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ON THE CONNECTION BETWEEN NONSTANDARD ANALYSIS
AND CONSTRUCTIVE ANALYSIS

SAM SANDERS∗

Abstract
Constructive Analysis and Nonstandard Analysis are often charac-
terized as completely antipodal approaches to analysis. Wediscuss
the possibility of capturing the central notion of Constructive Anal-
ysis (i.e. algorithm, finite procedure or explicit construction) by a
simple concept inside Nonstandard Analysis. To this end, weintro-
duceΩ-invarianceand argue that it partially satisfies our goal. Our
results provide a dual approach to Erik Palmgren’s development of
Nonstandard Analysis inside constructive mathematics.

1. Introduction: Two questions

When comparing Nonstandard Analysis and Constructive Analysis, it is hard
not to get blinded by the differences between the two. Indeed, the usual con-
struction of the hyperreal field∗R involves an ultrafilter onN, the existence
of which is justified by appealing to the full axiom of choice (Kanovei and
Reeken, 2004). The latter1 is well-known to imply the principle of excluded
middle (Diaconescu, 1975), the original sin of classical logic according to
constructivist (and intuintionist) canon. Thus, the very basis of Nonstandard
Analysis is seemingly rejected by the constructivist.

Furthermore, Nonstandard Analysis also seems problematicat a more con-
ceptual level, from the constructivist point of view. Indeed, Errett Bishop,
the founder of Constructive Analysis (Bishop, 1967), famously derided Non-
standard Analysis for its lack of ‘computational content’.

∗This research is generously sponsored by the John TempletonFoundation. See also
Acknowledgement below.

1The countableaxiom of choiceis constructively acceptable (Bishop, 1967; Ishihara,
2006).
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A more recent attempt at mathematics by formal finesse is non-
standard analysis. I gather that it has met with some degree of suc-
cess, whether at the expense of giving significantly less meaningful
proofs I do not know. My interest in non-standard analysis isthat
attempts are being made to introduce it into calculus courses. It is
difficult to believe that debasement of meaning could be carried so
far. (Bishop, 1975, p. 513)

Ironically, Bishop was asked to review Keisler’s introduction to Nonstandard
Analysis (Keisler, 1976). The final sentence of Bishop’s review sums up his
views on Nonstandard Analysis quite well.

Now we have a calculus text that can be used to confirm their ex-
perience of mathematics as an esoteric and meaningless exercise in
technique. (Bishop, 1977, p. 208)

It should be noted that Bishop’s views are not necessarily shared by other
constructivists. For instance, Arend Heyting spoke highlyof Abraham Robin-
son’s Nonstandard Analysis (Heyting, 1973).

Despite this proverbial ‘rocky start’, there have been reconciliatory at-
tempts between the communities of Nonstandard and Constructive Analysis.
In particular, a conference entitledReuniting the antipodeswas organized in
Venice in 1999 to bring together the two communities (Schuster et al., 2001).
However, in (Van Oosten, 2006), the review of (Crosilla and Schuster, 2005),
Van Oosten notes that little ‘reunification’ had taken place. Nonetheless, he
also suggests a notable exception: in (Palmgren, 2001), Erik Palmgren de-
velops some Nonstandard Analysis in a constructive system.Other results in
this area include (Richman, 1981, p. 208), (Moerdijk and Palmgren, 1997)
and (Palmgren, 1996a; 1996b; 1997; 2000). It should be notedthat in the
constructive approach to Nonstandard Analysis, objects may have ‘strange’
(i.e. non-classical) behaviour. A good example is the presence of nonzero
nilpotent infinitesimals in certain constructive logical systems.

In this paper, we take the dual approach to the above: we investigate the
possibility of formalizing basic notions from constructive mathematicsin-
sideclassical Nonstandard Analysis. For instance, the notion of algorithm
is central to constructive mathematics. Is there a definition in Nonstandard
Analysis which captures this notion? Similarly, as the connectives in con-
structive mathematics are intuitionistic (Bridges, 1999,p. 96), do these have
counterparts in Nonstandard Analysis?

For this paper, we limit ourselves to the following questions.
(1) Is there a (simple) notion in Nonstandard Analysis that captures Er-

rett Bishop’s notion of algorithm?
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(2) How will we judge if the correspondence in the previous item is any
good?

We first treat the second question in the next section. As noted in Remark 38
below, we do not attempt to capture the equally central constructive notion
of ‘proof’ inside Nonstandard Analysis.

2. The second question

2.1. The illusive notion of algorithm

In this section, we formulate a partial answer to the second question in
Section 1, i.e. we formulate a criterion that allows us to judge how good
the correspondence is between Bishop’s notion of algorithmand a potential
(nonstandard) counterpart. Finding such a criterion is non-trivial, as Bishop
nowhere exactly defines the notion of algorithm. We first discuss the various
reasons for this omission.

First and foremost, by keeping the notion of algorithm vague, any result
proved in Constructive Analysis is also a theorem of classical mathematics
(called ‘CLASS’), of intuitionistic mathematics (called ‘INT’) and Russian
constructive mathematics (called ‘RUSS’). In other words,by not commit-
ting to a particular definition of algorithm, Bishop’s ensures a greater gener-
ality for his Constructive Analysis. The following quote byDouglas Bridges
reflects this idea.

Although Bishop has been criticised for being too vague in his con-
cept of algorithm, by this very vagueness he left open the possibility
of interpreting his work within a variety of formal systems.Not only
is every theorem of BISH also a theorem of recursive constructive
mathematics — which is, roughly, recursive function theorydevel-
oped with intuitionistic logic — but it is also a theorem of Brouwer’s
intuitionistic mathematics, and, perhaps more significantly, of clas-
sical mathematics. (Bridges, 1999, p. 2)

A second reason for leaving the notion of algorithm vague maybe found in
(Bishop, 1985). Bishop argues that the ‘naive’ notion of algorithm is more
basic and fundamental than e.g. the well-known notion of recursive func-
tion. Hence, we should forego the identification of algorithm and recursive
function. The following quote by Bishop reflects this idea.

[The recursive function theorists] admit only sequence of integers
or rational numbers that are recursive (a concept we shall not de-
fine here: see (Kleene, 1952) for details). Their reasons are, that
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the concept is more precise than the naive concept of algorithm,
that every naively defined algorithm has turned out to be recur-
sive, and it seems unlikely we shall ever discover an algorithm that
is not recursive. This requirement that every sequence of integers
must be recursive is wrong on three fundamental grounds. First and
most important, there is no doubt that the naive concept is basic,
and the recursive concept derives whatever importance it has from
some presumption that every algorithm will turn out to be recursive.
(Bishop, 1985, p. 20)

Although Bishop has good reasons for leaving the notion of algorithm vague,
the fact of the matter is that we do not have a direct definitionof this fun-
damental entity. In this way, it seems difficult to judge whether any notion
captures Bishop’s notion of algorithm. Nonetheless, wedohave access to an
indirect definition of algorithm, discussed now.

In his writings, Bishop lists a large number of principles hedeems unac-
ceptable in his Constructive Analysis. We will refer to these principles as
non-algorithmicor non-constructive. A well-known example is thelimited
principle of omniscience, which is an instance of the principle of excluded
middle.

