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ON THE CONNECTION BETWEEN NONSTANDARD ANALYSIS
AND CONSTRUCTIVE ANALYSIS

SAM SANDERS'

Abstract

Constructive Analysis and Nonstandard Analysis are oftearac-
terized as completely antipodal approaches to analysisdivdess
the possibility of capturing the central notion of Constive Anal-
ysis (i.e. algorithm, finite procedure or explicit constian) by a
simple concept inside Nonstandard Analysis. To this endntve-
duceQ2-invarianceand argue that it partially satisfies our goal. Our
results provide a dual approach to Erik Palmgren’s deveéoyirof
Nonstandard Analysis inside constructive mathematics.

1. Introduction: Two questions

When comparing Nonstandard Analysis and Constructiveysiglit is hard
not to get blinded by the differences between the two. Indéedusual con-
struction of the hyperreal fieltlR involves an ultrafilter oN, the existence
of which is justified by appealing to the full axiom of choidéahovei and
Reeken, 2004). The latters well-known to imply the principle of excluded
middle (Diaconescu, 1975), the original sin of classicaidoaccording to
constructivist (and intuintionist) canon. Thus, the veagis of Nonstandard
Analysis is seemingly rejected by the constructivist.

Furthermore, Nonstandard Analysis also seems problemizimore con-
ceptual level, from the constructivist point of view. Indeé&rrett Bishop,
the founder of Constructive Analysis (Bishop, 1967), fasipderided Non-
standard Analysis for its lack of ‘computational content’.

*This research is generously sponsored by the John Temgfetandation. See also
Acknowledgement below.

1 The countableaxiom of choiceis constructively acceptable (Bishop, 1967; Ishihara,
2006).
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A more recent attempt at mathematics by formal finesse is non-
standard analysis. | gather that it has met with some dedregce
cess, whether at the expense of giving significantly lessyimgaul
proofs | do not know. My interest in non-standard analysithé
attempts are being made to introduce it into calculus ceurlids
difficult to believe that debasement of meaning could bei@dso

far. (Bishop, 1975, p. 513)

Ironically, Bishop was asked to review Keisler’s introdantto Nonstandard
Analysis (Keisler, 1976). The final sentence of Bishop'daevsums up his
views on Nonstandard Analysis quite well.

Now we have a calculus text that can be used to confirm their ex-
perience of mathematics as an esoteric and meaninglesssexir
technique. (Bishop, 1977, p. 208)

It should be noted that Bishop’s views are not necessardyeshby other
constructivists. For instance, Arend Heyting spoke higifillkbraham Robin-
son’s Nonstandard Analysis (Heyting, 1973).

Despite this proverbial ‘rocky start’, there have been redatory at-
tempts between the communities of Nonstandard and Cohiggumalysis.
In particular, a conference entitl&kuniting the antipodesas organized in
Venice in 1999 to bring together the two communities (Sanustal., 2001).
However, in (Van Oosten, 2006), the review of (Crosilla aoduter, 2005),
Van Oosten notes that little ‘reunification’ had taken pladenetheless, he
also suggests a notable exception: in (Palmgren, 2001¥,Falimgren de-
velops some Nonstandard Analysis in a constructive systdhrer results in
this area include (Richman, 1981, p. 208), (Moerdijk andriégaén, 1997)
and (Palmgren, 1996a; 1996b; 1997; 2000). It should be ribigdin the
constructive approach to Nonstandard Analysis, objects image ‘strange’
(i.e. non-classical) behaviour. A good example is the presef nonzero
nilpotent infinitesimals in certain constructive logicgstems.

In this paper, we take the dual approach to the above: wetigeés the
possibility of formalizing basic notions from construgivnathematicsn-
sideclassical Nonstandard Analysis. For instance, the notfaagorithm
is central to constructive mathematics. Is there a defmitroNonstandard
Analysis which captures this notion? Similarly, as the @mtives in con-
structive mathematics are intuitionistic (Bridges, 199996), do these have
counterparts in Nonstandard Analysis?

For this paper, we limit ourselves to the following quession

(1) Is there a (simple) notion in Nonstandard Analysis tlegiteres Er-
rett Bishop’s notion of algorithm?
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(2) How will we judge if the correspondence in the previoesritis any
good?
We first treat the second question in the next section. AgniotRemark 38
below, we do not attempt to capture the equally central cocte notion
of ‘proof’ inside Nonstandard Analysis.

2. The second question
2.1. The illusive notion of algorithm

In this section, we formulate a partial answer to the secamestipn in
Section 1, i.e. we formulate a criterion that allows us toggidhow good
the correspondence is between Bishop’s notion of algordhtha potential
(nonstandard) counterpart. Finding such a criterion istnioial, as Bishop
nowhere exactly defines the notion of algorithm. We firstlisathe various
reasons for this omission.

First and foremost, by keeping the notion of algorithm vaqmey result
proved in Constructive Analysis is also a theorem of cladsitathematics
(called ‘CLASS"), of intuitionistic mathematics (calletNT’) and Russian
constructive mathematics (called ‘RUSS’). In other wolggnot commit-
ting to a particular definition of algorithm, Bishop’s enssiia greater gener-
ality for his Constructive Analysis. The following quote Byuglas Bridges
reflects this idea.

Although Bishop has been criticised for being too vague scoin-
cept of algorithm, by this very vagueness he left open thsipiisy
of interpreting his work within a variety of formal systentéot only
is every theorem of BISH also a theorem of recursive conttric
mathematics — which is, roughly, recursive function thedeyel-
oped with intuitionistic logic — but it is also a theorem ofdgmwver’s
intuitionistic mathematics, and, perhaps more signifigaof clas-
sical mathematics. (Bridges, 1999, p. 2)

A second reason for leaving the notion of algorithm vague bwfound in
(Bishop, 1985). Bishop argues that the ‘naive’ notion obaittpm is more
basic and fundamental than e.g. the well-known notion ofingee func-
tion. Hence, we should forego the identification of algaritand recursive
function. The following quote by Bishop reflects this idea.

