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SYMBOLS AND THEIR MEANING IN ANALYSIS

HARTLEY SLATER

Perhaps the most influential paradox about continua coming down from an-
tiquity concerns The Arrow. The paradox of The Arrow considers a specific
moment in time, and seems to show that there is no motion in that moment.
For, Zeno argued, an arrow in flight occupies just the space itdisplaces. So,
for the time it is in any place, it is not moving. Aristotle’s answer to this was
that neither motion nor rest could be assessed at a specific time, since each
required measurement over some discrete, i.e. finite interval (Tiles 1989,
18):

For, Aristotle argues (Physics VI, 8), from the fact that at any in-
stantt during its flight the arrow does not move, it does not follow
that the arrow is at rest att. For, he says, motion and rest are terms
which apply only in relation to periods of time. Since there can be
no motion in an instant (all movement takes time) there can beno
rest in an instant either. To qualify for being at rest, as opposed to
being in motion, an object must occupy the same place for a period
of time.

Nevertheless, some have still wanted to say that the arrow does have a ve-
locity at each individual time, and just how we are to understand this notion
of instantaneous velocity thus becomes a central question.

In this paper I defend Aristotle and Finitism on these matters, criticising in
a new way the notion of instantaneous velocity so closely associated with the
development of the calculus. Finitism, as it is here taken, is a cluster of views
centring on the claim that there are no completed infinities,only potential
ones. Amongst other things, as we shall see in the final section of this paper,
it is precisely through defining irrational numbers in termsof the potential
infinities involved in open intervals on the geometric line that we avoid the
usual conclusions about irrational ‘points’ completing the rational ones on
that line. In getting to this conclusion I look at some of the traditional philo-
sophical questions about derivatives, from Berkeley’s arguments against the
emerging calculus of Newton, through the ideas in ‘Smooth Infinitesimal
Analysis’ to another recent line of argument, which Robinson formulated, to
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make rigorous Leibniz’ ideas about infinitesimals. That leads me to consider
the nineteenth century thinkers, Dedekind, Cauchy and Weierstrass, who in
stages formalised the notion of a limit, using the ‘epsilon-delta’ method, and
established the belief in real numbers. The ‘epsilon-delta’ method is retained
in a modified form, but twentieth century Finitists, such as Tiles, and Van
Bendegem, in the tradition of Aristotle, have questioned whether real num-
bers provide an appropriate foundation for anything. Constructivists first
tried improving on the mainline tradition in Analysis, but their doubts about
real numbers were not thoroughgoing, since constructivists still countenance
‘constructive reals’. The arguments given here allow not only constructive
reals and classical reals, but also the two above varieties of infinitesimals
their place, but point out in each case that that place is not where it is nor-
mally thought to be. The collective points enable us to settle on a finitary
Analysis, and so a calculus using arbitrarily small, but still measurable units.

1

The philosophical problem at the base of the calculus arisesin the calculation
of the derivative of a function, say the functiony = x2, at the point(xo, yo).
One supposes a small incrementDx is added to the value ofx, and first
calculates what the resultant value ofy will be — here(xo + Dx)2. That
means there has been an incremental growth iny of

(xo +Dx)2 − x2
o
,

i.e.

x2
o
+ 2xoDx+Dx2 − x2

o
,

which is

2xoDx+Dx2.

Calling this ‘Dy’ we can then estimate the gradient of the curve at(xo, yo),
asDy/Dx, which is

2xo +Dx.

On one understanding of the matter, that gives us a final valueof 2xo for the
gradient of the curve exactly at(xo, yo), by takingDx to be zero. But with
respect to the comparable calculation Berkeley found in Newton, Berke-
ley asked how ‘Dx’ can at one time be non-zero, to allow the division of
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‘2xoDx + Dx2’ by ‘Dx’, but then zero, to produce from ‘2xo + Dx’ the
exact derivative ‘2xo’ (see, e.g. Jesseph 1993, 194):

Hitherto I have supposed thatx flows, thatx hath a real Increment,
that[Dx] is something. And I have proceeded all along on that Sup-
position, without which I should not have been able to have made
so much as one single Step. . . I now beg leave to make a new Sup-
position contrary to the first, i.e. I will suppose that thereis no
Increment ofx, or that[Dx] is nothing; which supposition destroys
my first, and is inconsistent with it, and therefore with every thing
that supposeth it.