Principle 1: (LPO) For everyϕ in ∆0, we have(∃n ∈ N)ϕ(n) ∨ (∀n ∈
N)¬ϕ(n).

As intuitionistic logic is used in Constructive Analysis (Bridges, 1999,
p. 96), LPO is interpreted asthere is a finite procedure which decides the
truth of any existential statement. As such a procedure would allow us to
decide the truth of Goldbach’s conjecture (and a slew of other famous open
problems in mathematics), it seems highly unlikely that anyone will ever
construct such a device. This is the reason behind the rejection of LPO
(and therefore the law of excluded middle) in intuitionistic and constructive
mathematics. Thus, by showing that a certain mathematical theorem implies
a non-algorithmic principle, we can show that this theorem cannot be proved
in Constructive Analysis. The reduction of a theorem to a non-algorithmic
principle is called a ‘Brouwerian counterexample’. We refer to (Mandelkern,
1989) for an overview of the latter.

It is intuitively clear that, by considering a large number of non-algorithmic
principles and theorems, we obtain anindirect qualification of the notion of
algorithm: algorithms are those procedures that are strictly weaker than all
non-algorithmic techniques. Thus, if a given notionX captures Bishop’s
primitive of algorithm, thenX should give rise to the same class of non-
algorithmic principles. For instance, LPO should also be non-algorithmic



“05sanders”
2013/6/9
page 187

✐

✐

✐

✐

✐

✐

✐

✐

THE CONNECTION BETWEEN NONSTANDARD AND CONSTRUCTIVE ANALYSIS 187

compared toX in the same way as it is for Bishop’s primitive of algorithm.
The same should hold for all non-algorithmic principles (inthe sense of
Bishop) and we arrive at the following (preliminary) criterion.

For a formal notionX to capture Bishop’s primitive of algorithm, all
non-algorithmic principles should be interpreted as principles not
derivable usingX.

Note that this definition is not circular, as ‘non-algorithmic’ is defined as the
finite list of principles rejected in BISH. In order to work with this criterion,
it is clear that we need a good overview of a large number of non-algorithmic
principles and theorems, and their connections. Such is provided by the dis-
cipline Constructive Reverse Mathematics, introduced in Section 2.2. In-
spired by these results, we will formulate a more detailed criterion.

2.2. Introducing Constructive Reverse Mathematics

In this section, we sketch an overview of the disciplineConstructive Reverse
Mathematics(CRM). This survey of CRM will allow us to refine the crite-
rion formulated in the previous section. In order to describe CRM, we first
need to briefly consider Errett Bishop’sConstructive Analysis.

Inspired by L.E.J. Brouwer’s famous foundational program of intuition-
ism (van Heijenoort, 1967), Bishop initiated the redevelopment of classical
mathematics with an emphasis onalgorithmic and computationalresults.
In his famous monographFoundations of Constructive Analysis(Bishop,
1967), he lays the groundwork for this enterprise. In honourof Bishop, the
informal system of Constructive Analysis is now called ‘BISH’. In time, it
became clear to the practitioners of Constructive Analysisthat intuitionistic
logic provides a suitable logical basis for BISH:

Now, our experience shows that when wedoconstructive mathemat-
ics, we are actually doing mathematics with intuitionisticlogic. The
desire for algorithmic interpretability forces us to use intuitionistic
logic, and that restriction of our logic seems to result, inevitably,
in arguments that are entirely algorithmic in character. (Douglas
Bridges, (Bridges, 1999, p. 97); See also (Bridges and Vîţă, 2006,
p. 7).)

In (Richman, 1990), Fred Richman has expressed a similar opinion. Hence,
the meaning of the logical connectives in BISH differs from the ‘usual’ one
in classical mathematics. The following interpretation ofthe logical connec-
tives is found in (Bridges, 1999, p. 96) and (Bridges and Vîţă, 2006, p. 8).



“05sanders”
2013/6/9
page 188

✐

✐

✐

✐

✐

✐

✐

✐

188 SAM SANDERS

Definition 2: (Connectives in BISH)
(1) The disjunctionP ∨Q: we have an algorithm that outputs eitherP

orQ, together with a proof of the chosen disjunct.
(2) The conjunctionP ∧Q: we have both a proof ofP and a proof ofQ.
(3) The implicationP → Q: by means of an algorithm we can convert

any proof ofP into a proof ofQ.
(4) The negation¬P : assumingP , we can derive a contradiction (such

as0 = 1); equivalently, we can proveP → (0 = 1).
(5) The formula(∃x)P (x): we have (i) an algorithm that computes a

certain objectx, and (ii) an algorithm that, using the information
supplied by the application of algorithm (i), demonstratesthatP (x)
holds.

(6) The formula(∀x ∈ A)P (x): we have an algorithm that, applied to
an objectx and a proof thatx ∈ A, demonstrates thatP (x) holds.

Evidently, the notion ofalgorithm is central to Constructive Analysis. We
refer the reader to (Bishop, 1967), (Bishop and Bridges, 1985) and (Bridges
and Vîţ̆a, 2006) for a more detailed introduction to the latter.

We now introduce Constructive Reverse Mathematics (CRM) and list some
of its results. We follow Hajime Ishihara’s survey paper (Ishihara, 2006). In
effect, CRM is a spin-off from Harvey Friedman’s well-knownfoundational
programReverse Mathematics. In the latter, the aim is to find theminimalax-
ioms that prove a certain theorem ofordinary2 mathematics. In many cases,
the theorem is alsoequivalentto the minimal axioms, where this equivalence
is proved in the weak ‘base theory’ RCA0. Stephen Simpson’s monograph
Subsystems of Second-order Arithmeticis an excellent introduction to Re-
verse Mathematics (Simpson, 2009). In CRM, the base theory is (inspired
by) BISH and the aim is to find the minimal axioms that prove a certain
non-constructivetheorem. As in Friedman-Simpson Reverse Mathematics,
we also observe many equivalences between theorems and the associated
minimal axioms in CRM.

We now provide an overview of important CRM results, based onHajime
Ishihara’s survey paper (Ishihara, 2006). These results suggest that the non-
constructive principles exhibit a lot oflogical structure. Indeed, although all
these principles are rejected in BISH, some have a higher non-constructive
content than others. Thus, CRM provides (or aims to provide)an exact clas-
sification of the non-constructive content of various well-known principles
and theorems. As we will observe, this classification exhibits a lot of logical
structure.

2 See (Simpson, 2009, p. 2) for a description of ‘ordinary mathematics’.
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First of all, recall the definition of the arithmetical hierarchy.

Definition 3: For k ≥ 0, we have the following.
(1) A formula isbounded, if every occurrence of quantifiers is of the form

(∃n ≤ t(x⃗)) and(∀m ≤ s(y⃗)), wheres andt are terms.
(2) A formula is∆0 (or Σ0, or Π0) if it is bounded and has no occur-

rences of infinite numbers or the predicate ‘is infinite’.
(3) A formula isΠk+1 if it has the form(∀n ∈ N)ϕ(n) withϕ ∈ Σk.
(4) A formula isΣk+1 if if has the form(∃n ∈ N)ϕ(n) with ϕ ∈ Πk.

Next, we consider the following theorem regarding LPO.

