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SYMBOLS AND THEIR MEANING IN ANALYSIS

HARTLEY SLATER

Perhaps the most influential paradox about continua conomgndrom an-

tiquity concerns The Arrow. The paradox of The Arrow conssde specific
moment in time, and seems to show that there is no motion tmtbanent.

For, Zeno argued, an arrow in flight occupies just the spagisplaces. So,
for the time itis in any place, it is not moving. Aristotle’agwer to this was
that neither motion nor rest could be assessed at a spenifig since each
required measurement over some discrete, i.e. finite mlt€Miles 1989,

18):

For, Aristotle argues (Physics VI, 8), from the fact that ay in-
stantt during its flight the arrow does not move, it does not follow
that the arrow is at rest &t For, he says, motion and rest are terms
which apply only in relation to periods of time. Since theeas de

no motion in an instant (all movement takes time) there cande
rest in an instant either. To qualify for being at rest, asosgol to
being in motion, an object must occupy the same place foriager
of time.

Nevertheless, some have still wanted to say that the arr@s Have a ve-
locity at each individual time, and just how we are to underdtthis notion
of instantaneous velocity thus becomes a central question.

In this paper | defend Aristotle and Finitism on these matteriticising in
a new way the notion of instantaneous velocity so closely@ated with the
development of the calculus. Finitism, as it is here taken,dluster of views
centring on the claim that there are no completed infinitigdy potential
ones. Amongst other things, as we shall see in the final secfithis paper,
it is precisely through defining irrational numbers in terafighe potential
infinities involved in open intervals on the geometric lihattwe avoid the
usual conclusions about irrational ‘points’ completing tlational ones on
that line. In getting to this conclusion | look at some of thaitional philo-
sophical questions about derivatives, from Berkeley'siargnts against the
emerging calculus of Newton, through the ideas in ‘Smoofmitesimal
Analysis’ to another recent line of argument, which Robm&mmulated, to
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make rigorous Leibniz’ ideas about infinitesimals. Thatlkeme to consider
the nineteenth century thinkers, Dedekind, Cauchy and Mfegss, who in
stages formalised the notion of a limit, using the ‘epsittaita’ method, and
established the belief in real numbers. The ‘epsilon-deithod is retained
in a modified form, but twentieth century Finitists, such d@gd, and Van
Bendegem, in the tradition of Aristotle, have questionedtivar real num-
bers provide an appropriate foundation for anything. Quoesivists first
tried improving on the mainline tradition in Analysis, baetr doubts about
real numbers were not thoroughgoing, since construdigisii countenance
‘constructive reals’. The arguments given here allow ndy @onstructive
reals and classical reals, but also the two above variefigsfinitesimals
their place, but point out in each case that that place is ma&revit is nor-
mally thought to be. The collective points enable us to sedtl a finitary
Analysis, and so a calculus using arbitrarily small, buk steasurable units.

1

The philosophical problem at the base of the calculus ainsthe calculation
of the derivative of a function, say the functign= 2, at the point(z,, ;).
One supposes a small incremdndt: is added to the value of, and first
calculates what the resultant valueofvill be — here(z, + Dz)?. That
means there has been an incremental growghah

(zo + Dz)* — 22

o}

2

fo}!

22+ 2z,Dx 4+ Dz’ — z
which is
2x,Dx + D2’

Calling this ‘Dy’ we can then estimate the gradient of the curvéat y, ),
asDy/Dzx, which is

2z, + Dz.
On one understanding of the matter, that gives us a final wdl@e, for the

gradient of the curve exactly &t,, y,), by taking Dx to be zero. But with
respect to the comparable calculation Berkeley found in tdewBerke-

ley asked how Dz’ can at one time be non-zero, to allow the division of
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“2z,Dz + Dz? by * Dz’, but then zero, to produce fron2t, + Dz’ the
exact derivative2zx,’ (see, e.g. Jesseph 1993, 194):

Hitherto | have supposed thatflows, thatx hath a real Increment,

that[Dz] is something. And | have proceeded all along on that Sup-

position, without which I should not have been able to havelena

so much as one single Step...| now beg leave to make a new Sup-

position contrary to the first, i.e. | will suppose that thé&seno

Increment ofx, or that[Dz] is nothing; which supposition destroys

my first, and is inconsistent with it, and therefore with gviring

that supposeth it.