John Bell rightly seconds Berkeley’s objection, making what is effectively
Dx non-zero whileDx2 is zero. In the above case that makesDy equal to
simply2xoDx and allows the division byDx to yield 2xo as the final value
for the derivative, supposedly without any question. For a start, Bell has
this to say about the foundations of his ‘smooth infinitesimal analysis’ (Bell
1998, 6):

If we now call two pointsa, b on the real linedistinguishableor dis-
tinct when they are not identical, i.e.nota = b — which as usual we
shall writea 6= b — and indistinguishable in the contrary case, i.e.
if nota 6= b, then. . . indistinguishability of points will not in general
imply their identity. As a result, the ‘infinitesimal neighbourhood of
0’ comprising all points indistinguishable from0 — which we will
denote byI — will. . . be nonpunctiform in the sense that it does not
reduce to{0}, that is it is not the case that0 is the sole member of
I.

It is items in the ‘infinitesimal neighbourhood of0’ that are supposed to
replace ‘Dx’. But if it was simply indistinguishabilitythat was involved,
then one might think that some modal operator could be used toexpress
it. That would be quite in tune, also, with the Intuitionistic Logic that Bell
uses, and the well-known modal interpretation of this logicthat Gödel, for
instance, produced (Gödel 1969). Something might be distinguishable from
0, i.e.

L(x 6= 0),

and something might be indistinguishable from0, i.e.

¬L(x 6= 0),
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and then the indistinguishability of two points would not imply their identity,
i.e.

¬L(x 6= 0),

would not imply

x = 0.

With respect to the calculation of the derivative above thatwould mean
we can simply say that¬L(Dx 6= 0), which means that we can consis-
tently assumeDx 6= 0, with Dx an ordinary small quantity, and so obtain
thatDy/Dx = 2xo + Dx without any problem. And that in turn, given
¬L(Dx 6= 0), means thatDy/Dx is simply indistinguishablefrom 2xo,
i.e. ¬L(Dy/Dx 6= 2xo). Moreover, if higher powers ofDx are involved in
other, more complex cases there is then no requirement to identify them with
zero. For ifDx is a small quantity thenDx2, for instance, is smaller still,
and so¬L(Dx 6= 0) entails¬L(Dx2 6= 0), etc. for the operator in question.

It is at this point, though, that one realises there is a considerable prob-
lem with Bell’s use of the term ‘indistinguishability’. Forthere might also
be multiplesof Dx andDx2 etc. remaining inDy/Dx, and it is not so
easy to see how one could justify¬L(Dx 6= 0) entailing¬L(nDx 6= 0)
for arbitraryn. Enlargement clearly can lead to discriminations previously
unavailable. So it starts to dawn that Bell’s story about indistinguishability
and his use of Intuitionistic Logic is really hiding the truerationale for his
Smooth Infinitesimal Analysis. For it is by making his infinitesimals ‘nil-
square’ — which is quite another matter — that he gets round this problem
with multiples of small quantities. The numerator of a quotient involved in
calculating the gradient of a curve will in general have terms in all powers
of Dx. Subsequent division byDx is going to give the desired gradient, but
with other additional terms involving powers ofDx. If these additional terms
were all zero then one could claim to have derived the required gradient at
the point, but that means making zero all terms in the previous numerator in-
volving thesecondpower ofDx. So makingDx2 zero is an extra, additional
stipulation beyond anything about ‘indistinguishability’. It does not have a
philosophical justification in the terms of the indistinguishability and Intu-
itionistic Logic that Bell spends so much time explaining. And clearly there
are plenty of philosophical questions about ‘nilsquares’ if one looks not at
the practical efficiency of Bell’s procedure but at its possible interpretation.
This is not to bring into doubt that the procedure is consistent, and so, from
quite general logical considerations will have a model; indeed it must have
a model. The question is:does it have the right model? Is there a non-zero
lengthwhose square is zero, i.e. which is a ‘nilsquare’? For remember, in
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connection with the derivation of the gradient of the curve for the function
y = x2 there is a well-known diagram. Do Bell’s infinitesimals fit into this
picture? They do not. One can draw a straight line through twoadjacent
points on the curve, and one can draw the supposed tangent that touches the
curve at just one point. But in neither case are there non-zero lengths whose
squares are zero. In the one case there is a non-zero length,Dx, in the other
case there is a lengthDx whose square is zero — but only because the length
itself is zero. The reason is simply that the diagram shows ‘Dx’ as alength,
and non-zero lengths are not things whose squares could be zero quantities.