Theorem 4: In BISH, the following are equivalent.
(1) LPO:P ∨ ¬P (P ∈ Σ1).
(2) LPR:(∀x ∈ R)(x > 0 ∨ ¬(x > 0)).
(3) MCT: (The monotone convergence theorem) Every monotone bounded

sequence of real numbers converges to a limit.
(4) CIT: (The Cantor intersection theorem).

By Definition 2, all connectives are intuitionistic and hence, the meaning
of the items in the previous theorem differs a lot from that inthe classical
framework. Indeed, item (2) is read, in BISH, asthere is a finite procedure to
decide betweenx > 0 and its negation. As ‘x > 0’ is an existential statement
in BISH (See Definition 19 below or (Bishop, 1967, Definition 3)), LPR
seems to be a non-trivial principle. We will discuss LPR and MCT in more
detail in Sections 3.2 and 3.1.

Next, we list equivalences of LLPO, thelesser limited principle of omni-
science

Principle 5: (LLPO) For everyP,Q in Σ1, we have¬(P ∧Q) → ¬P ∨¬Q.

Note that LLPO is an instance of De Morgan’s law, and is rejected in
BISH. Indeed, LLPO states thatif a proof ofP ∧Q leads to contradiction,
then we can decide whetherP leads to contradiction orQ leads to contra-
diction, and the existence of such a decision procedure is highly doubtful.

Theorem 6: In BISH, the following are equivalent.
(1) LLPO.
(2) LLPR:(∀x ∈ R)[¬(x > 0) ∨ ¬(x < 0)].
(3) NIL: (∀x, y ∈ R)(xy = 0→ x = 0 ∨ y = 0).
(4) CLO:For all x, y ∈ R with ¬(x < y), {x, y} is a closed subset ofR.
(5) IVT: a version of the intermediate value theorem.
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(6) WEI: a version of the Weierstraß extremum theorem.

We will investigate the principle LLPR in greater detail in Section 3.4.

As the last of the omniscience principles, we consider WLPO,theweaker
limited principle of omniscience.

Principle 7: (WLPO) For everyP in Σ1, we have¬P ∨ ¬¬P .

Note that in BISH, the principle of ‘double negation elimination’ is not
available: the formulaQ does imply¬¬Q, but not the other way around.
Hence, we observe that WLPO is weaker than LPO. We have the following
theorem.

Theorem 8: In BISH, the following are equivalent.
(1) WLPO.
(2) WPR:(∀x ∈ R)[¬(x > 0) ∨ ¬¬(x > 0)].
(3) DISC:A discontinuous function fromNN toN exists.

Finally, we consider several versions of Markov’s principle, named after
the Russian mathematician Andrey Markov (Jr.). The status of Markov’s
principle is ambiguous in constructive mathematics. Although it is accepted
in the Russian constructivist school, it is rejected in Bishop’s Constructive
Analysis and in intuitionistic mathematics. An interesting discussion of this
topic may be found in (Bridges and Vîţă, 2006, p. 10–11).

First of all, we consider the usual version of Markov’s principle, a version
of double-negation elimination.

Principle 9: (MP) For everyP in Σ1, we have¬¬P → P .

We have the following theorem.

Theorem 10: In BISH, the following are equivalent.
(1) MP.
(2) MPR:(∀x ∈ R)[¬¬(x > 0)→ x > 0].
(3) EXT: (The strong extensionality theorem).

Next, we consider a weaker principle: thedisjunctive version of Markov’s
principle. The latter is also a (complicated) instance of De Morgan’s law.

Principle 11: (MP∨) For everyP,Q in Σ1, we have¬(¬P ∧¬Q)→ ¬¬P ∨
¬¬Q.



“05sanders”
2013/6/9
page 191

✐

✐

✐

✐

✐

✐

✐

✐

THE CONNECTION BETWEEN NONSTANDARD AND CONSTRUCTIVE ANALYSIS 191

Theorem 12: In BISH, the following are equivalent.
(1) MP∨.
(2) MPR∨: (∀x ∈ R)[¬¬(x ≠ 0) → ¬¬(x > 0) ∨ ¬¬(x < 0)].
(3) CLO∨ ∶ For all x, y ∈ R with ¬¬(x < y), {x, y} is a closed subset of

R.

Note that ‘x ≠ y’ is short for the existential statement∣x − y∣ > 0 and is
strongerthan the negative statement¬(x = y).

Finally, we consider a weaker principle: theweak version of Markov’s
principle.

Principle 13: (WMP) For every decidableP , if for every decidableQ,

¬¬[(∃n)Q(n)] ∨ ¬¬[(∃n)(P (n) ∧ ¬Q(n))],
this implies(∃n)P (n).

We have the following theorem.

Theorem 14: In BISH, the following are equivalent.
(1) WMP.
(2) WMPR:(∀x ∈ R)([(∀y ∈ R)(¬¬(0 < y) ∨ ¬¬(y < x))] → x > 0).

The following theorem summarizes the relations between theabove prin-
ciples.

Theorem 15: The following hold inBISH.
(1) LPO↔WLPO+MP.
(2) WLPO→ LLPO.
(3) MP↔ MP∨ +WMP.
(4) LLPO→ MP∨.

Note that we only have selected a number of equivalences and theorems
from Ishihara’s survey paper (Ishihara, 2006). For instance, we have not
considered the famousfan theorem. Nonetheless, even with this partial
overview, we may conclude that the non-algorithmic principlesexhibit a lot
of logical structure: we observe ‘degrees’ of non-constructiveness among
the non-constructive principles, rather than just one set of ‘equally non-
constructive’ principles.
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2.3. An answer to the second question

In the previous paragraph, we have observed that the non-algorithmic prin-
ciples in Constructive Analysis exhibit a lot of structure.This observation
allows us to refine the criterion by which we judge whether a certain notion
captures Bishop’s primitive of algorithm. Our preliminarycriterion from
Section 2 was the following.

For a formal notionX to capture Bishop’s primitive of algorithm, all
non-algorithmic principles should be interpreted as principles not
derivable usingX.

Our final criterion is as follows.

For a formal notionX to capture Bishop’s primitive of algorithm,
all non-algorithmic principles should be interpreted as principles
not derivable usingX. Moreover, the interpretations of the non-
algorithmic principles satisfy the same implications and equivalences
as their originals in Constructive Reverse Mathematics.

By the previous criterion, a certain formal notionX captures Bishop’s notion
of algorithm if we can use it to ‘reverse engineer’ the results of Constructive
Reverse Mathematics. For the rest of the paper, we attempt tofind such a no-
tion X in Nonstandard Analysis. This notion will give rise to a certain inter-
pretation of Constructive Analysis in Nonstandard Analysis. In Remark 29,
we discuss the exact nature of this interpretation. In two words, the main goal
of the rest of this paper is as follows: We define a notion calledΩ-invariance
inside Nonstandard Analysis, which is intended to capture Bishop’s notion
of algorithm. Rather than providing a ‘literal’ translation from BISH to Non-
standard Analysis, we show thatΩ-invariance gives rise to the same kind of
Reverse Mathematics results inside Nonstandard Analysis.

3. The first question

In this section, we explore the possibility of capturing Bishop’s notion of
algorithm by a simple notion from Nonstandard Analysis. Forexpository
reasons, our presentation remains at the informal level. The reader only
needs to be acquainted with the very basic notions of Nonstandard Analysis.

