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LAMBDA THEORY : INTRODUCTION OF A CONSTANT FOR
“NOTHING” INTO SET THEORY, A MODEL OF CONSISTENCY

AND MOST NOTICEABLE CONCLUSIONS

LAURENT DUBOIS

Abstract
The purpose of this article is to present several immediate conse-
quences of the introduction of a new constant called Lambda in or-
der to represent the object “nothing” or “void” into a standard set
theory. The use of Lambda will appear natural thanks to its role of
condition of possibility of sets.

On a conceptual level, the use of Lambda leads to a legitimation
of the empty set and to a redefinition of the notion of set. It lets also
clearly appear the distinction between the empty set, the nothing
and the ur-elements.

On a technical level, we introduce the notion of pre-elementand
we suggest a formal definition of the nothing distinct of thatof the
null-class. Among other results, we get a relative resolution of the
anomaly of the intersection of a family free of sets and the pos-
sibility of building the empty set from “nothing”. The theory is
presented with equi-consistency results (model and interpretation).

On both conceptual and technical levels, the introduction of
Lambda leads to a resolution of the Russell’s puzzle of the null-
class.

1. Introduction

1.1. Why

Our aim is to clarify the real puzzle of Russell’s conceptionof the null class
as developed in the “Principles of Mathematics”[1]: ‘But with the strictly
extensional view of classes propounded above, a class whichhas no terms
fails to be anything at all: what is merely and solely a collection of terms
cannot subsist when all the terms are removed.’; Russell andWhitehead
will formally express this inexistence in “The Principia Mathematica”[2]:
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‘⊢ .¬∃ ! Λ’.a Russell could not accept the existence of the null class and as-
similates it to “nothing”, while recognising its technicalutility, which is not
conceptually satisfying for us. Notice thatin fineRussell conceives the null
class as the standard empty set (symbol:∅): ‘By symbolic logicians, who
have experienced the utility of the null-class, this will befelt as a reactionary
view. But I am not at present discussing what should be done inthe logical
calculus, where the established practice appears to me the best, but what is
the philosophical truth concerning the null-class’ [3].

Other logicians and mathematicians saw ontological difficulties with a class
free of elements.

The first of them, Frege[4], strongly inspired Russell with his analytical
philosophy approach in general, and his conception of the null-class in par-
ticular: ‘When a class is composed of objects, when a set is the collective
union of these, then it must disappear, when these objects disappear. If we
burn down all the trees of a wood, we thereby burn down the wood’.

The fathers of the standard axiomatic set theory agreed withthis view. So,
in 1908, Zermelo [5] wrote: ‘There exists afictitiousset, the null set, 0, that
contains no element at all.’. In 1923, Fraenkel [6] added: ‘For purely formal
reasons, i.e. to be able to express some facts in a more simpleand adequate
manner, let us introduce here an improper set [uneigentliche Menge], the
alleged set zero [Nullmenge] . . . /. . . It is defined by the fact that it does not
contain any element; so it is not really a set, but it must be taken as such and
be designed by 0’.

In his nominalist approach, Lesniewski[7] denies any kind of existence to
classes in general and to the null-class in particular: ‘I have always rejected,
. . . /. . . , the existence of theoretical monsters such as the class of squared
circles, being aware that nothing can be constituted of whatdoes not exist’.
Lesniewski only concedes the use of a nominal constant for denoting the
nothing.

These quotations show that the doubts about the conceptual legitimacy of
the null-class don’t come only from detractors of set theorylike Lesniewski,
but mainly from several fathers themselves of the set theory!

We want to introduce here a clear distinction between the notion of empty
set and the one of “nothing” (or “void”), that we will distinguish from∅ via
the symbolΛ.b The “nothing” must be conceived as the free space in any
set (so also in the empty set): this is intuitively linked to the naive image of
a set, as a “box” containing “objects” and where this is precisely possible

aN.B. In Russell,Λ denotes the null-class, which is assimilated tonothing.
b In the use we make of it,Λ is not a class as in Russell; it is a new object that will be

defined as a pre-element and a condition of possibility of sets, among others of the empty set.
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because the box presents a “free space”. This condition of possibility is also
a condition of possibility in other fields, like the one of numbers and letters,
see Pythagoras[8]: ‘The void exists. . . It is the void which keeps the things
distinct, being a kind of separation and division of things.This is true first
and foremost of numbers; for the void keeps them distinct.’ Here we see that
the “nothing” clearly plays the role ofcut.