John Bell rightly seconds Berkeley’s objection, making wikaffectively
Dz non-zero whileDz? is zero. In the above case that makeg equal to
simply 2z, Dx and allows the division bz to yield 2x, as the final value
for the derivative, supposedly without any question. FotaatsBell has
this to say about the foundations of his ‘smooth infinitesiaralysis’ (Bell
1998, 6):

If we now call two pointsz, b on the real linalistinguishableor dis-

tinctwhen they are notidentical, i.aota = b — which as usual we

shall writea # b — and indistinguishable in the contrary case, i.e.

if nota # b, then. . .indistinguishability of points will not in genéra

imply their identity. As a result, the ‘infinitesimal neighlrhood of

0’ comprising all points indistinguishable froth— which we will

denote byl — will. . . be nonpunctiform in the sense that it does not

reduce to{0}, that is it is not the case thatis the sole member of

1.
It is items in the ‘infinitesimal neighbourhood 6f that are supposed to
replace Dx’. But if it was simply indistinguishabilitythat was involved,
then one might think that some modal operator could be usexkpoess
it. That would be quite in tune, also, with the Intuitionistiogic that Bell
uses, and the well-known modal interpretation of this |dbat Godel, for
instance, produced (Gddel 1969). Something might be digishable from
0,i.e.

L(x #0),
and something might be indistinguishable from.e.
—L(z #0),
—&
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and then the indistinguishability of two points would nofaintheir identity,
ie.

-L(xz #0),
would not imply
x=0.

With respect to the calculation of the derivative above tlwauld mean
we can simply say thatL(Dx # 0), which means that we can consis-
tently assumeDz # 0, with Dz an ordinary small quantity, and so obtain
that Dy/Dx = 2z, + Dx without any problem. And that in turn, given
-L(Dxz # 0), means thatDy/Dzx is simply indistinguishablefrom 2z,
i.e. 7L(Dy/Dz # 2x,). Moreover, if higher powers abz are involved in
other, more complex cases there is then no requirementntfidéhem with
zero. For if Dz is a small quantity thedz?, for instance, is smaller still,
and so-L(Dz # 0) entails—~L(Dx? # 0), etc. for the operator in question.
It is at this point, though, that one realises there is a clamable prob-
lem with Bell's use of the term ‘indistinguishability’. Fdhere might also
be multiplesof Dz and Dz? etc. remaining inDy/Dzx, and it is not so
easy to see how one could justifyL(Dz # 0) entailing—L(nDx # 0)
for arbitraryn. Enlargement clearly can lead to discriminations previous
unavailable. So it starts to dawn that Bell's story aboutstidguishability
and his use of Intuitionistic Logic is really hiding the trtegionale for his
Smooth Infinitesimal Analysis. For it is by making his infesimals ‘nil-
square’ — which is quite another matter — that he gets rouisdpttoblem
with multiples of small quantities. The numerator of a gentiinvolved in
calculating the gradient of a curve will in general have ®imall powers
of Dx. Subsequent division bipx is going to give the desired gradient, but
with other additional terms involving powers bfz. If these additional terms
were all zero then one could claim to have derived the reduradient at
the point, but that means making zero all terms in the previmunerator in-
volving thesecondpower of Dz. So makingD2:? zero is an extra, additional
stipulation beyond anything about ‘indistinguishabilityt does not have a
philosophical justification in the terms of the indistingl@bility and Intu-
itionistic Logic that Bell spends so much time explainingidiclearly there
are plenty of philosophical questions about ‘nilsquarésinie looks not at
the practical efficiency of Bell's procedure but at its pbsiinterpretation.
This is not to bring into doubt that the procedure is consistend so, from
quite general logical considerations will have a modelggul it must have
a model. The question isloes it have the right modzlls there a non-zero
lengthwhose square is zero, i.e. which is a ‘nilsquare’? For rengzib
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connection with the derivation of the gradient of the cureethe function
y = 2 there is a well-known diagram. Do Bell’s infinitesimals fitarthis
picture? They do not. One can draw a straight line through ddjacent
points on the curve, and one can draw the supposed tangétduiches the
curve at just one point. But in neither case are there non{eagths whose
squares are zero. In the one case there is a non-zero |dngtln the other
case there is a lengthx whose square is zero — but only because the length
itself is zero. The reason is simply that the diagram shaws ‘as alength
and non-zero lengths are not things whose squares coulddeuantities.