For the rest of this paper, we takeN = {0,1,2, . . . } to denote the set of
natural numbers, which is extended to∗N = {0,1,2, . . . , ω′, ω′ + 1, . . . }, the
set ofhypernaturalnumbers, withω′ /∈ N. The setΩ = ∗N∖N consists of the
infinite numbers, whereas the natural numbers are calledfinite. We tacitly
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assume that the domain of functionsf ∶ N → N can be extended to∗N. We
reason in an unspecified3 system of Nonstandard Analysis which does not
involve the transfer principleΣ1-TR defined below, or stronger principles.

3.1. The monotone convergence theorem

We consider the following Brouwerian counterexample by Bishop concern-
ing the monotone convergence theorem for sequences of reals.

Example 16: (From (Bishop, 1985, p. 6)) We represent the terms of the se-
quence [in the monotone convergence theorem] by vertical marks marching
to the right, but remaining to the left of the boundB.

✲

. . . B

The classical intuition is that the sequence gets cramped, because there are
infinitely many terms, but only a finite amount of space to the left of B.
Thus, it has to pile up somewhere. That somewhere is its limitL.

✲

L B

The constructivist grants that some sequences behave in precisely this way.
I call those sequences stupid. Let me tell you what a smart sequence would
do. It will pretend to be stupid, piling up at a limit, (in reality a false limit)
Lf . Then when you have been convinced it really is piling up atLf , it will
take a jump and land somewhere to the right!

✲

Lf B. . .

jump

With this informal example, Bishop intends to cast doubt on the possi-
bility that afinite procedure can compute the limit of a bounded increasing
sequence. In other words, the example illustrates that it isimpossible that
we can prove MCT in BISH.

3The reader may check that a version of Nonstandard Analysis based onI∆0 + exp
suffices for our purposes. In general, a nonstandard versionof RCA0 (Simpson, 2009) seems
to suffice.
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To see that the monotone convergence theorem actually implies LPO in
BISH, consider the following sequence,

zn ∶= {wn (∀m ≤ n)ψ(m)
w +∑n

i=1
w+B
2i

otherwise
, (1)

whereψ is ∆0 andwn is an increasing sequence belowB, converging to
w < B. By definition,zn converges tow if and only if (∀n ∈ N)ψ(n). By
MCT, we can decide ifzn converges tow or not. By the definition ofzn
in (1), this allows us to decide if(∃n ∈ N)¬ψ(n) or not, i.e. we have LPO.
Moreover, the usual proof of MCT can be used to prove the implication
LPO→ MCT. Hence, MCT is equivalent to LPO.

In light of the equivalence between MCT and LPO, the following two
remarks are important here.

First of all, in (Sanders, 2011), it is shown that a certain (complicated)
version of MCT from Nonstandard Analysis is equivalent to the following
principle, to be compared to LPO.

Principle 17: (Σ1-TR) For all ϕ ∈∆0, we have

(∃n ∈ N)ϕ(n) ∨ (∀n ∈ ∗N)¬ϕ(n). (2)

The previous principle is the transfer principle of Nonstandard Analysis,
limited toΣ1-formulas. Note thatΣ1-TR is a kind of ‘hyperexcluded’ mid-
dle: it excludes the possibility that

(∀n ∈ N)ψ(n) ∧ (∃n ∈ ∗N)¬ψ(n), (3)

for anyψ ∈ ∆0. Moreover, in (Moerdijk and Palmgren, 1997), it is shown
that the full transfer principle implies the principle of excluded middle in
intuitionistic logic. Hence, we suspect there to be some connection between
Σ1-TR and LPO.

Secondly, in the absence ofΣ1-TR, we cannot exclude that (3) holds for
someψ ∈ ∆0. In this case, the sequencezn in (1) has exactly the behaviour
depicted in Example 16. Indeed,zn seems to converge tow for any finite
n ∈ N, but at some point,zn jumps overw. Hence, there seems to be a
connection between thestandardversion of MCT andΣ1-TR.

In the following paragraph, we investigate these — admittedly vague —
connections further by studying another famous principle equivalent to LPO.
We finish this paragraph with a remark onΣ1-TR.
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Remark 18: We tacitly assumed that parametersx⃗ of natural numbers are
allowed inϕ in (2). Written out in full, the latter formula thus reads, for
fixedk ∈ N,

(∀x⃗ ∈ Nk)[(∃n ∈ N)ϕ(n, x⃗) ∨ (∀n ∈ ∗N)¬ϕ(n, x⃗)].
For the rest of this paper, we will assume that such parameters are allowed
everywhere. However, we usually omit parameters for aesthetic reasons.

3.2. The constructive continuum

In this paragraph, we study Brouwer’s well-known theorem that the intu-
itionistic continuum cannot be split in two parts (van Heijenoort, 1967, p.
446). To this end, we need some definitions concerning real numbers in
Constructive Analysis.

Definition 19:
(1) A real numberx is a sequenceqk ∶ N→ Q such that

(∀n,m ∈ N)(∣qm − qn∣ < 1

m
+ 1

n
). (4)

(2) We write ‘x > 0’ if (∃k ∈ N)(qk > 1

k
), and ‘x < 0’ if (∃k ∈ N)((−x) > 0).

(3) We write ‘x ≥ 0’ if (∀k ∈ N)(qk ≥ − 1

k
), and ‘x ≤ 0’ if (∀k ∈ N)((−x) ≥ 0).

(4) We write ‘x = 0’ if x ≤ 0 ∧ x ≥ 0.

Thus, in Constructive Analysis, a real number is a Cauchy sequence of
rational numbers which converges quickly. The usual operations + and×
can be defined easily on the real numbers (Bishop, 1967, Definition 2).

Now consider the following principle.

Principle 20: (LPR) (∀x ∈ R)(x > 0 ∨ ¬(x > 0)).
With the above definition, it is clear that LPR has the same syntactical

form as LPO: they both express the existence of a decision procedure for
(certain)Σ1-formulas and their negations. By (Ishihara, 2006, Theorem1),
LPO and LPR are indeed equivalent. Thus, LPR is rejected in Constructive
Analysis, and, by Definition 2, there is indeed no way to (constructively)
split the continuum in the two sets(−∞, x0] and[x0,+∞), for anyx0 ∈ R.
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We now study the connection betweenΣ1-TR and LPR. The latter ex-
presses thatwe can decide, by means of a finite procedure, whetherx > 0

holds or not. Now, if Σ1-TR is available, then the existential formulax > 0
is equivalent to the formula(∃k ≤ ω)(qk > 1

k
), for any choice ofω ∈ Ω. As

the latter is aboundedformula, it is easy to verify whether it holds. Thus, we
observe that ifΣ1-TR is available, then we can easily judge whetherx > 0
holds or not (modulo a procedure to decide bounded formulas). Similarly,
if we have(∃k ≤ ω)(qk > 1

k
) for all ω ∈ Ω, then we obtain, by underflow,

(∃k ∈ N)(qk > 1

k
), i.e.x > 0.