The naive acceptance of the idea of “set” is then somehow validated in the
case of the empty set: the empty set is a collection of “nothing”.

Furthermore, this will allow the symbolic representation of the “empty
space” that is intuitively present in any set, particularlyin the traditional pic-
tures of sets.

It would be natural to use the terminology of “inclusion” forthe fact that
the “empty space”Λ is “in any set”. Nevertheless we show that the same
symbol∈ can be used safely to express the fact of “belonging” to a set,for
an object that is notΛ (and such an object is then called an “element” or a
“set”), as well as the fact to be “the spaceΛ, present in a set” (“space” called
“pre-element”).

More precisely:

“x ∈ y” will express thatx is an “element” ofy only whenx 6= Λ (corre-
sponding to the usual way of “belonging”).
“Λ ∈ y” will express thatΛ is “present iny”; and we use then the word
“pre-element” instead of “element” to avoid any confusion.

Also, when more complex objects are constructed (via “terms”, see section
2.2), the same kind of careful distinctions will be taken into account, as sev-
eral interpretations are available. For example the usual singleton “{ a }” is
simply “standard” in the universe “withoutΛ”, while in the “completed uni-
verse” it will appear as something like “{ a , Λ}”. This is further discussed
in section 2.2).

However, even if the same∈-symbol is used in our theory, the roles of the
elements/sets and of the unique pre-element are never confused; this imme-
diately comes from the characteristic properties:

x is an “element”⇐⇒ ∃ y y ∈ x

x is a “pre-element”⇐⇒ [ (∄ y y ∈ x )& (∀z 6= xx ∈ z ) ]

and these properties are guaranteed by the axioms (see section 1.2).
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In addition, if the nothing-void is conceived as a potential, the Lambda the-
ory is the first step forward to a theory where the notion of “potential mem-
bership” (“potentially belongs to”) can be conceived. In that way, we can
hope to handle the strange “ubiquity property” of the empty set (Theory in
development).

Finally, we want to reduce significantly the ontological commitment of set
theory. The classical axiom of existence becomes useless: there is no need
to postulate the existence of a set any more (should it be the empty set) as
Lambda (the “Void”, the “Nothing”) can be now seen as a generator of a
hierarchy of standard sets.

Picture of a set and representation of Lambda

Lambda denotes the free zone around the element “a”. The set pictured here
is {a} in the universeV of a standard set theory

∑
. In the universeVΛ of

theΛ-theory
∑

Λ, the set pictured here is{a,Λ} .

❜a Λ✫✪
✬✩

1.2. How

Let’s simply use the usual symbol∈ to express thatΛ is “in ∅”, in the same
way asΛ is “in any set x”. Starting from some set theory

∑
(in which

the extensionality axiom holds and where∅ exists), in the current first-order
languageL = (∈,=), we define a new theory

∑
Λ in the expanded lan-

guageLΛ = (∈,=,Λ) (whereΛ is a new constant symbol). This allows to
give several distinct interpretations to the terms conceived in a classical way.
Some of these new distinct interpretations produce interesting results, like:
{Λ} = ∅, and relative “solutions” to the well-known “anomaly” of the usual
phenomenon: “the intersection of an empty family is the universal class”. If
we call “sets” (in

∑
Λ) all the objects distinct fromΛ, we expect that their

behaviour is fundamentally the one described by
∑

.

The behaviour ofΛ will be governed (in
∑

Λ) by the two following axioms:
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(1) Axiom of thePre-Element: ∀x (x 6= Λ ⇒ Λ ∈ x )

(2) Axiom of theNothing-Void: ∀x (¬ (x ∈ Λ ) ).

Notice that there can only be one “object” such asΛ, as axiom (1) is in con-
tradiction with:∃ y 6= Λ∀x¬ (x ∈ y ).

