The proof is as in T3 at
page 3, with the supplementary proof concerning the two new axioms D:
�p ⊃ ♦p and DO: Op ⊃ Pp. Note that�p ⊃ ♦p is equivalent to♦T,
so also (by Def�), to ∇T ∨ ∇(τ ∧ T) and then to∇τ , while Op ⊃ Pp is
equivalent to PT. Proceed then using DefO and truth-functional reasoning
to show that PT is equivalent to∇τ .
4) KD�O-models are like K�O-models with the only difference that R and
Rτ are both serial, i.e.∀x∃y1 xRy1 and∀x∃y2 xRτy2. KD�O is proved
to be sound and complete w.r.t. the class of KD�O-models along the same
lines exposed at page 3. In particular, it must be proved thatthe canonical
model over KD�O is serial in the mentioned sense.
5) The derived model M* now is derived from KD�O-model M and is de-
fined as at page 3. In place of Lemma 1 we have now to prove that M*is a
K∆τ -model, i.e. that R isτ -forked. The only difference, given that R*= R
and R is serial, is that the alternative R*= ∅ is not to be considered.
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6) In place of Lemma 2 we have now to prove:
Lemma 14. Let M be a KD�O-model and M* a model derived from M.
Then, for every KD�O-wff A, V(A, x) = 1 in M iff V*(f(A), x) = 1 in M*.
The proof runs as for Lemma 6 of page 4 with the following difference.
When we are under the supposition V*(f(�A), y) = 1, we consider the al-
ternative (ib), i.e. that V*(f(A), y) = 0 for everyy such thatxR*y. This
premise leads to the conclusion V*(∆τ, x) = 1. But M* is a K∆τ -model
and the axiom∇τ receives value 1 in all such models. So it is impossible
that V*(∆τ, x) = 1.

A parallel argument holds for the supposition V*(OA, x) = 1 and the
alternative (iib2) implying that V*(τ ⊃ f(A), x) = 0 at all worldsy of M*
such thatxR*y; this means that at everyy such thatxR*y, V* (τ, y) = 1
and V*(f(A), y) = 0. But it is impossible that V*(τ, y) = 1 since M* is
τ -forked, which means that V*(τ, y) = 0 at somey accessible tox.

Given this simplified proof of the preparatory Lemmas, it is straightfor-
ward to prove:
T15. If f(A) is a thesis of K∆τ , A is a thesis of KD�O.

By an argument which parallels the one of pp. 5–6 we are able toprove
that the�-fragment of K∆τ is equivalent to KD and that the O-fragment is
equivalent to KO + DO, which we shall call here KDO. In other words:
T16. Let A be a wff containing only � and truth-functional operators. Then
A is a theorem of K∆τ + DefO if and only if A is a KD-theorem.
T17. Let A be a wff containing only O and truth-functional operators. Then
A is a theorem of K∆τ + DefO if and only if A is a KDO-theorem.

REMARK. The metatheorems T9 and T16 have been already provedin §3
and §4 of Pizzi [2007], but with an utterly different method.

§3. An interesting question concerns contingential systems whose modal
fragment is at least as strong as KT. A well-known result by Montgomery
and Routley (1966) proves the definitional equivalence between KT + Def∆
and a contingential system extended with the definition
[Def′�] �A =Df ∆A ∧ A

The axiomatical basis proposed by Montgomery and Routley for the rele-
vant contingential system is very elegant. This system, that they call T1, is
PC extended with two axioms
K∆1. ∆p ≡ ∆¬p
K∆6. p ⊃ (∆(p ⊃ q) ⊃ (∆p ⊃ ∆q))
and with the only rule Nec∆: ⊢ A →⊢ ∆A

We are here interested in relating the new definition Def′� with our initial
Def�, which is expressed in a language containing propositionalconstants.
We need of course to express in contingential language the basic principle
T: �p ⊃ p. This can be done by extending the minimal contingential system
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K∆ with the following axiom:
T∆. (∆p ∧∆(τ ⊃ p)) ⊃ p
The new system is called KT∆τ . It is easy to see that K∆τ is included in
KT∆τ :
1) (∆τ ∧∆(τ ⊃ τ)) ⊃ τ T∆, τ/p
2)∆τ ⊃ τ 1),⊢ ∆(τ ⊃ τ), Eq
3) (∆τ ∧∆(τ ⊃ ¬τ)) ⊃ ¬τ T∆, ¬τ/p, K∆1
4)∆τ ⊃ ¬τ 3),⊢ ∆(τ ⊃ ¬τ) ≡ ∆τ
5)∇τ 2), 4), PC

KT∆τ -models are K∆τ -models which are reflexive:
(◦◦) ∀x(xRx ∧ ∃y1∃y2 ((xR*y1 ∧ y1 ∈ Wτ ) ∧ (xR*y2 ∧ y2 /∈ Wτ ))

In other words, in K∆τ -models R is reflexive and alsoτ -forked: we will
say that it isτ -reflexive. Clearly everyτ -reflexive model isa fortiori reflex-
ive.