Bell certainly shows ‘*how elementary calculus and some ®fpitinci-
pal applications can be developed within smooth infinitediamalysis in
a simple algebraic manner, using calculations with nilsguafinitesimals
in place of the classical limit concept’ (Bell 1998, 15). Bus algebraic
procedures with his ‘nilsquare infinitesimals’ are not degplvith appropri-
ate entities. We shall see this even more clearly with regafobinson’s
infinitesimals.

2

Robinson’s Non-standard Analysis has very close simigaritvith Bell's

Smooth Infinitesimal Analysis. For Robinson’s style of gsa brings in
infinitesimals simply by tackling the problem of multiplican and enlarge-
ment in another way. And that does not connect up with thet mgidel,

either. It is not now that the relevant infinitesimals haveasgs that are
zero, but instead that they are non-Archimedean, being ignihale less
than any positive real, or rational number. These infimbeds arise through
extending the field of (standard) real numbers to the fieldhgpérreals’

which (Robinson 1969, 154-5):

contains non-trivial infinitely small (infinitesimal) nurats, i.e. [non-
zero] numbers a such that |< r for all standard positive. (0 is
counted as infinitesimal, trivially) ...If a is any finite [pgr]real
number then there exists a uniquely determined standarduea
berr, called the standard part of a such thata is infinitesimal or,
as we shall also say, such thais infinitely close to a. ..

The derivative is then defined as the standard parbgf/'Dx’, and in find-
ing its value we can avoid lettingDz’ ever be zero (Keisler 1976a, 28, see
also Hoskins 1990, 104):

Consider a real poirttz,, y,) on the curvey = z2. Let Dx be either
a positive or a negative infinitesimal (but not zero), andllet be
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the corresponding changegn Then the slope dtx,, y,) is defined
in the following way:

[slope at(z,,y,)] = [the real number infinitely close ©y/Dx].
We compute. ..
Dy/Dxz = ((x, + Dz)? — x2)/Dx = 2x, + Dx.

This is a hyperreal number, not a real number. Sibaeis infin-
itesimal, the hyperreal numbeér, + Dz is infinitely close to the
real numbeRz,. We conclude that

[slope at(zo, yo)] = 2x,.

The process can be illustrated by the picture in Figure 1wk
the infinitesimal changeBx and Dy shown under a microscope.

But it is not the impossibility of a large enough microscopattmakes
Keisler's last remark quite inappropriate. It is timepossibility of what he
tried to picture, on pages 27-29 of this book, namely, amootfer things,
a line with minus epsilon, then zero, and then epsilon spaatequally on
it. For, of course, these lengths are Archimedean, andexftaugh extension
would be longer than any measure that was previously spechied it is not
an accident that Keisler promoted this kind of incorrectuslspicture. His
‘Elementary Calculus’ is a student text, and so it might beutiht that his
error is easily excused as just a heuristic, pedagogic dewitelp students
get the hang of the technical processes. But no: the picanesepeated
in Keisler's more theoretical work ‘Foundations of Infirgtemal Calculus’
(Keisler 1976b, 3). So Keisler, astonishingly, really bedid that spaced out
items are what he was talking about, even though it is by diesfmimpossi-
ble! One can see what is leading him into his confusions antradiction:
he clearly realises thabmespatial interpretation of his symbolism is needed
for it to be relevant to the traditional problem, y&inecan be available.