In the previous paragraph, we observed thatΣ1-TR implies a version of
LPR: given the former principle, we can decide ifx > 0 or ¬(x > 0) by
considering(∃k ≤ ω)(qk > 1

k
). However, the most important observation

to be made is that the choice ofω in the latter formula does not matter: by
Σ1-TR, the formula(∃k ≤ ω)(qk > 1

k
) is equivalent to(∃k ∈ N)(qk > 1

k
),

for anychoice ofω ∈ Ω.

Finally, we note thatΣ1-TR also yields a way to decideΣ1-formulas. In-
deed, in the same way as in the previous paragraphs, we have that (∃n ∈
N)ϕ(n) is equivalent to(∃n ≤ ω)ϕ(n), for any choice ofω ∈ Ω, if Σ1-TR
is available. Thus,Σ1-TR provides a certain decision procedure forΣ1-
formulas, which is similar to the content of LPO.

In this paragraph, we obtained a more concrete connection between LPO
andΣ1-TR. Indeed, we observed that both give rise to a certain decision
procedure forΣ1-formulas. However, the most important observation was
that, in the case ofΣ1-TR, the decision procedure doesinvolve an infinite
numberω, but that the procedure does not depend of thechoiceof ω ∈ Ω.

3.3. Turing machines and independence

In the previous paragraph, we hinted at a certain — still vague — notion
of independence as the key to the connection betweenΣ1-TR and LPO. To
make this notion more precise, we now study a concrete example of com-
putabilty: theTuring machine. We refer to (Soare, 1987) for an introduction
to the latter.

By (Soare, 1987, Theorem 2.2, p. 64), the membership relation of a setA
may be decided by a Turing machine, if and only ifA is ∆1, i.e. there are
ϕ1, ϕ2 ∈∆0, s.t.

A = {m ∈ N ∶ (∃n1 ∈ N)ϕ1(n1,m)} = {m ∈ N ∶ (∀n2 ∈ N)ϕ2(n2,m)}.
(5)
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We now show that∆1-sets satisfy the following veryconcreteindependence
condition.

Theorem 21: For every∆1-setA ⊂ N, there areN × N → N-functions
pA(n,m) andqA(n,m) such that, for any fixedω ∈ Ω, we have

(∀k ∈ N)[k ∈ A↔ pA(k,ω) < qA(k,ω)]. (6)

Proof. AssumeA is ∆1, i.e. we have (5) for someϕ1, ϕ2 in ∆0. Define
pA(n,m) as the leastn1 ≤ m such thatϕ1(n1, n), if such exists andm
otherwise. LetqA(n,m) be the leastn2 ≤ m such that¬ϕ2(n2, n) if such
exists andm otherwise. We now prove thatpA andqA indeed satisfy (6).

First of all, fix ω ∈ Ω. For k ∈ N, if k ∈ A, thenpA(k,ω) is finite and
qA(k,ω) is infinite, by (5). In particular, we havepA(k,ω) < qA(k,ω). Now
suppose there is somek0 ∈ N such thatpA(k0, ω) < qA(k0, ω) andk0 /∈ A.
By (5), we have(∀n1 ∈ N)¬ϕ1(n1,m0) and, by definition, the number
pA(k0, ω) must be infinite. Similarly, the numberqA(k0, ω) must be finite.
However, this impliespA(k0, ω) ≥ qA(k0, ω), which yields a contradiction.
Thus, we havek ∈ A ↔ pA(k,ω) < qA(k,ω), for all k ∈ N. It is clear that
we obtain the same result for a different choice ofω ∈ Ω. �

By the previous theorem, for every setA ⊂ N in ∆1, there is a formulaψ
in ∆0 such that, for any fixedω ∈ Ω, we have

(∀k ∈ N)[k ∈ A↔ ψ(k,ω)].
In other words, the setA is fully described by a simple formulaψ(n,ω).
Moreover, the description involves an infinite numberω, but is independent
of thechoiceof ω ∈ Ω. Thus, we have found aconcreteindependence prop-
erty which captures the Turing computable sets. Motivated by this results,
we introduce the following definition.

Definition 22: Let ψ(n,m) be ∆0 and fix ω ∈ Ω. Thenψ(n,ω) is Ω-
invariantif (∀n ∈ N)(∀ω′ ∈ Ω)(ψ(n,ω)↔ ψ(n,ω′)). (7)

For f ∶ N ×N→ N, the functionf(n,ω) is calledΩ-invariant, if

(∀n ∈ N)(∀ω,ω′ ∈ Ω)(f(n,ω) = f(n,ω′)).
The following theorem shows that the (truth) value of anΩ-invariant object

is already determined at some finite stage.
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Theorem 23: For everyΩ-invariant formulaψ(n,ω), we have

(∀n ∈ N)(∃m0 ∈ N)(∀m,m′ ∈ ∗N)[m,m′ ≥m0 → ψ(n,m)↔ ψ(n,m′)].
(8)

For everyΩ-invariant functionf(n,ω), we have

(∀n ∈ N)(∃m0 ∈ N)(∀m,m′ ∈ ∗N)[m,m′ ≥m0 → f(n,m) = f(n,m′)].
(9)

In each case, the numberm0 can be computed by anΩ-invariant function.

Proof. This proof requires the techniquesunderflowandoverflowfrom Non-
standard Analylsis, available even in very weak systems of Nonstandard
Analysis (Im- pens and Sanders, 2008). For expository reasons, we do not
go into details. �

In light of Theorems 21 and 23, it seems justified to claim thatΩ-invariance
(partially) captures the notion of ‘algorithm’ and ‘finite procedure’. We will
refer toΩ-invariant functions and formulas as∗-computable functions,∗-
algorithms,∗-finite procedures,∗-decision procedures, etc., to avoid possi-
ble confusion with the original nomenclature.

3.4. Reverse engineering Constructive Reverse Mathematics

In this section, we use the notion of∗-algorithm to obtain results similar to
Theorem 4, inside Nonstandard Analysis. The theorems in these section are
proved in an unspecified4 system of Nonstandard Analysis which does not
involve the transfer principleΣ1-TR or stronger principles.

We first prove the following theorem.

Theorem 24: GivenΣ1-TR, a ∗-algorithm can decide which disjunct holds
in (∃n ∈ N)ϕ(n, x⃗) ∨ (∀n ∈ ∗N)¬ϕ(n, x⃗), (x⃗ ∈ Nk, ϕ ∈∆0) (10)

i.e. there is anΩ-invariant formulaψ(x⃗, ω) such that

(∀x⃗ ∈ Nk)(ψ(x⃗, ω)→ (∃n ∈ N)ϕ(n, x⃗)∧¬ψ(x⃗, ω) → (∀n ∈ ∗N)¬ϕ(n, x⃗)).
(11)

4 The reader may check that a version of Nonstandard Analysis based onI∆0 + exp suf-
fices for our purposes. In general, a nonstandard version of RCA0 (Simpson, 2009) suffices.
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Proof. By Σ1-TR, the formula(∃n ∈ N)ϕ(n, x⃗) is equivalent to(∃n ≤
ω)ϕ(n, x⃗), for any fixedω ∈ Ω and x⃗ ∈ Nk. Also, if (∀n ≤ ω)¬ϕ(n, x⃗),
then(∀n ∈ N)¬ϕ(n, x⃗), and we obtain(∀n ∈ ∗N)¬ϕ(n, x⃗), byΣ1-TR.