It is easy to construct (in a metatheory like Zermelo-Fraenkel) a modelMΛ

for
∑

Λ, starting from a modelM for
∑

: we just artificially add a new
element (“Λ”) to the universe ofM and extend adequately the∈-relation of
M . The axiom of extensionality will still be applicable inMΛ. It is easy,
modulo some minimal conditions on

∑
, to improve this result, namely to

give an interpretation of
∑

Λ in
∑

(instead of astricto sensu“model” as just
described), and to clarify the possibility of usingΛ as parameter in several
comprehension axioms:inter alia the example of separation, which is valid
in MΛ even forLΛ-formulas, once it is valid inM (for L-formulas).

2. The theory

We start with a set theory
∑

, expressed inL = (∈,=), and assume “⊤”, “⊥”
(respectively “true”, “false”) as primitive symbols in our(classical) logic.

We expect
∑

to satisfy at least the 3 following conditions:

-
∑

⊢ EXT,
where EXT is the Extensionality axiom:(∀x∀y∀t(t ∈ x ⇐⇒ t ∈
y)) =⇒ x = y.

-
∑

⊢ ∃ a∀x (x /∈ a ); so “∃ ∅”.

-
∑

⊢ ∀ a∀ b∃ c∀x (x ∈ c ⇐⇒ (x = a ∨ x = b ) );
(the classical “Pairing axiom”).

Our theory
∑

Λ, in the languageLΛ = (∈,=,Λ) initially assumes the ax-
ioms described hereunder (2.1), but can surely be enriched based on the ob-
servation of the modelMΛ obtained by modification ofM (see section 3).
For convenient purposes, we introduce the following abbreviations:
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- “∀∗x” for “ ∀x 6= Λ”.

- “∃∗x” for “ ∃x 6= Λ”.

Λ will be called “the Nothing” or “the Void”; and the “sets” arethe objects
x such thatx 6= Λ.

Forϕ a formula inLΛ (with “⊤,⊥”, allowed),ϕ∗ will be obtained fromϕ
by replacing inϕ each∀ by ∀∗ and each∃ by ∃∗.

If Γ is a theory (list of axioms),Γ∗ will denote the list ofσ∗, with σ in Γ.

2.1. Axioms of
∑

Λ

(1) ∀∗x(Λ ∈ x).

(2) ∀x(x /∈ Λ).

(3) σ∗ for any axiomσ of
∑

(so
∑

Λ “contains”
∑

).

Remarks:

One can easily check that:

-
∑

Λ ⊢ EXT, i.e. EXT is applicable in the “full” universe (sets +Λ).

-
∑

Λ ⊢ ∀x(x ∈ ∅ ⇐⇒ x = Λ), i.e. ∅ is the “singleton” ofΛ (cf.
hereunder our discussion about “terms”).

2.2. Interpretations for terms

Usually, the termτ = {x | ϕ} is the name of the (unique via EXT) set b such
that∀x(x ∈ b ⇐⇒ ϕ). In the theory

∑
Λ however, we can now distinguish

different interpretations for a termτ = {x | ϕ} based on a formulaϕ (in
LΛ):

Definitions:

1) τ∗ = {x | ϕ}∗ is the unique set (if it exists) b (so b6= Λ) such that :
∀∗x(x ∈ b⇐⇒ ϕ∗), or equivalently:(∀x(x ∈ b⇐⇒ ϕ))∗.
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2) τΛ = {x | ϕ}Λ is the unique set (if it exists) b (so b6= Λ) such that
: ∀∗x(x ∈ b ⇐⇒ ϕ), or equivalently (in

∑
Λ): (∀x(x ∈ b ⇐⇒

(ϕ ∨ x = Λ)).

3) τ = {x | ϕ} is the unique object (if it exists) b (it could beΛ) such
that :∀x(x ∈ b⇐⇒ ϕ).

We will also use these indices “*” and “Λ” for the notations that abbreviate
several classical terms, like:

{ a } : = {x | x = a} (singleton)

{ a , b } : = {x | x = a ∨ x = b} (pair)

℘a : = {x | x ⊆ a} (power set)

⋃
a : = {x | ∃ y ∈ a, x ∈ y} (general union)

a ∪ b : = {x | x ∈ a ∨ x ∈ b} (binary union)

⋂
a : = {x | ∀ y ∈ a, x ∈ y} (general intersection)

a ∩ b : = {x | x ∈ a ∧ x ∈ b} (binary intersection)

With these clarifications, one can easily check that, in
∑

Λ:

- {Λ} = {Λ}Λ = {Λ}∗ = ∅: the empty set is the singleton ofΛ.