So Keisler’s last aside brings in a quite fatal philosophmajection to
these procedures. As we saw in the quotation from Robingsrpdsitive
infinitesimals when they are non-zero are still supposecettess than any
positive real number — and that means, amongst other thingsthey can-
not have a representation in graphical terifisere cannot be any separation
at all between his minus epsilon and zero, or between zero andepsth-
erwise it will break with their definition. So how is one to abrue relations
between these things? How can, for instarkag,+ Dx begreater thar2z,,
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if there is no spatial separation between them? No answdreofequired
kind is forthcoming. It may be questioned, therefore, whetthis theory
of infinitesimals is in any way better, philosophically, thidewton’s theory
of ‘fluxions’. If it takes Dz to be zero, the calculus has to meet Berkeley’s
concerns. But if the calculus takésr to be a non-zero infinitesimal, in the
manner of Robinson (or Bell), then it is no better, since wiilconsistent
mathematical procedure for calculating derivatives isadely then available
(and so certainly some model for the infinitesimals), it islarger talking
about lengths and quantities, and so hagraphicalinterpretation.
Moreover, there is a clear mathematical reason why Robimgmoce-
dures are akin to Newton’s. For the derivative is defined blgiRson as the
standard part of Dy/Dz’, but standard parts of quotients are only obtain-
able if the standard part of the denominator is not zero (Kek976a, 40).
Thus the rule is that

If st(b) # 0 thenst(a/b) = st(a)/st(b).

In the cases in question, however, the standard paiof is zero, so there
is a repeat of Berkeley’s point against Newton. Fby/Dx’ now has to
be put into a form where the denominator does not have a zenulatd
part before the calculation of the derivative can proceed:ofked practical
example showing how this has to happen is to be found in Kel9&6a,
42-3. For what is

st(c® 4 2¢ — 24/c¢* — 16),
whenst(c) = 4, andc # 4? The denominator has a zero standard part:

st(c? —16) = st(c?) — 16 = 42 — 16 = 0.



218 HARTLEY SLATER

So the standard part of the quotient is not obtainable framftrm of the
quotient. On the other hand the numerator and denominater lre/e a

common factor ¢ — 4’, and if that is cancelled out then what becomes the

form of the quotient has a standard part by the above rule:
st(c+6/c+4) = (st(c)+6)/(st(c)+4) = (4+6)/(4+4) = 10/8.
But that makes the supposed identity between
2x,Dz + Da?/Da,
and
2z, + Dz,

incomplete, since the standard part only of the latter fagroltainable di-
rectly under the rule. The idea is supposed to be that thedwmosf are forms
of the same entity, and so the standard part worked out frentatter form
will also be the standard part in connection with the fornoent. But if one
must first derive the standard part of the latter in order tovdehe standard
part of the former, then the facts involved are notationetisfabout the given
forms of the quotient. Indeed where is the spedifimtientthe two forms
are supposed to be forms of? There is ‘no entity without iti¢retnd in this
case the identity is incomplete.

3

Now, the association between the derivative and motiotiated by New-
ton’s use of the term ‘fluxion’, was largely confined to Englawhile on the
continent Leibniz’ conception of infinitesimals had mordchdut both lost

ground to Cauchy’'s and Weierstrass’ definitions of the @ditie in terms
of limits, which is perhaps still the most common approaatato In fact

Newton would seem to have had the idea of such limits, althdwgdid not
formalise it (Tiles 1989, p76). There are, in all, three tiedical options
about how to understand calculations of a derivative likeghradigm one
above — other than takin@z to be (contradictorily)0. Firstly one can
avoid going to the limit, in the manner of Aristotle, and do&dysis with-

out actual infinity’ (Mycielski 1981, see also Lavine 1994he Dz is then

effectively taken to be a non-negligible quantity of arditty small size —
which has the consequence that there is no strict derivatiggoint, merely
over an interval. Alternatively one can taker to be an infinitesimal in the
way Bell or Robinson made formally rigorous. Or, thirdly,eonan speak

T
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instead, with Cauchy and Weierstrass, of the derivative ey the limit

of ‘2z, + Dx’, and the like, adDx tends to zero. Robinson, in fact, proves
that derivatives arrived at in his non-standard way arevedgmt to deriva-
tives determined by such limits (Robinson 1969, 155). SmlfiRson’s, and
Bell's procedures are philosophically unacceptable, vabatt Cauchy and
Weierstrass'?