The soundness of this system with respect to the class of suchmodels is
unproblematic.
T18. If A is a KT∆τ -thesis, A is KT∆τ -valid.
Proof. Since the axioms K∆0–4 hold in all K∆τ -models, a fortiori they hold
in all KT∆τ -models. So, given that the rules preserve the mentioned prop-
erty, it is enough to prove that(∆A ∧∆(τ ⊃ A)) ⊃ A holds in all KT∆τ -
models. Let us suppose by Reductio that, at some worldx, V(∆A, x) = 1,
V(∆(τ ⊃ A), x) = 1 and V(A, x) = 0. Considering the assignment
V(∆A, x) = 1 we have to consider three subcases:
1) A has value 1 at ally such thatxRy (from which it follows thatτ ⊃ A has
also value 1, so the case in whichτ ⊃ A has value 0 is to be excluded). At
everyτ -reflexive model we have thatxRx; so a contradiction follows since
A receives value 1 and 0 at the same world. T∆ has then value 1 at allτ -
reflexive models.
2) A has value 0 at ally such thatxRy andτ ⊃ A has value 1 at any suchy,
so also at anyy belonging to Wτ . Soτ has also value 0 iny: contradiction.
3) A has value 0 at ally such thatxRy andτ ⊃ A has value 0 in any suchy,
soτ has value 1 at all R-accessibley. But this is incompatible with the con-
dition of beingτ -forked, which implies that at least one R-accessible world
is a¬τ -world. [Q.E.D.]

The converse of T18, i.e. the completeness of KT∆τ with respect to the
given semantics, will not be treated in the present paper, although there is no
reason to suspect that the system lacks this property.

Since we are in search of the bimodal fragment of contingential systems in
� and O, an obvious preliminary consideration is that KD�O is a subsystem
of KT∆τ , and that�A ⊃ A, i.e. the translation of(∆A ∧∆(τ ⊃ A)) ⊃ A,
is also a theorem of KT∆τ . Our conjecture is now that the bimodal fragment
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of the latter system, here called KT�O, is provided by the system KD�O +
�p ⊃ p.

Before proving the conjecture, it is of some interest to discuss the follow-
ing problem. Given that the box� received two different interpretations in
the literature —∆A ∧ A and∆A ∧ ∆(τ ⊃ A) — which is the position in
KT∆τ of the equivalence∆A ∧A ≡ ∆A ∧∆(τ ⊃ A)? As a matter of fact,
even lacking of a proof of the completeness of KT∆τ we may prove what
follows:
T19.∆p ∧ p ≡ ∆p ∧∆(τ ⊃ p) is a KT∆τ -thesis.
Proof. The basic step is in proving that the following wffs are K∆τ -valid:
(i) ((∆p ∧∆(τ ⊃ p)) ⊃ p) ⊃ ((∆p ∧ p) ⊃ ∆(τ ⊃ p))
(ii) ((∆p ∧∆(τ ⊃ p)) ⊃ p) ⊃ ((∆p ∧∆(τ ⊃ p)) ⊃ p)
(i). Let us consider∆p andp with value 1 atx and, by Reductio, V(∆(τ ⊃
p, x) = 0. The assignment 1 to∆p is compatible with two alternatives. If
the value ofp is everywhere 1 in the accessibility sphere ofx it cannot hap-
pen thatτ ⊃ p is 0 at some accessible worlds, so∆(τ ⊃ p) should be 1 inx:
contradiction. On the other hand, ifp has everywhere value 0 in the sphere,
it cannot happen thatτ ∧ ¬p has somewhere value 1, what follows by the
property of R being -forked: contradiction. (i) is then K∆τ -valid.
(ii). (ii) is a substitution-instance of the tautologyp ⊃ p.

Since both (i) and (ii) are K∆τ -valid, they are K∆τ -theses thanks to the
completeness of K∆τ , so a fortiori they are KT∆τ -thesis. Since(∆p ∧
∆(τ ⊃ p)) ⊃ p is a KT∆τ -thesis, by Modus Ponens we derive the two
consequents, so the two implications(∆p ∧ p) ⊃ (∆p ∧ ∆(τ ⊃ p)) and
(∆p ∧∆(τ ⊃ p)) ⊃ (∆p ∧ p), so also their equivalence. [Q.E.D.]