- ℘Λ = ℘ΛΛ = ℘∗Λ = ∅: the empty set is the Power set ofΛ.

-
⋂

Λ ∅ = ∅: this constitutes arelativesolution (Indeed, as we will see
in section 4.4, it is the case that

⋂
Λ Λ = V ) to the well known clas-

sical “anomaly” of
⋂

∅ = V , that is in dissymetry with
⋃

∅ = ∅. In
the Lambda theory,

⋂
Λ ∅ =

⋃
Λ ∅ = ∅.

-
⋂
∅ = Λ. In the same way,

⋃
∅ = Λ. So, once again we have a

symetry between union and intersection of an empty family.

- Notice that
⋂∗ ∅ = V , as in the “classical” situation.
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3. Modelisation

3.1. The Idea

Working in Zermelo-Fraenkel as meta-theory, we can start with a model (in
thestricto sensusense, as in [9]) for

∑
:

M = (UM ,∈M ), whereUM is a set and∈M is a binary relation onM .

The desired model for
∑

Λ is simplyMΛ = (UΛ , ∈Λ), whereUΛ = UM ∪
{Λ } and∈Λ is the obvious extension of∈M such that:∀x ∈ UM (Λ ∈Λ

x) and∀x ∈ UΛ ¬ (x ∈Λ Λ ), whereΛ is some chosen element, not in
UM .

One can easily check thatMΛ models
∑

Λ.

The initial set theory
∑

should only satisfy the basic conditions described in
section 2. When stronger theories

∑
are considered, new interesting prop-

erties appear inMΛ, for example when
∑

satisfies the Power set Axiom, or
other specific forms of comprehension. For further details,please refer to
section 3.3. Examples: one can take (for

∑
) ZF, or NF (Quine’s New Foun-

dations), or a “positive set theory” [10]. Furthermore, we can verify that for
these “agreeable theories”, there are corresponding comprehension axioms
still applicable inMΛ, even when the involved formulaϕ is in LΛ (instead
of in L). As a consequence,Λ may appear as a parameter.

For example: the set{x ∈ a | ϕ}∗ exists inMΛ whenM is a model of ZF,
even whenϕ is in LΛ; similarly, {x | ϕ}∗ exists inMΛ whenM is a model
of NF (andϕ is stratified): the reason is that by replacing inϕ any atomic
formulax ∈ Λ,Λ ∈ x, x = Λ, etc. by (the “ad hoc”)⊥ or ⊤, one gets an
equivalent formula inL, stratified ifϕ was.

3.2. Interpretation of
∑

Λ in
∑

The interpretation of
∑

Λ in
∑

here developed guarantees the equi-consis-
tency of

∑
and

∑
Λ; the converse interpretation (of

∑
in

∑
Λ) is obviously

given by the initial universe of
∑

. The construction described in 3.1 is the
classical model-theoretic one. However if equi-consistency only is consid-
ered, this construction can be improved and we can give a direct interpreta-
tion of

∑
Λ in

∑
.

Just take, in the universeU of
∑

, a copyU ′ of that universe, such that
U ′ 6= U ; this allows to choose an object inU \ U ′, and we call this object
“Λ”.
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The usual technical trick to get such aU ′ andΛ (consider f.ex.U ′ : =
U × {∅}, andΛ := ( ∅ , { ∅ }) is perfectly available here (modulo our con-
ditions on

∑
; cf. section 2).

Of course we transfer isomorphically the∈-relation on the universeU to the
universeU ′, so that (U ′, ∈′) satisfies

∑
. As universe for our interpretation

of
∑

Λ in
∑

, we take then the classUΛ : = U ′ ∪ {Λ }, and apply on it the
obvious class-relation∈Λ defined by:

x ∈Λ y iff [ ( x ∈ U ′ ∧ y ∈ U ′ ∧ x ∈′ y ) ∨ (x = Λ ∧ y ∈ U ′) ].

The conclusion is now similar to the one of 3.1: (UΛ , ∈Λ) interprets
∑

Λ (in∑
).