[The recursive function theorists] admit only sequencentégers
or rational numbers that are recursive (a concept we shaltdeo
fine here: see (Kleene, 1952) for details). Their reasonstlae¢
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the concept is more precise than the naive concept of digoyit
that every naively defined algorithm has turned out to berrecu
sive, and it seems unlikely we shall ever discover an algorithat

is not recursive. This requirement that every sequencetefans
must be recursive is wrong on three fundamental groundst &id
most important, there is no doubt that the naive concept s&cha
and the recursive concept derives whatever importancesifroan
some presumption that every algorithm will turn out to baurswe.
(Bishop, 1985, p. 20)

Although Bishop has good reasons for leaving the notiongdrithm vague,
the fact of the matter is that we do not have a direct definitibthis fun-
damental entity. In this way, it seems difficult to judge wieetany notion
captures Bishop’s notion of algorithm. Nonethelessdabave access to an
indirect definition of algorithm, discussed now.

In his writings, Bishop lists a large number of principlesdeems unac-
ceptable in his Constructive Analysis. We will refer to thgwinciples as
non-algorithmicor non-constructive A well-known example is thémited
principle of omnisciengewhich is an instance of the principle of excluded
middle.

Principle 1. (LPO) For everyy in Ag, we have(3n € N)p(n) v (Vn €
N)=p(n).

As intuitionistic logic is used in Constructive Analysisrigiges, 1999,
p. 96), LPO is interpreted abere is a finite procedure which decides the
truth of any existential statemenAs such a procedure would allow us to
decide the truth of Goldbach’s conjecture (and a slew ofrddmous open
problems in mathematics), it seems highly unlikely thatcarey will ever
construct such a device. This is the reason behind the i@jeof LPO
(and therefore the law of excluded middle) in intuitiordséind constructive
mathematics. Thus, by showing that a certain mathematieakrém implies
a non-algorithmic principle, we can show that this theoramnot be proved
in Constructive Analysis. The reduction of a theorem to a-algorithmic
principle is called a ‘Brouwerian counterexample’. We réfe(Mandelkern,
1989) for an overview of the latter.

Itis intuitively clear that, by considering a large numbé&non-algorithmic
principles and theorems, we obtainiadirect qualification of the notion of
algorithm: algorithms are those procedures that are Istuiataker than all
non-algorithmic techniques. Thus, if a given notilncaptures Bishop’s
primitive of algorithm, thenX should give rise to the same class of non-
algorithmic principles. For instance, LPO should also be-algorithmic
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compared tX in the same way as it is for Bishop’s primitive of algorithm.
The same should hold for all non-algorithmic principles {lie sense of
Bishop) and we arrive at the following (preliminary) criter.

For a formal notiorX to capture Bishop’s primitive of algorithm, all
non-algorithmic principles should be interpreted as ppies not
derivable usingX.

Note that this definition is not circular, as ‘non-algoritieivis defined as the
finite list of principles rejected in BISH. In order to work thithis criterion,
itis clear that we need a good overview of a large number ofalgarithmic
principles and theorems, and their connections. Such \sged by the dis-
cipline Constructive Reverse Mathematigstroduced in Section 2.2. In-
spired by these results, we will formulate a more detailégmgon.

2.2. Introducing Constructive Reverse Mathematics

In this section, we sketch an overview of the discipi@enstructive Reverse
Mathematic§YCRM). This survey of CRM will allow us to refine the crite-
rion formulated in the previous section. In order to desMRM, we first
need to briefly consider Errett Bishoponstructive Analysis

Inspired by L.E.J. Brouwer’s famous foundational prograiinguition-
ism (van Heijenoort, 1967), Bishop initiated the redevatept of classical
mathematics with an emphasis afgorithmic and computationalresults.
In his famous monograpkoundations of Constructive AnalysiBishop,
1967), he lays the groundwork for this enterprise. In horaBishop, the
informal system of Constructive Analysis is now called ‘BI'SIn time, it
became clear to the practitioners of Constructive Analfss intuitionistic
logic provides a suitable logical basis for BISH:

Now, our experience shows that wheneaconstructive mathemat-
ics, we are actually doing mathematics with intuitionistigic. The
desire for algorithmic interpretability forces us to ustuitionistic
logic, and that restriction of our logic seems to resultyvitably,
in arguments that are entirely algorithmic in characterou@las
Bridges, (Bridges, 1999, p. 97); See also (Bridges and,\Zp06,
p. 7).

In (Richman, 1990), Fred Richman has expressed a similaiapiHence,
the meaning of the logical connectives in BISH differs frdm tusual’ one
in classical mathematics. The following interpretationthef logical connec-
tives is found in (Bridges, 1999, p. 96) and (Bridges and@)\2p06, p. 8).
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Definition 2 (Connectives in BISH)

(1) The disjunctionP v Q: we have an algorithm that outputs either
or (), together with a proof of the chosen disjunct.

(2) The conjunctionP A (Q: we have both a proof aP and a proof of).

(3) The implicationP — (Q: by means of an algorithm we can convert
any proof of P into a proof of().

(4) The negation-P: assumingP, we can derive a contradiction (such
as0 = 1); equivalently, we can prov® — (0 =1).

(5) The formula(3z)P(x): we have (i) an algorithm that computes a
certain objectz, and (ii) an algorithm that, using the information
supplied by the application of algorithm (i), demonstrétes P ()
holds.

(6) The formula(Vz € A)P(z): we have an algorithm that, applied to
an objectr and a proof that: € A, demonstrates thadt(x) holds.

Evidently, the notion ofilgorithmis central to Constructive Analysis. We
refer the reader to (Bishop, 1967), (Bishop and Bridges5)188&d (Bridges
and Vi@, 2006) for a more detailed introduction to the latter.

We now introduce Constructive Reverse Mathematics (CRM)iahsome
of its results. We follow Hajime Ishihara’s survey papehitsara, 2006). In
effect, CRM is a spin-off from Harvey Friedman'’s well-knofiaundational
programReverse Mathematictn the latter, the aim is to find thinimalax-
ioms that prove a certain theorematlinary? mathematics. In many cases,
the theorem is alsequivalentto the minimal axioms, where this equivalence
is proved in the weak ‘base theory’ RGAStephen Simpson’s monograph
Subsystems of Second-order Arithmétian excellent introduction to Re-
verse Mathematics (Simpson, 2009). In CRM, the base theofiynspired
by) BISH and the aim is to find the minimal axioms that prove gaie
non-constructiveheorem. As in Friedman-Simpson Reverse Mathematics,
we also observe many equivalences between theorems anddbeised
minimal axioms in CRM.

We now provide an overview of important CRM results, basetHajime
Ishihara’s survey paper (Ishihara, 2006). These resujjgesi that the non-
constructive principles exhibit a lot ¢dgical structure Indeed, although all
these principles are rejected in BISH, some have a higheicanstructive
content than others. Thus, CRM provides (or aims to provéaedxact clas-
sification of the non-constructive content of various welbwn principles
and theorems. As we will observe, this classification exibilot of logical
structure.