Bell certainly shows ‘how elementary calculus and some of its princi-
pal applications can be developed within smooth infinitesimal analysis in
a simple algebraic manner, using calculations with nilsquare infinitesimals
in place of the classical limit concept’ (Bell 1998, 15). Buthis algebraic
procedures with his ‘nilsquare infinitesimals’ are not dealing with appropri-
ate entities. We shall see this even more clearly with regardto Robinson’s
infinitesimals.

2

Robinson’s Non-standard Analysis has very close similarities with Bell’s
Smooth Infinitesimal Analysis. For Robinson’s style of analysis brings in
infinitesimals simply by tackling the problem of multiplication and enlarge-
ment in another way. And that does not connect up with the right model,
either. It is not now that the relevant infinitesimals have squares that are
zero, but instead that they are non-Archimedean, being in magnitude less
than any positive real, or rational number. These infinitesimals arise through
extending the field of (standard) real numbers to the field of ‘hyperreals’
which (Robinson 1969, 154–5):

contains non-trivial infinitely small (infinitesimal) numbers, i.e. [non-
zero] numbers a such that| a |< r for all standard positiver. (0 is
counted as infinitesimal, trivially) . . . If a is any finite [hyper]real
number then there exists a uniquely determined standard real num-
berr, called the standard part of a such thatr−a is infinitesimal or,
as we shall also say, such thatr is infinitely close to a. . .

The derivative is then defined as the standard part of ‘Dy/Dx’, and in find-
ing its value we can avoid letting ‘Dx’ ever be zero (Keisler 1976a, 28, see
also Hoskins 1990, 104):

Consider a real point(xo, yo) on the curvey = x2. LetDx be either
a positive or a negative infinitesimal (but not zero), and letDy be
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the corresponding change iny. Then the slope at(xo, yo) is defined
in the following way:

[slope at(xo, yo)] = [the real number infinitely close toDy/Dx].

We compute. . .

Dy/Dx = ((xo +Dx)2 − x2
o
)/Dx = 2xo +Dx.

This is a hyperreal number, not a real number. SinceDx is infin-
itesimal, the hyperreal number2xo + Dx is infinitely close to the
real number2xo. We conclude that

[slope at(xo, yo)] = 2xo.

The process can be illustrated by the picture in Figure 1.4.5, with
the infinitesimal changesDx andDy shown under a microscope.

But it is not the impossibility of a large enough microscope that makes
Keisler’s last remark quite inappropriate. It is theimpossibilityof what he
tried to picture, on pages 27–29 of this book, namely, amongst other things,
a line with minus epsilon, then zero, and then epsilon spacedout equally on
it. For, of course, these lengths are Archimedean, and afterenough extension
would be longer than any measure that was previously specified. And it is not
an accident that Keisler promoted this kind of incorrect visual picture. His
‘Elementary Calculus’ is a student text, and so it might be thought that his
error is easily excused as just a heuristic, pedagogic device to help students
get the hang of the technical processes. But no: the picturesare repeated
in Keisler’s more theoretical work ‘Foundations of Infinitesimal Calculus’
(Keisler 1976b, 3). So Keisler, astonishingly, really believed that spaced out
items are what he was talking about, even though it is by definition impossi-
ble! One can see what is leading him into his confusions and contradiction:
he clearly realises thatsomespatial interpretation of his symbolism is needed
for it to be relevant to the traditional problem, yetnonecan be available.