We define the functionf(x⃗,m) as follows.

f(x⃗,m) = {1 If (∃n ≤m)ϕ(n, x⃗)
0 If (∀n ≤m)¬ϕ(n, x⃗) .

By the previous paragraph of the proof, we have

(∃n ∈ N)ϕ(n, x⃗)↔ f(x⃗, ω) = 1 and(∀n ∈ ∗N)¬ϕ(n, x⃗)↔ f(x⃗, ω) = 0.
for any fixedω ∈ Ω and x⃗ ∈ Nk. In particular, this implies thatf(x⃗, ω) is
Ω-invariant, and we have found a∗-algorithm to decide (10), i.e. (11). �

Recall that LPO is interpreted in Constructive Analysis asthere is an al-
gorithm to decide whether(∃n ∈ N)ϕ(n), or its negation, holds. Although
the previous theorem is a step in the right direction, formula (10) is not quite
the same as the disjunction in LPO. The following definitions(inside Non-
standard Analysis) will make (10) look more like LPO.

Definition 25: [∗-disjunction] The formulaA ⋎B is short for the statement
There is anΩ-invariant formulaψ(x⃗, ω) such that

(∀x⃗ ∈ Nk)(ψ(x⃗, ω) → A(x⃗) ∧ ¬ψ(x⃗, ω)→ B(x⃗)). (12)

Note thatA⋎B indeed impliesA∨B. In addition, there is anΩ-invariant
formula which tells us which disjunct ofA ∨B holds. Hence,A ⋎B indeed
expressesThere is a∗-algorithm that decides which disjunct ofA∨B holds.

Definition 26: [∗-negation] Forϕ in ∆0, the formula⨼[(∃n ∈ N)ϕ(n)] is
defined as(∀n ∈ ∗N)¬ϕ(n) and the formula⨼[(∀n ∈ N)ϕ(n)] is defined
as(∃n ∈ ∗N)¬ϕ(n).

Note that blocks of existential (resp. universal) quantifiers can be com-
bined intooneexistential (resp. universal) quantifier. Of course, it is possible
to define∗-negation in full generality, but this would lead us too far.

The newly introduced connectives will also be called ‘∗-connectives’. The
previous definitions yield the following principle, to be compared to LPO.

Principle 27: (LPO) For everyϕ ∈∆0, (∃n ∈ N)ϕ(n)⋎⨼[(∃n ∈ N)ϕ(n)].
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The following remark shows that the∗-negation is not just an aesthetic
device, but behaves like its intuitionistic counterpart.

Remark 28: In intuitionistic logic,¬[(∃n ∈ N)ϕ(n)] implies the universal
formula (∀n ∈ N)¬ϕ(n), but ¬[(∀n ∈ N)ϕ(n)] is weaker than the exis-
tential formula(∃n ∈ N)¬ϕ(n). By Definition 2, the intuitive justification
of this asymmetry is that, even if it is impossible thatϕ(n) holds for all
n ∈ N, this does not provide a method to compute a counterexample.Simi-
larly, ⨼[(∃n ∈ N)ϕ(n)] implies (∀n ∈ N)¬ϕ(n), but⨼[(∀n ∈ N)ϕ(n)] is
weaker than the existential formula(∃n ∈ N)¬ϕ(n). The latter formula can
be stated asthere is a∗-algorithm that computesn0 ∈ N such that¬ϕ(n0).
Indeed, if(∃n ∈ N)¬ϕ(n), then(µn ≤ ω)¬ϕ(n) computes the least such
number, in anΩ-invariant way. Furthermore, if there is a proof of the univer-
sal formula(∀n ∈ N)ϕ(n) in Nonstandard Analysis, then — under certain
conditions — there is also a proof of(∀n ∈ ∗N)ϕ(n). Such results are called
conservation results. See e.g. (Avigad and Helzner, 2002, Theorem 4.4) for
a textbook example. This partially explains the definition of ∗-negation.

At this point, we believe we should discuss the exact nature of the interpre-
tation we are establishing between Constructive and Nonstandard Analysis.

Remark 29: In this paper, we willnotobtain a literal translation of intuition-
istic logic (or Constructive Analysis) inside NonstandardAnalysis. More-
over, we do not provide some version of the well-knownrealizability in-
terpretation. Our aim is similar, but different: we define new connectives
(∗-disjunction and∗-negation) which are based onΩ-invariance in the same
way the intuitionistic connectives are based on the primitive notion of algo-
rithm. The definitions of these new connectives areinspired by their intu-
itionistic counterparts, but, a priori, that is the only connection.

After introducing these new objects, we will translate a number of well-
known principles (like LPO and LLPO) from CRM to NonstandardAnalysis,
using the∗-connectives. For the most part, this ‘translation’ consists in re-
placing the intuitionistic connectives with their nonstandard counterpart, i.e.
the translation is usually purely mechanical. We prove thatthese translated
principles (calledLPO andLLPO) satisfy the same equivalences in Non-
standard Analysis as their counterparts in CRM do. Whenevera mechanical
translation was not possible for a given principleW in CRM (e.g. for the
principle DISC orΠ1-LEM), we have used themeaningof W in BISH to
obtain a reasonable counterpartW of W in Nonstandard Analysis. It is be-
yond the scope of this paper to discuss examples of the lattersort. However,
in a sense, the translation is both syntactic and semantic innature.
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Hence, the main goal of this paper becomes clear: We define a notion
calledΩ-invariance inside Nonstandard Analysis, which is intended to cap-
ture Bishop’s notion of algorithm. Rather than providing a ‘literal’ transla-
tion from BISH to Nonstandard Analysis, we show thatΩ-invariance gives
rise to the same kind of Reverse Mathematics results inside Nonstandard
Analysis.

We have the following theorem.

Theorem 30: The principleLPO is equivalent toΣ1-TR.

Proof. The reverse implication follows immediately from Theorem 24 and
Definitions 25 and 26. For the forward implication, letϕ be as inΣ1-TR. By
LPO, one of the disjuncts of

(∃n ∈ N)ϕ(n) ∨ (∀n ∈ ∗N)¬ϕ(n)
must hold. This immediately impliesΣ1-TR. �

By Theorem 4, LPO is equivalent to LPR. The latter principle closely
resembles the following one.

Principle 31: (LPR) (∀x ∈ R)[x > 0 ⋎ ⨼(x > 0)].
By Definitions 25 and 26,LPR is the statementthere is a∗-decision

procedure forx > 0 and ⨼(x > 0). This interpretation is similar to that
of LPR in Constructive Analysis. We now prove the equivalence between
LPO andLPR, to be compared to Theorem 4.

Theorem 32: The principleLPO is equivalent toLPR.

Proof. For the forward implication, recall thatx > 0 is defined as(∃k ∈
N)(qk > 1

k
) and that⨼(x > 0) is defined as(∀k ∈ ∗N)(qk ≤ 1

k
). By Theorem

30, we may useΣ1-TR. By the latter, if(∀k ∈ N)(qk ≤ 1

k
) then also⨼(x > 0)

follows. Moreover, the numberx is a real, i.e. we have (4). ByΣ1-TR, we
obtain (∀n,m ∈ ∗N)(∣qm − qn∣ < 1

m
+ 1

n
).