2See (Simpson, 2009, p. 2) for a description of ‘ordinary reathtics’.
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First of all, recall the definition of the arithmetical hiechy.
Definition 3 For k£ > 0, we have the following.
(1) Aformulaisboundedif every occurrence of quantifiers is of the form
(In <t(z)) and(Vm < s(y)), wheres andt are terms.
(2) A formula isAq (or Xg, or Ily) if it is bounded and has no occur-
rences of infinite numbers or the predicate ‘is infinite’.
(3) Aformulaisll, if it has the form(Vn € N)p(n) with ¢ € Xy.
(4) Aformula isXy, if if has the form(3n € N)p(n) with ¢ € TTj.
Next, we consider the following theorem regarding LPO.
Theorem 4 In BISH, the following are equivalent.
(1) LPO:Pv-P (PeXy).
(2) LPR:(Vx e R)(x >0V =(x >0)).
(3) MCT: (The monotone convergence theorem) Every monotone bounded
sequence of real numbers converges to a limit.
(4) CIT: (The Cantor intersection theorem).

By Definition 2, all connectives are intuitionistic and henthe meaning
of the items in the previous theorem differs a lot from thatha classical
framework. Indeed, item (2) is read, in BISH,tasre is a finite procedure to
decide between > 0 and its negationAs ‘z > 0’ is an existential statement
in BISH (See Definition 19 below or (Bishop, 1967, Definitio}),3PR
seems to be a non-trivial principle. We will discuss LPR an@™n more
detail in Sections 3.2 and 3.1.

Next, we list equivalences of LLPO, thesser limited principle of omni-
science
Principle 5: (LLPO) For everyP, @ in X1, we have-(P A Q) - =P v =Q.

Note that LLPO is an instance of De Morgan’s law, and is rejgan
BISH. Indeed, LLPO states thita proof of P A (Q leads to contradiction,
then we can decide whethét leads to contradiction or) leads to contra-
diction, and the existence of such a decision procedure is highligtéidu
Theorem 6 In BISH, the following are equivalent.

(1) LLPO.
(2) LLPR: (Vz e R)[=(z > 0) v ~(x < 0)].
(3) NIL: (Vz,y e R)(xy=0—>2=0vy=0).
(4) CLO:For all 2,y € R with -=(z <y), {z,y} is a closed subset &.
(5) IVT: a version of the intermediate value theorem.
O



190 SAM SANDERS

(6) WEI: a version of the Weierstral3 extremum theorem.

We will investigate the principle LLPR in greater detail ie@ion 3.4.

As the last of the omniscience principles, we consider WLIP@®weaker
limited principle of omniscience

Principle 7: (WLPO) For everyP in X, we have-P v -—P.

Note that in BISH, the principle of ‘double negation elimiioa’ is not

available: the formula) does imply--@, but not the other way around.

Hence, we observe that WLPO is weaker than LPO. We have tlosvfoh
theorem.

Theorem 8 In BISH, the following are equivalent.
(1) WLPO.
(2) WPR:(Vz e R)[=(z >0) v-=(z>0)].
(3) DISC:A discontinuous function froli¥ to N exists.

Finally, we consider several versions of Markov's prineiphamed after
the Russian mathematician Andrey Markov (Jr.). The stafudarkov’s
principle is ambiguous in constructive mathematics. Alioit is accepted
in the Russian constructivist school, it is rejected in Bgh Constructive
Analysis and in intuitionistic mathematics. An interegtidiscussion of this
topic may be found in (Bridges and ¥it2006, p. 10-11).

First of all, we consider the usual version of Markov’s pipte, a version
of double-negation elimination.
Principle 9: (MP) For everyP in X1, we have--P — P.

We have the following theorem.

Theorem 10 In BISH, the following are equivalent.
(1) MP.
(2) MPR(V(L’ € R)[—'—!(IE > 0) -> T > O]
(3) EXT: (The strong extensionality theorem).

Next, we consider a weaker principle: thisjunctive version of Markov’s
principle. The latter is also a (complicated) instance of De Morgaa/s |

Principle 11: (MPY) For everyP,Q in 31, we have-(-P A -Q) - -—P v

-
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Theorem 12 In BISH, the following are equivalent.
(1) MPY.
(2) MPR": (Vz e R)[-=(2 #0) » ==(2 > 0) v -=(z < 0)].
(3) CLO : For all z,y € R with ——(x < y), {z,y} is a closed subset of
R.

Note that & + ' is short for the existential statemept—y| > 0 and is
strongerthan the negative statementz = y).

Finally, we consider a weaker principle: theeak version of Markov's
principle.

Principle 13 (WMP) For every decidableP, if for every decidable),
~—[(En)Q(n)] v ==[(3n)(P(n) A -Q(n))],
this implies(3n) P(n).
We have the following theorem.
Theorem 14 In BISH, the following are equivalent.
(1) WMP.
(2) WMPR:(Vz € R)([(Vy eR)(-—(0<y) v--(y< x))] > > O).

The following theorem summarizes the relations betweerabiwere prin-

ciples.
Theorem 15 The following hold irBISH.
(1) LPO< WLPO+ MP.
(2) WLPO—- LLPO.
(3) MP < MPY + WMP.
(4) LLPO— MPY,

Note that we only have selected a number of equivalenceshamadems
from Ishihara’s survey paper (Ishihara, 2006). For ingtarvee have not
considered the famoun theorem Nonetheless, even with this partial
overview, we may conclude that the non-algorithmic priteggxhibit a lot
of logical structure we observe ‘degrees’ of non-constructiveness among
the non-constructive principles, rather than just one $éequally non-
constructive’ principles.

O
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2.3. An answer to the second question

In the previous paragraph, we have observed that the namithigic prin-
ciples in Constructive Analysis exhibit a lot of structuréhis observation
allows us to refine the criterion by which we judge whether réage notion
captures Bishop’s primitive of algorithm. Our preliminagyiterion from
Section 2 was the following.

For a formal notiorX to capture Bishop’s primitive of algorithm, all
non-algorithmic principles should be interpreted as ppies not
derivable usingX.

Ouir final criterion is as follows.

For a formal notionX to capture Bishop’s primitive of algorithm,
all non-algorithmic principles should be interpreted am@ples
not derivable usingX. Moreover, the interpretations of the non-
algorithmic principles satisfy the same implications aqdiealences
as their originals in Constructive Reverse Mathematics.