If one proceeds in some constructivist manner (e.g. Bisi®&Y 1IMartin-
Lof 1970, Troelstra 1977) one is doing no better than Caucid/ \&eier-
strass, with respect to the points that follow, so | will notsider that ap-
proach separately. What | shall concentrate on therefojigsighe assess-
ment of the Cauchy-Weierstrass definition of the derivative

In fact there is next to nothing wrong with the Cauchy-Weiaiss defini-
tion of the derivative. It is a little remarked feature ofttdafinition that it is
easily made compatible with Finitism, and it is only othepexts of Anal-
ysis done the Cauchy-Weierstrass way, notably the theorgatfhumbers,
that are really incompatible with this philosophical pmsit Separating out
those other aspects allows a reconciliation to be made ketweistotle,
Berkeley, Cauchy and Weierstrass at least on the foundatidbthe calcu-
lus. But gathering all these thinkers together also enalde® see more
clearly just what is not to the point with the Cauchy-Weigss theory of
real numbers.

The point about compatibility in the limited area of the &ative is very
quickly established, since if one merely says that the loh2z, + Dx is
2z, as Dx tends to zero, then one can hold off saying that ever is zero,
and so whether the limit is reached, i.e. whether there taimtgneous ve-
locity, or a derivative exactly at a point. So the Cauchy-#kstrass epsilon-
delta method for determining the derivative can be savedomp as it is
re-interpreted this way. What confuses the issue, of coisdbatin other
areas of Analysi®ne of the great achievements of the Cauchy-Weierstrass
approach is said to be that it established that certaindiané reached. That
the appropriate limits are reached is just the feature thygpasedly shows
that the real numbers are complete, for instance. But théoleowith the
Cauchy-Weierstrass’ account of real numbers is that Bteisay that such
numbers do not actually exist, which | am taking to mean ttwanhfa Finitist
perspective ‘real numbers’ are ideal elements in Hilbesgsse, i.e. formal-
istic parts of the symbolism that cannot be given any apjmpinterpreta-
tion. As we shall see, the proper support for this Finitistifion in this area
lies again in adjusting the notion of limits present in thaiClay-Weierstrass
theory.

Grattan-Guinness explains how crucial it is to Weierstsamgproach that
it is about ‘real’ numbers (Grattan-Guinness 1980, 141):
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As part of his programme Weierstrass introduced a definitiin
rational numbers. One motivation for the definition was tdkena
sure that infinitesimals could be dispensed with entirdijyoagh
some of the Weierstrassians affirmed forms of actual inBimials.
More important was the need to avoid the question-beggingfer
by his predecessors of theorems, such as the intermediatetiia-
orem, on the existence of limits. An important lemma in thegbr
of such theorems was the ‘Bolzano-Weierstrass theoreméhnds-
serted that an infinite bounded set (of real numbers) cantditeast
one limit point.

The parenthesis here ‘(of real numbers)’ is what is crusiate the interme-
diate value theorem and the Bolzano-Weierstrass theoremotdwld for the
rationals, for instance. Centrally the real numbers arenjglete’ whereas
the rationals are not. We shall see there is a better way ¢hguhe lat-
ter matter later, but one common way of illustrating the mpteteness of
the rationals is to point out that a succession of fractiohgklwhave as their
limit /2 or 27 do not contain this limit point, sincg’2 and27 are irrational.
The rational numbers are ‘dense’, i.e. between any two fiseaehird, but
they are said to be not ‘continuous’, which Dedekind foundefinition for
in terms of his ‘cuts’ (Grattan-Guinness 1980, 222). A ‘cut'a densely
ordered system is a pair of classes of its elements whichuskitlae system,
and which are such that every element of one class precedes element
of the other. A system is said to be continuous if, for every there is an
element that is either the maximum of the lower class, or th@mum of
the upper class. Any cut in the rational numbers not prodiged rational
number is taken to be produced by an irrational number, irrot@ obtain
the totality of the ‘real’ numbers.