Thus, for infiniteω,ω′, the difference betweenqω andqω′ is only infinitely
small. By this observation, in casex = 0 is false, it suffices to check if
qω > 0 or if qω < 0 to know whetherx > 0 or x < 0. GivenΣ1-TR, x = 0 is
equivalent to(∀k ≤ ω)(∣qk ∣ ≤ 1

k
), for any fixedω ∈ Ω.
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Finally, we define the∗-algorithm which decides betweenx > 0 and⨼(x >
0). Fix someω ∈ Ω. First, check if(∀k ≤ ω)(∣qk ∣ ≤ 1

k
). If this formula holds,

then we havex = 0 and return ‘⨼(x > 0)’. Otherwise, check ifqω > 0. If this
formula holds, return ‘x > 0’. Otherwise, return ‘⨼(x > 0)’.

This ∗-algorithm is easily brought in the form (12). Indeed, the formula
ψ(ω) ≡ [(∀k ≤ ω)(∣qk ∣ ≤ 1

k
)∨(qω < 0∧(∃k ≤ ω)(∣qk ∣ > 1

k
))] isΩ-invariant.

Hence,
¬ψ(ω)→ x > 0 ∧ ψ(ω)→ ⨼(x > 0).

For the reverse implication, assumeLPR and letϕ be as inΣ1-TR and
assumeϕ(n) holds for alln ∈ N. Suppose there is anω ∈ Ω such that¬ϕ(ω)
and letω0 be the least of these. We first define the functiongϕ(i) as follows

gϕ(i) = {1 (∃n ≤ i)¬ϕ(n)
0 (∀n ≤ i)ϕ(n) .

Secondly,hϕ(i) is the leastn ≤ i such that¬ϕ(n), if such exists, andi
otherwise. Finally, we define the realx as follows

qk =
k

∑
i=0

1

2i−hϕ(i)
gϕ(i).

Note thatx satisfies (4), i.e. thatx is indeed a real number.

Asqk = 0 for k ∈ N, we cannot havex > 0. Similarly, asqm = ∑
ω0−m
i=0

1

2i
for

m ≥ ω0, we cannot have⨼(x > 0). However, we have just showed that both
x > 0 and⨼(x > 0) are impossible. This contradictsLPR and we conclude
that there cannot beω ∈ Ω such that¬ϕ(ω). Together with our assumption
that(∀n ∈ N)ϕ(n), the principleLPR thus implies(∀n ∈ ∗N)ϕ(n). From
this,Σ1-TR follows easily and, by Theorem 30,LPO is obtained. �

The previous theorem is our first step towards ‘reverse engineering’ Con-
structive Reverse Mathematics. We now obtain a result similar to Theorem
32 for the principles LLPO and LLPR. By Definitions 25 and 26, the latter
correspond to the following principles in Nonstandard Analysis.

Principle 33: (LLPO) For everyP,Q in Σ1, we have⨼(P∧Q)→ ⨼P⋎⨼Q.

Principle 34: (LLPR) (∀x ∈ R)(⨼(x > 0) ⋎ ⨼(x < 0)).
Before we prove the equivalence between the previous principles, we need

to consider the following remark regarding the constructive continuum.
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Remark 35: In (Bridges, 1999, Axiom set R2), we find¬(x > y ∧ x < y)
among the axioms for the constructive continuum. Furthermore, Bishop
states that this formula, though negative in nature, is provable in his Con-
structive Analysis (Bishop, 1967, p. 21). Thus, it seems justified to tacitly
assume that⨼(x > 0 ∧ x < 0) holds for all real numbers. We need this
property in the proof of Theorem 36.

We have the following theorem.

Theorem 36: The principlesLLPO andLLPR are equivalent.

Proof. We first study the exact content ofLLPO. Consider the following
formula

⨼[(∃n ∈ N)ϕ1(n) ∧ (∃m ∈ N)ϕ2(m)], (13)

with ϕ1, ϕ2 ∈ ∆0. It is clear that the antecedent ofLLPO, i.e.⨼(P ∧Q),
has exactly this form. By Definition 26, (13) is equivalent to

(∀n ∈ ∗N)¬ϕ1(n) ∨ (∀m ∈ ∗N)¬ϕ2(m). (14)

The consequent ofLLPO, i.e.⨼P ⋎ ⨼Q, then has the form

(∀n ∈ ∗N)¬ϕ1(n) ⋎ (∀m ∈ ∗N)¬ϕ2(m). (15)

Thus,LLPO is the statement thatif (14) holds, then there is a∗-algorithm
deciding which disjunct of this formula holds. i.e. (15).

Now assumeLLPO and fixx ∈ R. As discussed in Remark 35, we may
assume the formula⨼(x > 0 ∧ x < 0). By Definition 26, the latter formula is
equivalent to

(∀k ∈ ∗N)[qk ≤ 1

k
∨ (∀l ∈ ∗N)(ql ≥ −1

l
)]. (16)

We applyLLPO to decide which of the disjuncts of this formula holds. As
the first disjunct of (16) is⨼(x > 0) and the second one is⨼(x < 0), we
obtainLLPR.

For the other direction, assumeLLPR, let ϕ1 andϕ2 be as in (13). We
now define a∗-algorithm to decide between(∀n ∈ ∗N)¬ϕ1(n) and(∀m ∈
∗N)¬ϕ2(m). To this end, fixω′ ∈ Ω and consider the following three cases.

First of all, if (∀n ≤ ω′)¬ϕ1(n) is false, we must have(∀m ∈ ∗N)¬ϕ2(m),
by (14). Thus, we output ‘⨼[(∃m ∈ N)ϕ2(m)]’.
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Secondly, if(∀m ≤ ω′)¬ϕ2(m) is false, we must have(∀n ∈ ∗N)¬ϕ1(n),
and we output ‘⨼[(∃n ∈ N)ϕ1(n)]’.

For the third case, we may assume(∀n ≤ ω′)¬ϕ1(n) and (∀m ≤ ω′)
¬ϕ2(m). We first define the functiongϕ1,ϕ2

as follows

gϕ1,ϕ2
(i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1 if (∃n ≤ i)ϕ1(n),
1 if (∃m ≤ i)ϕ2(m),
0 if (∀m ≤ i)¬ϕ2(m) and(∀n ≤ i)¬ϕ1(n)

.

Note that the previous function is well-defined, as the case(∃n ∈ ∗N)ϕ1(n)∧(∃m ∈ ∗N)ϕ(m) cannot occur, by (14). We also define the functionhϕ1,ϕ2
(i)

as the leastn′ ≤ i such thatϕ1(n′) ∨ϕ2(n′), if such exists, andi otherwise.
Finally, we define the real numberx as

qk =
k

∑
i=0

1

2i−hϕ1ϕ2
(i)
gϕ1,ϕ2

(i).
Note thatx is indeed a real number by (4), and the assumptions made in this
case. ByLLPR, we can decide between⨼(x > 0) and⨼(x < 0). If the
first formula holds, we have(∀k ∈ ∗N)(qk ≤ 1

k
). This is only possible if(∀m ∈ ∗N)¬ϕ2(m) holds, and we output this formula. Similarly, if⨼(x <

0) is holds, we have(∀k ∈ ∗N)(qk ≥ − 1

k
), which is only possible if(∀n ∈

∗N)¬ϕ1(n) holds, and we output this formula.