By the previous criterion, a certain formal noti&ircaptures Bishop’s notion
of algorithm if we can use it to ‘reverse engineer’ the resoftConstructive
Reverse Mathematics. For the rest of the paper, we attenfiptitsuch a no-
tion X in Nonstandard Analysis. This notion will give rise to a eéntinter-
pretation of Constructive Analysis in Nonstandard Anay$n Remark 29,
we discuss the exact nature of this interpretation. In twasiathe main goal
of the rest of this paper is as follows: We define a notion ddllenvariance
inside Nonstandard Analysis, which is intended to captushdp’s notion
of algorithm. Rather than providing a ‘literal’ translatifrom BISH to Non-
standard Analysis, we show thatinvariance gives rise to the same kind of
Reverse Mathematics results inside Nonstandard Analysis.

3. The first question

In this section, we explore the possibility of capturing lip’s notion of
algorithm by a simple notion from Nonstandard Analysis. Egpository
reasons, our presentation remains at the informal levele fEBader only
needs to be acquainted with the very basic notions of NodatdnAnalysis.

For the rest of this paper, we také= {0,1,2,... } to denote the set of
natural numbers, which is extended®d = {0,1,2,...,0",w’ +1,... }, the
set ofhypernaturalnumbers, witho’ ¢ N. The sef2 = *“N\ N consists of the
infinite numbers, whereas the natural numbers are céilte. \We tacitly
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assume that the domain of functiofis N — N can be extended taN. We
reason in an unspecifigdystem of Nonstandard Analysis which does not
involve the transfer principl&-TR defined below, or stronger principles.

3.1. The monotone convergence theorem

We consider the following Brouwerian counterexample byhBjsconcern-
ing the monotone convergence theorem for sequences of reals

Example 16 (From (Bishop, 1985, p. 6)) We represent the terms of the se-
guence [in the monotone convergence theorem] by verticdtsmaarching
to the right, but remaining to the left of the bousd

| | | | T R R |B

The classical intuition is that the sequence gets crampEzhuse there are
infinitely many terms, but only a finite amount of space to thie of B.
Thus, it has to pile up somewhere. That somewhere is its fimit

L B

The constructivist grants that some sequences behavedisgigethis way.
| call those sequences stupid. Let me tell you what a smarieseg would
do. It will pretend to be stupid, piling up at a limit, (in régla false limit)
L. Then when you have been convinced it really is piling up atit will
take a jump and land somewhere to the right!

With this informal example, Bishop intends to cast doubt lo@ possi-
bility that afinite procedure can compute the limit of a bounded increasing
sequence. In other words, the example illustrates thatimhpossible that
we can prove MCT in BISH.

3The reader may check that a version of Nonstandard Analygsedon/ Ao + exp
suffices for our purposes. In general, a nonstandard veo$iBE A, (Simpson, 2009) seems
to suffice.
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To see that the monotone convergence theorem actuallyampkO in
BISH, consider the following sequence,

: )

i (Ym < n)(m)
P wr wB otherwise
wherev is Ay andw,, iS an increasing sequence beldyy converging to
w < B. By definition, z,, converges tav if and only if (Vn € N)¢(n). By
MCT, we can decide i, converges tav or not. By the definition of:,
in (1), this allows us to decide {fan € N)-1(n) or not, i.e. we have LPO.
Moreover, the usual proof of MCT can be used to prove the irafibn
LPO - MCT. Hence, MCT is equivalent to LPO.

In light of the equivalence between MCT and LPO, the follagvirnvo
remarks are important here.

First of all, in (Sanders, 2011), it is shown that a certaionfplicated)
version of MCT from Nonstandard Analysis is equivalent te fallowing
principle, to be compared to LPO.

Principle 17: (31-TR) For all ¢ € A, we have
(In eN)p(n) v (Vn € *N)-p(n). (2)

The previous principle is the transfer principle of Nonslam Analysis,
limited to X;-formulas. Note thaE-TR is a kind of ‘hyperexcluded’ mid-
dle: it excludes the possibility that

(VneN)(n) A (In € *N)-1p(n), 3

for anyy € Ag. Moreover, in (Moerdijk and Palmgren, 1997), it is shown
that the full transfer principle implies the principle ofaxded middle in
intuitionistic logic. Hence, we suspect there to be someneotion between
¥1-TR and LPO.

Secondly, in the absence bf-TR, we cannot exclude that (3) holds for
somey € Ay. In this case, the sequenggin (1) has exactly the behaviour
depicted in Example 16. Indeed, seems to converge to for any finite
n € N, but at some pointz, jumps overw. Hence, there seems to be a
connection between tteandardversion of MCT and;-TR.

In the following paragraph, we investigate these — admiiftedgue —
connections further by studying another famous princigigvalent to LPO.
We finish this paragraph with a remark dp-TR.
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Remark 18 We tacitly assumed that parametér®f natural numbers are
allowed iny in (2). Written out in full, the latter formula thus readsy fo
fixedk e N,

(VZ e N*)[(3n e N)p(n,Z) v (Yn € "N)-p(n,2)].

For the rest of this paper, we will assume that such parasaterallowed
everywhere. However, we usually omit parameters for aéstreasons.

3.2. The constructive continuum

In this paragraph, we study Brouwer’s well-known theorert ttne intu-
itionistic continuum cannot be split in two parts (van Hegert, 1967, p.
446). To this end, we need some definitions concerning realbeus in
Constructive Analysis.

Definition 19
(1) Areal number is a sequence, : N — Q such that

(Vn,meN)(|qm—qn|<%+%). 4

(2) We write = > 0’ if (3k € N)(gx > 1), and = < 0" if (Ik € N)
((-z) >0).
(3) We write =z > 0" if (Vk € N)(gx > -1), and 'z < 0" if (Vk € N)

(-2)>0).
(4) Wewrite'z=0"if z<0Az>0.

Thus, in Constructive Analysis, a real number is a Cauchyieecg of
rational numbers which converges quickly. The usual opmrat+ and x
can be defined easily on the real numbers (Bishop, 1967, Defird).

Now consider the following principle.
Principle 20: (LPR) (Vz e R)(z >0V =(z > 0)).