But the problem with Dedekind’s definition of the real nungewhich
supports relevant aspects of Finitism in this area, is tlatut{z : 2> < 2},
for instance, is neither greater thamor less thar2, and so it cannot be a
number in this region. Indeed, as a consequence, it is notriauat all,
since it could only be in this region if it was in fact a numbéfor sure,
all of the members of this cut are less thignbut that does not mean that
the set of those members (in the mathematical sense of isd¢3s tharp.
That set is strictly incommensurable with any number likend2; it is only
comparable, for instance, with other sets of numbers{ike z > 1} and
{z : x < 2}. | have laid out in fine detail the parallel feature of the sets
involved in the Cauchy-Weierstrass definition of real nurspat the end of
Slater 2006. What one primarily has to remember is that whiéedecimal
expansion of a rational or irrational number naturally gates partial sums
that form a Cauchy sequence of rationals, the number itself,the sum
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of the decimal incrementss not a Cauchy sequence of rationals. Nor is it

the equivalence class of such a sequence, which is the daefinit a real

number from the Cauchy-Weierstrass point of view (c.f. Qpp972). So
real numbers, in neither of the above the above senses, mapesgentation
on a geometric line. Fascination with the mathematics ofdRed cuts, and
equivalence classes of Cauchy sequences of rationals rm @owhat has
blocked sight of the fact they aret the relevant items to attend. tdust as
Bell's and Robinson’s infinitesimals were consistent ardlinadels, but not
the right model in terms of quantities, lengths and entitses Dedekind’s,

Cauchy’s and Weierstrass’ ‘real numbers’ are certainlysiant, and have
models, but not models consisting in rational and irrationanbers.

4

But still, it may be said, surely irrational numbers, witkeittnon-terminating
decimal expansions, must have a place on the geometriclbngsade the
rational points. The diagonal of a unit square, and the oifevence of a
unit circle may easily be compared, linearly, with the uh#y are measured
against. Are not these irrational numbers the limits of seges of ratio-
nals, which not only complete the rationals, but also shaevethy that the
rationals are incomplete? It is here that the emendatiomgdlhgbove, in
connection with the statement about the incompletenegsseattionals, has
to come in. For what corresponds to an irrational number {ieor 27 is
not aclosedinterval, as with the rationals, but apeninterval. Only in
this way is the endlessness of the decimal expansion of aioimal number
properly paralleled. There are certainly other intervaisttee line if there
are rational ones, but those others starting ftbfsay) are not distinguished
by ending at a different set of points. Instead they arerdjsished by being
open intervals, and so by not ending anywhere. They mighbgadcertain
point but notat that point.