Hence,LLPR provides a∗-algorithm to decide which of the disjuncts of
(14) holds. From this,LLPO easily follows and we are done. �

Finally, we prove one partial result from Theorem 15.

Theorem 37: The principleLPO impliesLLPO.

Proof. AssumeLPO. By Theorem 30, we may useΣ1-TR. Let ϕ1 and
ϕ2 be as in (14). We can easily verify which disjunct in the latter holds,
by checking if(∀n ≤ ω)¬ϕ1(n) and (∀m ≤ ω)¬ϕ2(m), for any fixed
ω ∈ Ω. Indeed, byΣ1-TR, these bounded formulas are equivalent to(∀n ∈
∗N)¬ϕ1(n) and(∀m ∈ ∗N)¬ϕ2(m), respectively. Thus,LLPO follows.

�
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3.5. An answer to the first question

In this paragraph, we formulate a partial answer to the first question from
Section 1.

Although suggestive, Theorems 32 and 36 do not even scratch the surface
of Constructive Reverse Mathematics (CRM). Indeed, as is clear from Sec-
tion 2.2, there is a large (and growing) number of principlesand equivalent
theorems that constitute CRM. Furthermore, we did not treatformulas of the
form ¬¬ϕ, nor did we attempt to interpret intuitionistic implication5 . Thus,
the results in this paper are more suggestive than definitivein nature. They
do suggest an interesting avenue of research, however.

Hence, the answer to the first question is a careful ‘maybe’: we need to
treat a large number principles from CRM inside NonstandardAnalysis be-
fore we can accurately judge if the notion ofΩ-invariance gives rise to the
‘same’ kind of equivalences as we find in CRM. In (Sanders, 2012b), this
investigation is undertaken ‘in full’ and a large number of equivalences was
obtained in a similar fashion to the above. However, one encounters a sig-
nificant problem with the current ‘naive’ approach and new ideas are needed
to overcome this hurdle. In particular, an interpretation for the constructive
notion of ‘proof’ inside Nonstandard Analysis is required,as discussed in
Remark 38 below.

As usual, any answer leads to many questions. The first question that
comes to mind in light of our above results is:Why is there a connection
between Nonstandard and Constructive Analysis?We now briefly speculate
on this topic.

In Nonstandard Analysis, the notion ofinfinite numberis central. The fi-
nite numbers are exactly the natural numbers. The new numbers in ∗N ∖ N
are the infinite numbers and no ‘finite’ operationF can take a finite number
to an infinite number. The ‘finite’ operations include all theusualN → N-
functions.

0 1 . . . N ∗Nω

F X

We now propose a similar (but vague) interpretation for the natural numbers
in Constructive Analysis, when assuming anexternalpoint of view. In BISH,

5Note that it is possible to define ‘⨼’ in such a way that the counterpart of Markov’s
principle, i.e.⨼⨼P → P (P ∈ Σ1), is not derivable in (our base theory of) Nonstandard
Analysis. Hence, our results are not just an instance of the fact that recursive mathematics
RUSS is a model for BISH, as might be wrongly suggested by Theorem 21. We thank Martin
Davis for the discussion regarding this question.
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the notion ofalgorithm is central. A number only exists after an algorithm
has been given to compute it, i.e. when it has been constructed. The (vague)
setN of numbers that have been constructed is always expanding. How-
ever, there are some numbers we can never hope to construct. For instance,
it is generally agreed that Constructive Analysis can be formalized inHAω,
Heyting arithmetic augmented with all finite types. However, the function6

Hε0(x) cannot be defined in the latter system. Hence, for most elements
x0 ∈ N , we can never construct the numberHε0(x). Thus, we obtain the fol-
lowing picture ofN: the numbersN are the ‘constructible’ (or ‘constructed’)
numbers, whereas the numbers inN ∖N arenon-constructible. Moreover,
no ‘constructive’ operationC can ever take a number inN outside of this set.

0 1 . . . N NHε0(x0)
C X

We emphasize that the above comparison is vague and informal. We do
believe it to serve an explanatory purpose.

In the following final remark, we discuss the proverbial ‘elephant in the
room’ regarding Definition 2.

Remark 38: In this paper, we have concentrated on finding a concept from
Nonstandard Analysis which captures Bishop’s notion of (constructive) al-
gorithm. However, as is clear from Definition 2, the notionproof plays an
important role in Constructive Analysis. Nonetheless, we have not attempted
to provide an interpretation for this equally central notion.

In (Sanders, 2012a), a first attempt is made to establish an interpretation
of the constructive notion ofproof in Nonstandard Analysis. As it turns out,
in the same way Constructive Analysis is limited to formulasthat come with
proofs, the limitation to formulasA which satisfy (a version of) the Trans-
fer Principle ‘A ↔ ∗A’ from Nonstandard Analysis, provides a suitable in-
terpretation of ‘proof’. Note that by Definition 26 and Remark 28, a kind
of Transfer is already built into∗-negation. We refer to (Sanders, 2012a)
for details. A full interpretation of Constructive Analysis inside Nonstan-
dard Analysis in this spirit is forthcoming in (Sanders, 2012c). These re-
sults endow Constructive Analysis with a certain ‘robustness’, as discussed
in (Sanders, 2013).

6 The functionHα(x) is called theHardy functionof levelα ∈ ORD. See (Buss, 1998).
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4. Conclusion and Future research

4.1. Conclusion

In this paper, we made an attempt at bringing Nonstandard andConstructive
Analysis closer together, i.e. atreuniting the antipodes. This was accom-
plished by attempting to isolatealgorithm, the central notion of Constructive
Analysis, inside Nonstandard Analysis. We used the following two questions
from the introduction as guiding principles.

(1) Is there a (simple) notion in Nonstandard Analysis that captures Er-
rett Bishop’s notion of algorithm?

(2) How will we judge if the correspondence in the previous item is any
good?

By reviewing the main results in the discipline Constructive Reverse Mathe-
matics (a foundational program based on Constructive Analysis), we arrived
at a criterion by which we mightindirectly capture Bishop’s primitive no-
tion of algorithm. In short, a formal notion captures Bishop’s primitive of
algorithm if it gives rise to the same equivalences as found in Constructive
Reverse Mathematics. Indeed, if the latter is the case, thenthe same princi-
ples are non-algorithmic in both cases, i.e. with regard to the formal notion
and with regard to Bishop’s algorithm. Hence, the formal notion must (ap-
proximately) capture Bishop’s primitive of algorithm.

In answer to the first question, we defined ‘Ω-invariance’, a candidate
nonstandard counterpart of the notion of algorithm. We thenapplied our
criterion toΩ-invariance. In particular, we showed that several famous non-
algorithmic principles (e.g. LPO and LLPO) behave in the same way in Non-
standard Analysis based onΩ-invariance. To this end, we defined counter-
parts in Nonstandard Analysis of the intuitionistic connectives∨ and¬. In
conclusion, we suggested that more equivalences need to be proved in Non-
standard Analysis before we can answer the first question positively. We
also provided an explanation why there isüberhaupta connection between
Nonstandard Analysis and Constructive Analysis.
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