A consequence of the proof of T19 is that the two definitions ofthe box pro-
vided by Def� and Def′� are equivalent in the new system KT∆τ , but they
are equivalent even in the weaker system K∆τ .

REMARK. Note that Op ⊃ p is inconsistent with KD�O and KT�O. In
fact⊢ ∆(τ ⊃ p) ⊃ p yields⊢ ∆(τ ⊃ τ) ⊃ τ , so by Modus Ponens⊢ τ and
by Nec∆ ⊢ ∆τ , which is the negation of∇τ .

The proof that the bimodal fragment of KT∆ is KT�O results from an
easy adaptation of the one for KD�O. The relation R of the KT�O-models
<W, R, Rτ , V> is as in KD�O but with the additional property of being
reflexive. (Note however that the properties of Rτ are unvaried).

The mappingf is defined as at page 3.
The theorems that are expected to hold here are formulated asfollows (the

proof are simply suggested).
T20. For every KT�O-wff A, if A is a thesis of KT�O, A is a thesis of KT∆
+ Def� + DefO.
(As at page 3, adding that�p ⊃ p is derived from axiom T∆ in KT∆τ .)
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T21. If A is a KT�O-thesis, A holds at all KT�O-models.
(As in T2 with the further proof that�p ⊃ p holds at all KT�O-models,
which belong to a subclass of reflexive models.)
T22. If A holds at all KT�O-models, A is a KT�O-thesis.
(The proof follows the lines of T3. The analysis of canonicalmodel requires
proving that the canonical model over KT�O is reflexive.)
T23. If A is a thesis of KT�O, f(A) is a thesis of KT∆τ .
(Trivial)

The derived model M* = <W*, Wτ *, R*, V*> is defined as before. Since
xR*y iff xRy, it follows that R* is reflexive.
Lemma 24.M* is a KT∆O-model.
(The only new problem is to show that R isτ -reflexive, i.e. that∀x(xRx ∧
∃y1∃y2((xRy1 ∧ y1 ∈ Wτ ) ∧ (xRy2 ∧ y2 /∈ Wτ ))).) Since R is reflexive,
R* is such anda fortiori serial. This means that the accessibility sphere of
every worldx is never empty. The property of beingτ -forked is common to
other contingential models and does not introduce changes.
Lemma 25.Let M be a KT�O-model and M* a model derived from M. Then,
for every KT�O-wff A, V(A, x) = 1 in M iff V*(f(A), x) = 1 in M*.
T26. If f(A) is a thesis of KT∆τ , A is a thesis of KT�O.

It remains to take into consideration the proofs concerningthe monomodal
fragments of the system KT∆τ . The reader can reconstruct them along the
lines of T12 and T13. However, the result here is not completely symmetric.
In fact we have:
T27. Let A be a wff containing only � and truth-functional operators. Then
A is a KT∆τ -theorem if and only if A is a KT-theorem.
T28. Let A be a wff containing only O and truth-functional operators. Then
A is a KT∆τ -theorem if and only if A is a KDO-theorem.

The third system KT∆τ has another peculiarity with respect to the weaker
ones. Thanks to the Montgomery-Routley result and to theorem T19, it turns
out that theτ -free fragment of KT∆τ containing only� and truth-functional
operators, i.e. KT, is definitionally equivalent to a system(i.e. Montgomery-
Routley’s T1) containing only∆ and truth-functional operators.

One of the consequences of the mentioned result is that a system which is
definitionally equivalent to KT�O and which will be named KT∆O is the
following, written in the operators¬, ⊃, ∆, O.
1. ∆p ≡ ∆¬p
2. p ⊃ (∆(p ⊃ q) ⊃ (∆p ⊃ ∆q))
3. p ⊃ (∆p ⊃ Op)
4. O(p ⊃ q) ⊃ (Op ⊃ Oq)
5. Op ⊃ Pp
Rules: US, MP, Nec∆: ⊢ A →⊢ ∆A

If contingency and absoluteness are considered modal notions on the same
level of the notions represented in the Aristotelian squareof oppositions (and
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there are historical and theoretical reasons to defend thisclaim), the “mixed”
system KT∆O may be considered in proper sense abimodal system. Note
that of course Op does not imply∆p norp, so the operator O cannot be read
as representing logical necessity: it might be read as a deontic operator but
also, say, as an operator for temporal necessity or for physical necessity. In
the latter case, defining a notion of physical contingency as
[Def∇f ] ∇fA =Df PA∧ P¬A
might allow studying the interrelations between differentnotions of contin-
gency in a direct and analytically interesting way.
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