With the above definition, it is clear that LPR has the samdagyital
form as LPO: they both express the existence of a decisiocegdtoe for
(certain)X;-formulas and their negations. By (Ishihara, 2006, Theotgm
LPO and LPR are indeed equivalent. Thus, LPR is rejected imstBactive
Analysis, and, by Definition 2, there is indeed no way to (tamcsively)
split the continuum in the two sefs oo, z¢] and[zg, +o0), for anyxz, € R.
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We now study the connection betweBh-TR and LPR. The latter ex-
presses thatve can decide, by means of a finite procedure, whether0
holds or not Now, if X1-TR is available, then the existential formuta> 0
is equivalent to the formul@dk < w)(qx > %), for any choice ofv € Q. As
the latter is @oundedormula, it is easy to verify whether it holds. Thus, we
observe that iB;-TR is available, then we can easily judge whether 0
holds or not (modulo a procedure to decide bounded formul@shilarly,
if we have(3k < w)(qx > %) for all w € ©, then we obtain, by underflow,

(Fk e N)(qx > %), i.e.z > 0.

In the previous paragraph, we observed tHaiTR implies a version of
LPR: given the former principle, we can deciderif> 0 or -(z > 0) by
considering(3k < w)(qx > %). However, the most important observation
to be made is that the choice ©fin the latter formula does not matter: by
¥1-TR, the formula(3% < w)(qx > %) is equivalent to( 3k € N) (g > %),
for any choice ofw € 2.

Finally, we note thak;-TR also yields a way to decide;-formulas. In-
deed, in the same way as in the previous paragraphs, we hatvg3th
N)p(n) is equivalent to(In < w)p(n), for any choice ofv € Q, if ¥;-TR
is available. Thus}:;-TR provides a certain decision procedure ¥or-
formulas, which is similar to the content of LPO.

In this paragraph, we obtained a more concrete connectioveba LPO
and X;-TR. Indeed, we observed that both give rise to a certainsaaci
procedure forx;-formulas. However, the most important observation was
that, in the case oE;-TR, the decision procedure dowolve an infinite
numberw, but that the procedure does not depend ofcti@ceof w € ).

3.3. Turing machines and independence

In the previous paragraph, we hinted at a certain — still eagt notion
of independence as the key to the connection betiigemR and LPO. To
make this notion more precise, we now study a concrete exaofgom-
putabilty: theTuring machine We refer to (Soare, 1987) for an introduction
to the latter.

By (Soare, 1987, Theorem 2.2, p. 64), the membership ralafia setA
may be decided by a Turing machine, if and onhifis A1, i.e. there are
©1,p2 € Ag, S.t.

A={meN:(3Iny eN)pi(ny,m)} ={meN:(Vnge N)gpg(ng,m)}.(s)
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We now show that\;-sets satisfy the following vergoncreteindependence
condition.

Theorem 21 For every A-set A c N, there areN x N — N-functions
pa(n,m) andqa(n,m) such that, for any fixed ¢ 2, we have

(VkeN)[ke Ao pa(k,w) <qa(k,w)]. (6)

Proof. AssumeA is A4, i.e. we have (5) for someq, s in Ag. Define
pa(n,m) as the leask; < m such thaty;(n1,n), if such exists andn
otherwise. Leg4(n,m) be the leashs < m such that-pa(ng,n) if such
exists andn otherwise. We now prove thaty andq 4 indeed satisfy (6).

First of all, fixw € . Fork e N, if k£ € A, thenp(k,w) is finite and
qa(k,w) isinfinite, by (5). In particular, we hayes (k,w) < g4(k,w). Now
suppose there is sonmtg € N such thatp 4 (ko,w) < ga(ko,w) andkg ¢ A.
By (5), we have(Vny € N)-pi(n1,mg) and, by definition, the number
pa(ko,w) must be infinite. Similarly, the number (ko,w) must be finite.
However, this implie® 4 (ko,w) > ga(ko,w), which yields a contradiction.
Thus, we havek € A < pa(k,w) < qa(k,w), for all k € N. Itis clear that
we obtain the same result for a different choiceuvaf (2. 0

By the previous theorem, for every sétc N in Ay, there is a formula)
in Ag such that, for any fixed ¢ €2, we have

(VEeN)[ke A (kw)].

In other words, the sef is fully described by a simple formula(n,w).
Moreover, the description involves an infinite numberbut isindependent
of thechoiceof w € Q2. Thus, we have found @oncreteindependence prop-
erty which captures the Turing computable sets. Motivatgethis results,
we introduce the following definition.
Definition 22 Let ¢)(n,m) be Ay and fixw ¢ Q. Theny(n,w) is Q-
invariantif

(Vn e N)(Vw' € Q) (¥ (n,w) < ¥(n,w")). 7
For f : N x N — N, the functionf (n,w) is calledQ-invariant, if

(Vn eN)(Yw,w' € Q)(f(n,w) = f(n,w")).

The following theorem shows that the (truth) value of kinvariant object
is already determined at some finite stage.
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Theorem 23 For everyQ-invariant formulay (n,w), we have

(Vn e N)(3mg e N)(Ym,m' € “N)[m,m' > mg - ¥(n,m) < (n,m')].
For everyQ-invariant functionf (n,w), we have °
(Vn e N)(3mg e N)(Ym,m' € “N)[m,m’ >mg - f(n,m) = f(n,m’)].
In each case, the numbet, can be computed by an-invariant functiong.

Proof. This proof requires the techniquesderflowandoverflowfrom Non-
standard Analylsis, available even in very weak systems afistandard
Analysis (Im- pens and Sanders, 2008). For expository reasee do not
go into detalils. O

In light of Theorems 21 and 23, it seems justified to claim fhdivariance
(partially) captures the notion of ‘algorithm’ and ‘finiteqeedure’. We will
refer to Q2-invariant functions and formulas ascomputable functionss-
algorithms, x-finite proceduresy-decision procedures, etc., to avoid possi-
ble confusion with the original nomenclature.

3.4. Reverse engineering Constructive Reverse Mathematics

In this section, we use the notion efalgorithm to obtain results similar to
Theorem 4, inside Nonstandard Analysis. The theorems sethection are
proved in an unspecifiédsystem of Nonstandard Analysis which does not
involve the transfer principl&-TR or stronger principles.