So Keisler’s last aside brings in a quite fatal philosophical objection to
these procedures. As we saw in the quotation from Robinson, his positive
infinitesimals when they are non-zero are still supposed to be less than any
positive real number — and that means, amongst other things,that they can-
not have a representation in graphical terms.There cannot be any separation
at all between his minus epsilon and zero, or between zero and epsilon, oth-
erwise it will break with their definition. So how is one to construe relations
between these things? How can, for instance,2xo+Dx begreater than2xo,
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if there is no spatial separation between them? No answer of the required
kind is forthcoming. It may be questioned, therefore, whether this theory
of infinitesimals is in any way better, philosophically, than Newton’s theory
of ‘fluxions’. If it takesDx to be zero, the calculus has to meet Berkeley’s
concerns. But if the calculus takesDx to be a non-zero infinitesimal, in the
manner of Robinson (or Bell), then it is no better, since while a consistent
mathematical procedure for calculating derivatives is certainly then available
(and so certainly some model for the infinitesimals), it is nolonger talking
about lengths and quantities, and so has nographical interpretation.

Moreover, there is a clear mathematical reason why Robinson’s proce-
dures are akin to Newton’s. For the derivative is defined by Robinson as the
standard part of ‘Dy/Dx’, but standard parts of quotients are only obtain-
able if the standard part of the denominator is not zero (Keisler 1976a, 40).
Thus the rule is that

If st(b) 6= 0 thenst(a/b) = st(a)/st(b).

In the cases in question, however, the standard part of ‘Dx’ is zero, so there
is a repeat of Berkeley’s point against Newton. For ‘Dy/Dx’ now has to
be put into a form where the denominator does not have a zero standard
part before the calculation of the derivative can proceed. Aworked practical
example showing how this has to happen is to be found in Keisler 1976a,
42–3. For what is

st(c2 + 2c− 24/c2 − 16),

whenst(c) = 4, andc 6= 4? The denominator has a zero standard part:

st(c2 − 16) = st(c2)− 16 = 42 − 16 = 0.
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So the standard part of the quotient is not obtainable from this form of the
quotient. On the other hand the numerator and denominator here have a
common factor ‘c − 4’, and if that is cancelled out then what becomes the
form of the quotient has a standard part by the above rule:

st(c+6/c+4) = (st(c)+6)/(st(c)+4) = (4+6)/(4+4) = 10/8.

But that makes the supposed identity between

2xoDx+Dx2/Dx,

and

2xo +Dx,

incomplete, since the standard part only of the latter form is obtainable di-
rectly under the rule. The idea is supposed to be that the two forms are forms
of the same entity, and so the standard part worked out from the latter form
will also be the standard part in connection with the former form. But if one
must first derive the standard part of the latter in order to derive the standard
part of the former, then the facts involved are notational facts about the given
forms of the quotient. Indeed where is the specificquotientthe two forms
are supposed to be forms of? There is ‘no entity without identity’ and in this
case the identity is incomplete.

3

Now, the association between the derivative and motion, initiated by New-
ton’s use of the term ‘fluxion’, was largely confined to England, while on the
continent Leibniz’ conception of infinitesimals had more hold. But both lost
ground to Cauchy’s and Weierstrass’ definitions of the derivative in terms
of limits, which is perhaps still the most common approach today. In fact
Newton would seem to have had the idea of such limits, although he did not
formalise it (Tiles 1989, p76). There are, in all, three theoretical options
about how to understand calculations of a derivative like the paradigm one
above — other than takingDx to be (contradictorily)0. Firstly one can
avoid going to the limit, in the manner of Aristotle, and do ‘analysis with-
out actual infinity’ (Mycielski 1981, see also Lavine 1994).TheDx is then
effectively taken to be a non-negligible quantity of arbitrarily small size —
which has the consequence that there is no strict derivativeat a point, merely
over an interval. Alternatively one can takeDx to be an infinitesimal in the
way Bell or Robinson made formally rigorous. Or, thirdly, one can speak
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instead, with Cauchy and Weierstrass, of the derivative as merely the limit
of ‘2xo +Dx’, and the like, asDx tends to zero. Robinson, in fact, proves
that derivatives arrived at in his non-standard way are equivalent to deriva-
tives determined by such limits (Robinson 1969, 155). So if Robinson’s, and
Bell’s procedures are philosophically unacceptable, whatabout Cauchy and
Weierstrass’?