It is the failure to appreciate this difference that has keantany of the
mysteries exposed in Zeno’s paradoxes of motion (c.f. 62260). One
must first remember, for instance, such facts as that1/2 + 1/4 + ...
is not equal t2. For even thougl? is the limit of the partial sums (and
these partial sums form a Cauchy sequence of rational nsnthés limit is
never reached but only approached with increasing near@ssow does
Achilles catch the Tortoise? He getslta of the distance away, then tg:
of the distance away, etc., and in doing so may seem to need ¢m dor
ever. But what allows him to catch up is not the fact that thecesasive
small increments might themselves take increasingly smahits of time,
as is sometimes said. For this ‘infinite task’ will still nogtghim to the
meeting point: he will have just covered an open intervad] still not have
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got exactly to where the Tortoise is. As above, this task mégid by a
certain point, but noat that point. So how does Achilles catch up? What
must be noticed to solve the paradox is that at any of the palohg the way
all Achilles needs to do to catch up the Tortoise is travelngerémaining,
complementary closed interval to the limit point of the opeterval (c.f.
Chihara, 1965). It may be asked: how does he do that? But theearto
this is that he does it the same way as he traversed all thenregttal, closed
intervals before. It might be thought that this is justabhominenmesponse,
but it is still applicable to the immediate point, and we sisak later that
there is indeed something more to be said about the basimpsisn of
the paradox that closed intervals can be traversed. Forrtii#dgm is set
up assuming that traversing closed intervals can be achiev& finite way,
and the paradox arises by the considering that one such éiditevement
must be the result of an infinite task. But the supposed iefexicumulation
of tasks on the way to the goal gets one nowhere, i.e. to nee glam
which one can take a further step to the goal, while only adfipart of that
accumulation is needed as a basis for successfully reathéngoal, if a
closed interval can be traversed, since at any point in tberaalation there
remains only a further closed interval before the goal ished.

Irrational measures, therefore, are not the limits of seqgeg of rationals
in the sense that they are end points just beyond them; iritlisezkactly the
failure of appropriate sequences to come to an end — becheiselecimal
representations are non-terminating — that makes irratioreasures not
those further points. We are assuming, of course, thatnatiotervals can
be located on a line, but while there are other intervalsethew the rationals
are certainly ‘incomplete’, those other intervals are dimgpen intervals,
which do not end (both ways) at points.

Still, what is wanted but has not yet been obtained, is a propefirma-
tion of the kind of point Aristotle originally made (Tiles &9, 17):

...the Aristotelian will first deny that points are parts iofi¢; they
are not limits of division and cannot be reached by divisidn.ex-
tended whole, no continuous magnitude can be made up outaif wh
has no magnitude, for adding together two things of no madait
cannot increase their size.

Asking for the sum of the number of points on a line, from thogp of view,
is therefore like asking for the number of angels that caomsin a pin. For
what has no extension — such &g, hypothesia real point — has no part
in the extensional, i.e. physical world. Thus we know from &tbove thaif
Achilles can reach the half-way point, then all he has to dej&at this kind
of achievement to catch up with the Tortoise. But how can lemegach the
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half-way point if he has to traverse all the open infinity ofrjie in between,
and that doesn't get him right to the spot? The full truth, ofise, is that
there are no sucpointsin between, and not even a half-way point.

There is something further we have yet to see in connectitim thvis, but
at least it is clear that if the above is true then it resolvee emaining
problem with Finitist views of the calculus. For if one catesis only things
that have an extension, then, in connection with derivatieae merely gets,
following Cauchy and Weierstrass, the determination g aff change over
ever-decreasing, finite intervals, providing no strictivigives at a point.
But not only are there no strict derivatives at a point, thene nopoints
either, in the required sense of the word. Certainly, wherestanate some
guantity to within a certain degree of error, say a certaimiper of decimal
places, the belief might be that reality itself has no sutikulde. So maybe
a Finitist should not talk about ‘estimates’, if this wordphes there is some
final, exact answer to be approximate about. But it need na treat impli-
cation, and instead need mean merely that, while the estirmaiccurate to
the given number of decimal places, still more accuracy neagtitained, in
a process that is endless.

But there is a last point that has to be added to this before ameget
the matter entirely clear. The point that has not been meaticso far is
that there are onlgpproximationseven to the rationals on a geometric line.
The rationals can only be understoexhctlyin terms of the ratios of whole
numbers of discrete elements, and so not in connection wabrginuum’.
Thus if there are 12 people in aroom and 4 of them are fematetkieze are
half as many women as men, etc. That is a fact about the ratomaber
1/2, and it is an exact fact, but it could only arise with discriégtens such as
those illustrated. By contrast there are properly no exaimal intervals on
aline, i.e. points that are a rational measure apart. Aisiratcount of the
calculus, and Analysis more generally, is the only accooat tespects this
fact.
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