We first prove the following theorem.
_Theorem 24 GivenX;-TR, a #-algorithm can decide which disjunct holds
" (3n e N)p(n,z) v (Vn € *N)=p(n, 7), (zeNF peAy)  (10)
i.e. there is ar2-invariant formulay (z,w) such that

(VE e N*)(¢(&,w) » (In e N)p(n, 2)A-)(F,w) - (Vn € *N)=p(n, 7)).
(11)

4The reader may check that a version of Nonstandard Analgsisdor! A + exp suf-
fices for our purposes. In general, a nonstandard versiol€éiRSimpson, 2009) suffices.
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Proof. By ¥;-TR, the formula(3n € N)y(n,Z) is equivalent to(In <
w)p(n,z), for any fixedw € Q andz € N¥. Also, if (Yn < w)-p(n,7),
then(Vn € N)-¢(n,z), and we obtair{Vn € *N)-p(n, z), by X1-TR.

We define the functiorf (z,m) as follows.

. 1M (3n <m)p(n, T)
f(@m) = {0 If (V< m)-p(n, i)

By the previous paragraph of the proof, we have
(IneN)p(n,z) < f(Z,w)=1and(Vn e *N)-p(n,z) « f(Z,w) = 0.

for any fixedw € Q andz € N*. In particular, this implies thaf (#,w) is
Q-invariant, and we have foundsaalgorithm to decide (10), i.e. (11). O

Recall that LPO is interpreted in Constructive Analysigtese is an al-
gorithm to decide whethgidn € N)p(n), or its negation, holdsAlthough
the previous theorem is a step in the right direction, foar{(ttD) is not quite
the same as the disjunction in LPO. The following definitiginside Non-
standard Analysis) will make (10) look more like LPO.

Definition 25 [x-disjunction] The formulad v B is short for the statement
There is arf2-invariant formulay (Z,w) such that

(V3 e NF)(1(3,w) = A(Z) A ~(Z,w) > B(2)). (12)

Note thatA v B indeed impliesd v B. In addition, there is af-invariant
formula which tells us which disjunct of v B holds. HenceA v B indeed
expressedhere is a+-algorithm that decides which disjunct dfv B holds

Definition 26 [+-negation] Fory in Ay, the formula=[(3n € N)p(n)] is
defined agVn € *N)-p(n) and the formula=[(Vn € N)p(n)] is defined
as(3n € *N)=p(n).

Note that blocks of existential (resp. universal) quamntfiean be com-
bined intooneexistential (resp. universal) quantifier. Of course, itasgible
to definex-negation in full generality, but this would lead us too far.

The newly introduced connectives will also be calleecbnnectives’. The
previous definitions yield the following principle, to beropared to LPO.

Principle 27: (£BD) For everyp € Ag, (In € N)p(n)v-=[(In e N)p(n)].
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The following remark shows that thenegation is not just an aesthetic
device, but behaves like its intuitionistic counterpart.

Remark 28 In intuitionistic logic, -=[(3n € N)¢(n)] implies the universal
formula (Vn € N)-¢(n), but-[(Vn € N)p(n)] is weaker than the exis-
tential formula(3n € N)-¢(n). By Definition 2, the intuitive justification
of this asymmetry is that, even if it is impossible thatn) holds for all

n € N, this does not provide a method to compute a counterexarSjniei-
larly, =[(3n € N)p(n)] implies (Vn € N)-p(n), but=[(Vn € N)p(n)] is
weaker than the existential formul@n € N)-¢(n). The latter formula can
be stated athere is ax-algorithm that computes, € N such that-p(ng).
Indeed, if(In € N)-p(n), then(un < w)-p(n) computes the least such
number, in arf2-invariant way. Furthermore, if there is a proof of the unive
sal formula(Vn € N)p(n) in Nonstandard Analysis, then — under certain
conditions —there is also a proof fn € *N)(n). Such results are called
conservation resultsSee e.g. (Avigad and Helzner, 2002, Theorem 4.4) for
a textbook example. This partially explains the definitiér-anegation.

At this point, we believe we should discuss the exact natittesdnterpre-
tation we are establishing between Constructive and Nodatd Analysis.

Remark 29 In this paper, we wilhot obtain a literal translation of intuition-
istic logic (or Constructive Analysis) inside Nonstand#mdalysis. More-
over, we do not provide some version of the well-knorealizability in-
terpretation Our aim is similar, but different: we define new connectives
(*-disjunction and:-negation) which are based éhinvariance in the same
way the intuitionistic connectives are based on the pnimitiotion of algo-
rithm. The definitions of these new connectives iaspired by their intu-
itionistic counterparts, but, a priori, that is the only pention.

After introducing these new objects, we will translate a bemof well-
known principles (like LPO and LLPO) from CRM to Nonstandamhlysis,
using thex-connectives. For the most part, this ‘translation’ caissis re-
placing the intuitionistic connectives with their nongdard counterpart, i.e.
the translation is usually purely mechanical. We prove thase translated
principles (called¢ 3O and ££B90) satisfy the same equivalences in Non-
standard Analysis as their counterparts in CRM do. Whenaveechanical
translation was not possible for a given principié in CRM (e.g. for the
principle DISC orIl;-LEM), we have used theneaningof W in BISH to
obtain a reasonable counterpaftof W in Nonstandard Analysis. Itis be-
yond the scope of this paper to discuss examples of the satterHowever,
in a sense, the translation is both syntactic and semamntiature.
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Hence, the main goal of this paper becomes clear: We defindi@nno
calledQ-invariance inside Nonstandard Analysis, which is intehtiecap-
ture Bishop’s notion of algorithm. Rather than providinditetal’ transla-
tion from BISH to Nonstandard Analysis, we show tkkinvariance gives
rise to the same kind of Reverse Mathematics results insiolestdndard
Analysis.

We have the following theorem.
Theorem 30 The principle£B 9O is equivalent to2;-TR.

Proof. The reverse implication follows immediately from Theoreshahd
Definitions 25 and 26. For the forward implication, {ebe as in;-TR. By
£B90, one of the disjuncts of

(An e N)p(n) v (Vn € *N)-p(n)

must hold. This immediately implies;-TR. d

By Theorem 4, LPO is equivalent to LPR. The latter principlesely
resembles the following one.

Principle 31 (£PBR) (Vx e R)[x >0V =(x>0)].

By Definitions 25 and 26 £939R is the statementhere is ax-decision
procedure forz > 0 and =(« > 0). This interpretation is similar to that
of LPR in Constructive Analysis. We now prove the equivatebetween
L£PBO and £PR, to be compared to Theorem 4.

Theorem 32 The principle£B 9O is equivalent toZ39A.