If one proceeds in some constructivist manner (e.g. Bishop 1967, Martin-
Löf 1970, Troelstra 1977) one is doing no better than Cauchy and Weier-
strass, with respect to the points that follow, so I will not consider that ap-
proach separately. What I shall concentrate on therefore isjust the assess-
ment of the Cauchy-Weierstrass definition of the derivative.

In fact there is next to nothing wrong with the Cauchy-Weierstrass defini-
tion of the derivative. It is a little remarked feature of that definition that it is
easily made compatible with Finitism, and it is only other aspects of Anal-
ysis done the Cauchy-Weierstrass way, notably the theory ofreal numbers,
that are really incompatible with this philosophical position. Separating out
those other aspects allows a reconciliation to be made between Aristotle,
Berkeley, Cauchy and Weierstrass at least on the foundations of the calcu-
lus. But gathering all these thinkers together also enablesus to see more
clearly just what is not to the point with the Cauchy-Weierstrass theory of
real numbers.

The point about compatibility in the limited area of the derivative is very
quickly established, since if one merely says that the limitof 2xo + Dx is
2xo asDx tends to zero, then one can hold off saying thatDx ever is zero,
and so whether the limit is reached, i.e. whether there is instantaneous ve-
locity, or a derivative exactly at a point. So the Cauchy-Weierstrass epsilon-
delta method for determining the derivative can be saved, solong as it is
re-interpreted this way. What confuses the issue, of course, is thatin other
areas of Analysisone of the great achievements of the Cauchy-Weierstrass
approach is said to be that it established that certain limits are reached. That
the appropriate limits are reached is just the feature that supposedly shows
that the real numbers are complete, for instance. But the trouble with the
Cauchy-Weierstrass’ account of real numbers is that Finitists say that such
numbers do not actually exist, which I am taking to mean that from a Finitist
perspective ‘real numbers’ are ideal elements in Hilbert’ssense, i.e. formal-
istic parts of the symbolism that cannot be given any appropriate interpreta-
tion. As we shall see, the proper support for this Finitist position in this area
lies again in adjusting the notion of limits present in the Cauchy-Weierstrass
theory.

Grattan-Guinness explains how crucial it is to Weierstrass’s approach that
it is about ‘real’ numbers (Grattan-Guinness 1980, 141):
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As part of his programme Weierstrass introduced a definitionof ir-
rational numbers. One motivation for the definition was to make
sure that infinitesimals could be dispensed with entirely, although
some of the Weierstrassians affirmed forms of actual infinitesimals.
More important was the need to avoid the question-begging proofs
by his predecessors of theorems, such as the intermediate value the-
orem, on the existence of limits. An important lemma in the proof
of such theorems was the ‘Bolzano-Weierstrass theorem’, which as-
serted that an infinite bounded set (of real numbers) contains at least
one limit point.

The parenthesis here ‘(of real numbers)’ is what is crucial,since the interme-
diate value theorem and the Bolzano-Weierstrass theorem donot hold for the
rationals, for instance. Centrally the real numbers are ‘complete’ whereas
the rationals are not. We shall see there is a better way of putting the lat-
ter matter later, but one common way of illustrating the incompleteness of
the rationals is to point out that a succession of fractions which have as their
limit

√
2 or 2π do not contain this limit point, since

√
2 and2π are irrational.