Proof. For the forward implication, recall that > 0 is defined a3k «
N)(gx > 1) and that=(z > 0) is defined ag ¥k € *N)(g;, < +). By Theorem
30, we may us&;-TR. By the latter, if(Vk € N) (g, < 1) then also-(z > 0)
follows. Moreover, the number is a real, i.e. we have (4). BY{-TR, we
obtain

(Vn,m € *N)(|gm — gn| < % + %)

Thus, for infinitew, w’, the difference betweem, andq, is only infinitely
small. By this observation, in case = 0 is false, it suffices to check if
qw > 0 orif ¢, < 0 to know whether: > 0 or x < 0. GivenX1-TR, 2z =0 s
equivalent ta(Vk < w)(|gx| < 1), for any fixedw € Q.
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Finally, we define the-algorithm which decides between- 0 and—(x >
0). Fix somew € 2. First, check if(Vk < w)(|qx| < %). If this formula holds,
then we haver = 0 and return ~(z > 0)". Otherwise, check if;, > 0. If this
formula holds, returnz > 0. Otherwise, return=(z > 0)’.

This =-algorithm is easily brought in the form (12). Indeed, thariala
Y(w) = [(VEk <w)(|gr| < 1)V (qw <0A(Fk <w)(lgx| > 7))] is Q-invariant.
Hence,

-p(w) >z >0AY(w) > =(z>0).

For the reverse implication, assun@3R and lety be as inX;-TR and
assumep(n) holds for alln € N. Suppose there is ane €2 such that-p(w)
and letwy be the least of these. We first define the functjo) as follows

N1 (3n<i)-p((n)
9“0(2)‘{0 (Vn <i)p(n)

Secondly,h, () is the leastn < i such that-¢(n), if such exists, and
otherwise. Finally, we define the reaks follows

4k = Z;) mgw(l)-

Note thatr satisfies (4), i.e. that is indeed a real number.

As gy, = 0for k € N, we cannot have > 0. Similarly, asg,, = ;%™ 2i for
m > wp, we cannot have (z > 0). However, we have just showed that both
x>0 and-(xz > 0) are impossible. This contradic)39: and we conclude
that there cannot be € Q such that-p(w). Together with our assumption
that (Vn € N)p(n), the principle£BR thus implies(Vn € *N)p(n). From
this, >1-TR follows easily and, by Theorem 3839 is obtained. g

The previous theorem is our first step towards ‘reverse eeging’ Con-
structive Reverse Mathematics. We now obtain a result aind Theorem
32 for the principles LLPO and LLPR. By Definitions 25 and 2te tatter
correspond to the following principles in Nonstandard Amsé.

Principle 33 (££BO) ForeveryP, Q in X1, we have-(PAQ) - =Pv-=Q.
Principle 34: (££BR) (Vz e R)(=(z>0) v =(x <0)).

Before we prove the equivalence between the previous ples;iwe need
to consider the following remark regarding the constr@ctentinuum.
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Remark 35 In (Bridges, 1999, Axiom set R2), we find(z > y A x < y)
among the axioms for the constructive continuum. Furtheen8&ishop
states that this formula, though negative in nature, is aitevin his Con-
structive Analysis (Bishop, 1967, p. 21). Thus, it seeméfjad to tacitly
assume that(z > 0 A z < 0) holds for all real numbers. We need this
property in the proof of Theorem 36.

We have the following theorem.
Theorem 36 The principles€ £ 9O and ££935R are equivalent.

Proof. We first study the exact content @f239. Consider the following
formula

~[(In e N)p1(n) A (3m € N)pa(m)], (13)

with ¢1, 2 € Ag. Itis clear that the antecedent 8ELO, i.e. = (P A Q),
has exactly this form. By Definition 26, (13) is equivalent to

(Vn € "N)=¢p1(n) v (Ym € "N)=pa(m). (14)
The consequent a0, i.e. =P v =@, then has the form

(Vn e *N)=p1(n) v (Ym € *N)—pa(m). (15)
Thus, ££99 is the statement thaft (14) holds, then there is a-algorithm

deciding which disjunct of this formula holdse. (15).

Now assumeZ £B9 and fixx € R. As discussed in Remark 35, we may
assume the formula(z > 0 A z < 0). By Definition 26, the latter formula is
equivalent to

(Vke*N)[qu%v(Vle*N)(mz—%)]. (16)

We apply££98 90 to decide which of the disjuncts of this formula holds. As
the first disjunct of (16) is*(xz > 0) and the second one ig(z < 0), we
obtain LLPBAR.

For the other direction, assumEC9R, let o andp, be as in (13). We
now define as-algorithm to decide betweegfVn € *N)-p;(n) and(VYm €
“N)-¢2(m). To this end, fixv’ € Q and consider the following three cases.

Firstofall, if (Vn <w’)-¢1(n) is false, we must havevm € *N)-¢pa(m),
by (14). Thus, we output[ (Im € N)pa(m)]'.
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Secondly, if(Vm < w")-p2(m) is false, we must havgvn € *N) -1 (n),
and we output=[(3n € N)p;i(n)].

For the third case, we may assurfién < w')-p1(n) and (Ym < ')
-a2(m). We first define the functiop,,, ., as follows

-1 if (In<i)p1(n),

Gorp2 (i) =1 1 if (3m < i)pa(m),
0 if (Ym<i)-pa(m)and(Vn < z)—w,pl(n)

Note that the previous function is well-defined, as the ¢ase *N)p (n)A

(3m € "N)p(m) cannot occur, by (14). We also define the functon ., (¢)
as the least’ < i such thatp; (n") v p2(n'), if such exists, and otherwise.
Finally, we define the real numberas

k
Z 2z hw o (z) g<P17302 (Z)

1=

Note thatr is indeed a real number by (4), and the assumptions madesin thi
case. ByLLPR, we can decide between(z > 0) and—(z < 0). If the
first formula holds, we havévk € *N) (g < %). This is only possible if
(Vm € *N)-p2(m) holds, and we output this formula. Similarly,#{x <

0) is holds, we havéVk € *N)(gx > —1), which is only possible i{ Vn €
“N)-¢1(n) holds, and we output this formula.

Hence, £ L3R provides a+-algorithm to decide which of the disjuncts of
(14) holds. From thisC £330 easily follows and we are done. O

Finally, we prove one partial result from Theorem 15.
Theorem 37 The principle£PBO implies ££B9O.