The rational numbers are ‘dense’, i.e. between any two thereis a third, but
they are said to be not ‘continuous’, which Dedekind found a definition for
in terms of his ‘cuts’ (Grattan-Guinness 1980, 222). A ‘cut’in a densely
ordered system is a pair of classes of its elements which exhaust the system,
and which are such that every element of one class precedes every element
of the other. A system is said to be continuous if, for every cut, there is an
element that is either the maximum of the lower class, or the minimum of
the upper class. Any cut in the rational numbers not producedby a rational
number is taken to be produced by an irrational number, in order to obtain
the totality of the ‘real’ numbers.

But the problem with Dedekind’s definition of the real numbers, which
supports relevant aspects of Finitism in this area, is that the cut{x : x2 < 2},
for instance, is neither greater than1 nor less than2, and so it cannot be a
number in this region. Indeed, as a consequence, it is not a number at all,
since it could only be in this region if it was in fact a number.For sure,
all of the members of this cut are less than2, but that does not mean that
the set of those members (in the mathematical sense of ‘set’)is less than2.
That set is strictly incommensurable with any number like1 and2; it is only
comparable, for instance, with other sets of numbers like{x : x > 1} and
{x : x < 2}. I have laid out in fine detail the parallel feature of the sets
involved in the Cauchy-Weierstrass definition of real numbers, at the end of
Slater 2006. What one primarily has to remember is that whilethe decimal
expansion of a rational or irrational number naturally generates partial sums
that form a Cauchy sequence of rationals, the number itself,i.e., the sum
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of the decimal increments, is not a Cauchy sequence of rationals. Nor is it
the equivalence class of such a sequence, which is the definition of a real
number from the Cauchy-Weierstrass point of view (c.f. Suppes 1972). So
real numbers, in neither of the above the above senses, have arepresentation
on a geometric line. Fascination with the mathematics of Dedekind cuts, and
equivalence classes of Cauchy sequences of rationals no doubt is what has
blocked sight of the fact they arenot the relevant items to attend to. Just as
Bell’s and Robinson’s infinitesimals were consistent and had models, but not
the right model in terms of quantities, lengths and entities, so Dedekind’s,
Cauchy’s and Weierstrass’ ‘real numbers’ are certainly consistent, and have
models, but not models consisting in rational and irrational numbers.

4

But still, it may be said, surely irrational numbers, with their non-terminating
decimal expansions, must have a place on the geometric line alongside the
rational points. The diagonal of a unit square, and the circumference of a
unit circle may easily be compared, linearly, with the unit they are measured
against. Are not these irrational numbers the limits of sequences of ratio-
nals, which not only complete the rationals, but also show thereby that the
rationals are incomplete? It is here that the emendation flagged above, in
connection with the statement about the incompleteness of the rationals, has
to come in. For what corresponds to an irrational number like

√
2 or 2π is

not aclosed interval, as with the rationals, but anopen interval. Only in
this way is the endlessness of the decimal expansion of an irrational number
properly paralleled. There are certainly other intervals on the line if there
are rational ones, but those others starting from0 (say) are not distinguished
by ending at a different set of points. Instead they are distinguished by being
open intervals, and so by not ending anywhere. They might endbya certain
point but notat that point.