Proof. Assume£B9. By Theorem 30, we may usg;-TR. Let ¢; and
w9 be as in (14). We can easily verify which disjunct in the lattelds,
by checking if (Vn < w)-¢i(n) and (Vm < w)-p2(m), for any fixed
w € Q. Indeed, byX;-TR, these bounded formulas are equivalen{‘te «
“N)—¢1(n) and (Ym € *N)-po(m), respectively. ThusgLBO follows.

]
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3.5. An answer to the first question

In this paragraph, we formulate a partial answer to the fisgtistjon from
Section 1.

Although suggestive, Theorems 32 and 36 do not even sciagcsutface
of Constructive Reverse Mathematics (CRM). Indeed, aseiardrom Sec-
tion 2.2, there is a large (and growing) number of princigad equivalent
theorems that constitute CRM. Furthermore, we did not feeatulas of the
form ——¢, nor did we attempt to interpret intuitionistic implicatfta Thus,
the results in this paper are more suggestive than definitimature. They
do suggest an interesting avenue of research, however.

Hence, the answer to the first question is a careful ‘maybe&:need to
treat a large number principles from CRM inside Nonstandardlysis be-
fore we can accurately judge if the notion @finvariance gives rise to the
‘same’ kind of equivalences as we find in CRM. In (Sanders,2B)1this
investigation is undertaken ‘in full’ and a large number qtiwalences was
obtained in a similar fashion to the above. However, one @mers a sig-
nificant problem with the current ‘naive’ approach and neeaslare needed
to overcome this hurdle. In particular, an interpretationthe constructive
notion of ‘proof’ inside Nonstandard Analysis is requirexs, discussed in
Remark 38 below.

As usual, any answer leads to many questions. The first guesiat
comes to mind in light of our above results ¥fhy is there a connection
between Nonstandard and Constructive Analy$i&now briefly speculate
on this topic.

In Nonstandard Analysis, the notion ioffinite numbeiis central. The fi-
nite numbers are exactly the natural numbers. The new n@éN \ N
are the infinite numbers and no ‘finite’ operatigncan take a finite number
to an infinite number. The ‘finite’ operations include all theualN — N-
functions.

01 ... N w *N

W

We now propose a similar (but vague) interpretation for thiiral numbers
in Constructive Analysis, when assumingeaternalpoint of view. In BISH,

SNote that it is possible to define-* in such a way that the counterpart of Markov's
principle, i.e.~—=P — P (P € X,), is not derivable in (our base theory of) Nonstandard
Analysis. Hence, our results are not just an instance ofabethat recursive mathematics
RUSS is a model for BISH, as might be wrongly suggested by fedme@1. We thank Martin
Dauvis for the discussion regarding this question.
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the notion ofalgorithmis central. A number only exists after an algorithm
has been given to compute it, i.e. when it has been consttucte (vague)
set NV of numbers that have been constructed is always expandiogv- H
ever, there are some numbers we can never hope to constargéhskEance,

it is generally agreed that Constructive Analysis can bm#étized inH A%,
Heyting arithmetic augmented with all finite types. Howevbke functiof§
H.,(z) cannot be defined in the latter system. Hence, for most elsmen
xo € N, we can never construct the numbér, (x). Thus, we obtain the fol-
lowing picture ofN: the numbersV are the ‘constructible’ (or ‘constructed’)
numbers, whereas the numbersNn. A/ are non-constructible Moreover,
no ‘constructive’ operatiod can ever take a number v outside of this set.

01 ... N Hey(x0) N
X

We emphasize that the above comparison is vague and inforkval do
believe it to serve an explanatory purpose.

In the following final remark, we discuss the proverbial f#iant in the
room’ regarding Definition 2.

Remark 38 In this paper, we have concentrated on finding a concept from
Nonstandard Analysis which captures Bishop’s notion ohgtauctive) al-
gorithm. However, as is clear from Definition 2, the notjgmoof plays an
important role in Constructive Analysis. Nonetheless, aeégmot attempted

to provide an interpretation for this equally central notio

In (Sanders, 2012a), a first attempt is made to establishtarpnetation
of the constructive notion gdroof in Nonstandard Analysis. As it turns out,
in the same way Constructive Analysis is limited to formutzat come with
proofs, the limitation to formulast which satisfy (a version of) the Trans-
fer Principle ‘A < * A’ from Nonstandard Analysis, provides a suitable in-
terpretation of ‘proof’. Note that by Definition 26 and Reka8, a kind
of Transfer is already built inte-negation. We refer to (Sanders, 2012a)
for details. A full interpretation of Constructive Analgsinside Nonstan-
dard Analysis in this spirit is forthcoming in (Sanders, 261 These re-
sults endow Constructive Analysis with a certain ‘robusfeas discussed
in (Sanders, 2013).

5The functionH, (z) is called theHardy functionof level o ¢ ORD. See (Buss, 1998).
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4. Conclusion and Future research
4.1. Conclusion

In this paper, we made an attempt at bringing NonstandardCandtructive
Analysis closer together, i.e. atuniting the antipodes This was accom-
plished by attempting to isolatdgorithm, the central notion of Constructive
Analysis, inside Nonstandard Analysis. We used the folhgiwo questions
from the introduction as guiding principles.
(1) Is there a (simple) notion in Nonstandard Analysis tlagttares Er-
rett Bishop’s notion of algorithm?
(2) How will we judge if the correspondence in the previoasritis any
good?
By reviewing the main results in the discipline ConstruetiReverse Mathe-
matics (a foundational program based on Constructive Amslywe arrived
at a criterion by which we mighndirectly capture Bishop’s primitive no-
tion of algorithm. In short, a formal notion captures Bislsoprimitive of
algorithm if it gives rise to the same equivalences as foun@anstructive
Reverse Mathematics. Indeed, if the latter is the case,ttfeaame princi-
ples are non-algorithmic in both cases, i.e. with regardhéfdrmal notion
and with regard to Bishop’s algorithm. Hence, the formalarmust (ap-
proximately) capture Bishop’s primitive of algorithm.

In answer to the first question, we defingd-invariance’, a candidate
nonstandard counterpart of the notion of algorithm. We thpplied our
criterion toQ-invariance. In particular, we showed that several famars n
algorithmic principles (e.g. LPO and LLPO) behave in the saay in Non-
standard Analysis based éhinvariance. To this end, we defined counter-
parts in Nonstandard Analysis of the intuitionistic corthexs v and-. In
conclusion, we suggested that more equivalences need t@edin Non-
standard Analysis before we can answer the first questioiiyebg We
also provided an explanation why thereliserhaupta connection between
Nonstandard Analysis and Constructive Analysis.
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