It is the failure to appreciate this difference that has led to many of the
mysteries exposed in Zeno’s paradoxes of motion (c.f. Slater 2000). One
must first remember, for instance, such facts as that1 + 1/2 + 1/4 + . . .
is not equal to2. For even though2 is the limit of the partial sums (and
these partial sums form a Cauchy sequence of rational numbers) this limit is
never reached but only approached with increasing nearness. So how does
Achilles catch the Tortoise? He gets to1/2 of the distance away, then to1/4
of the distance away, etc., and in doing so may seem to need to go on for
ever. But what allows him to catch up is not the fact that the successive
small increments might themselves take increasingly smaller units of time,
as is sometimes said. For this ‘infinite task’ will still not get him to the
meeting point: he will have just covered an open interval, and still not have
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got exactly to where the Tortoise is. As above, this task might end by a
certain point, but notat that point. So how does Achilles catch up? What
must be noticed to solve the paradox is that at any of the points along the way
all Achilles needs to do to catch up the Tortoise is traverse the remaining,
complementary closed interval to the limit point of the openinterval (c.f.
Chihara, 1965). It may be asked: how does he do that? But the answer to
this is that he does it the same way as he traversed all the incremental, closed
intervals before. It might be thought that this is just anad hominemresponse,
but it is still applicable to the immediate point, and we shall see later that
there is indeed something more to be said about the basic assumption of
the paradox that closed intervals can be traversed. For the problem is set
up assuming that traversing closed intervals can be achieved in a finite way,
and the paradox arises by the considering that one such finiteachievement
must be the result of an infinite task. But the supposed infinite accumulation
of tasks on the way to the goal gets one nowhere, i.e. to no place from
which one can take a further step to the goal, while only a finite part of that
accumulation is needed as a basis for successfully reachingthe goal, if a
closed interval can be traversed, since at any point in the accumulation there
remains only a further closed interval before the goal is reached.

Irrational measures, therefore, are not the limits of sequences of rationals
in the sense that they are end points just beyond them; indeedit is exactly the
failure of appropriate sequences to come to an end — because their decimal
representations are non-terminating — that makes irrational measures not
those further points. We are assuming, of course, that rational intervals can
be located on a line, but while there are other intervals there, so the rationals
are certainly ‘incomplete’, those other intervals are simply open intervals,
which do not end (both ways) at points.

Still, what is wanted but has not yet been obtained, is a proper confirma-
tion of the kind of point Aristotle originally made (Tiles 1989, 17):

. . . the Aristotelian will first deny that points are parts of time; they
are not limits of division and cannot be reached by division.No ex-
tended whole, no continuous magnitude can be made up out of what
has no magnitude, for adding together two things of no magnitude
cannot increase their size.

Asking for the sum of the number of points on a line, from this point of view,
is therefore like asking for the number of angels that can situpon a pin. For
what has no extension — such as,ex hypothesi, a real point — has no part
in the extensional, i.e. physical world. Thus we know from the above thatif
Achilles can reach the half-way point, then all he has to do isrepeat this kind
of achievement to catch up with the Tortoise. But how can he even reach the
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half-way point if he has to traverse all the open infinity of points in between,
and that doesn’t get him right to the spot? The full truth, of course, is that
there are no suchpointsin between, and not even a half-way point.

There is something further we have yet to see in connection with this, but
at least it is clear that if the above is true then it resolves one remaining
problem with Finitist views of the calculus. For if one considers only things
that have an extension, then, in connection with derivatives, one merely gets,
following Cauchy and Weierstrass, the determination of rates of change over
ever-decreasing, finite intervals, providing no strict derivatives at a point.
But not only are there no strict derivatives at a point, thereare nopoints,
either, in the required sense of the word. Certainly, when weestimate some
quantity to within a certain degree of error, say a certain number of decimal
places, the belief might be that reality itself has no such latitude. So maybe
a Finitist should not talk about ‘estimates’, if this word implies there is some
final, exact answer to be approximate about. But it need not have that impli-
cation, and instead need mean merely that, while the estimate is accurate to
the given number of decimal places, still more accuracy may be obtained, in
a process that is endless.

But there is a last point that has to be added to this before we can get
the matter entirely clear. The point that has not been mentioned so far is
that there are onlyapproximationseven to the rationals on a geometric line.
The rationals can only be understoodexactlyin terms of the ratios of whole
numbers of discrete elements, and so not in connection with a‘continuum’.
Thus if there are 12 people in a room and 4 of them are female then there are
half as many women as men, etc. That is a fact about the rational number
1/2, and it is an exact fact, but it could only arise with discreteitems such as
those illustrated. By contrast there are properly no exact rational intervals on
a line, i.e. points that are a rational measure apart. A Finitist account of the
calculus, and Analysis more generally, is the only account that respects this
fact.
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