3.3. Enriched Theories

We already mentioned in 3.1 thatMΛ (model in 3.1 or interpretation in 3.2)
presents new interesting properties, when stronger theories

∑
are consid-

ered.
This is particularly the case for comprehension schemes, and can be ex-

plained very simply modulo the following technical remarks.

From the construction, it is obvious that, inMΛ, any atomic formula con-
taining the symbolΛ (x ∈ Λ , Λ ∈ Λ , Λ ∈ x , x = Λ, etc) is equivalent
to⊥ or⊤, if the variables are supposed to represent objects distinct from Λ.

As a consequence, for any sentenceσ (sentence: formula without free vari-
able) in the languageLΛ, the sentenceσ* is equivalent, inMΛ, to a sentence
(σ̃)*, whereσ̃ is obtained fromσ by replacing each atomic formula contain-
ing the symbol “Λ” (adequately) by “⊥” or “⊤”, the choice being determined
by the axioms (concerningΛ) of

∑
(see 2.1).

Examples:

One will replace“x ∈ Λ ′′, “Λ ∈ Λ ′′, “x = Λ′′ by “⊥′′; and“Λ ∈ x′′

by “⊤”.

This elementary fact proves the following technical lemma:

If
∑

⊢ ( σ̃ )*, thenMΛ |= σ*.
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This has interesting consequences on several so-called “comprehension
schemes”; three examples are described below:

1) stratified comprehension, i.e. the scheme of axioms:

σ (the universal closure of):∃ a∀x (x ∈ a ⇐⇒ ψ ), for each
stratified formulaψ.

Let’s consider here even a stratifiedψ in LΛ (ψ “stratified” for LΛ

is obtained from a stratified formula inL, where one or more free
variables have been replaced by “Λ”). Then it is clear that̃ϕ is again
stratified (inL this time).

So, if
∑

is the system NF (cf.[9]), thenMΛ |= σ∗, even whenσ is a
stratified comprehension axiom withψ in LΛ.

2) Separation and Replacement (as in ZF):

for σ an instance of one of these classical schemes, withΛ now ad-
mitted as parameter in the involved formulasψ, we obviously have
that σ̃ is again an instance of the same scheme (inL this time).

Let us briefly detail this for separation (the case of replacement is
analogous):

Let’s considerσ (the universal closure of):∀ b∃ a∀x (x ∈ a ⇐⇒
(x ∈ b ∧ ϕ )), with ϕ in LΛ (our formulaψ here is:x ∈ b ∧ ϕ).
Thenσ̃ is (the universal closure of):∀ b∃ a∀x (x ∈ a ⇐⇒ (x ∈
b ∧ ϕ̃ )), which is again an axiom of separation (inL).

Conclusion: if
∑

is ZF, thenMΛ satisfies the versions of Separation*
and replacement* that admitΛ as parameter. (i.e. involved formulas
ψ in L∧)

3) Positive Comprehension:

several such systems have been proposed and studied; a description
and references can be found in [9].

The basic idea is to consider comprehension for “positive” formu-
las, i.e. formulas not allowing negation (nor, of course, implication);
notice that “⊥” and “⊤” are considered as positive formulas. The
corresponding scheme is then made of sentencesσ (universal closure
of): ∃ a∀x (x ∈ a ⇐⇒ ϕ), for any positiveϕ.
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Now, let’s allow also positive formulasϕ in LΛ. It is obvious thatϕ̃
is again positive (inL), so that̃σ is still in the same scheme.

So, if
∑

is a positive set theory (one of the existing variants), then
MΛ satisfies the version of

∑
* that allowsΛ as parameter in the

comprehension scheme.

Synthetic conclusion:
Our model/interpretation construction (cf. 3.1, 3.2) gives equiconsis-
tency results for several “enriched” theories; more precisely:

for
∑

satisfying specific “comprehension schemes” (as described
above), we have the equiconsistency between

∑
and

∑+

Λ , where:
∑+

Λ is
∑

Λ enriched withΓ*, Γ being one of the types of schemes
1), 2), 3), that admits hereΛ as parameter in the involved formulas
ϕ.

4. Interest, Nature& Properties ofΛ

4.1. Terminology

From an ontological point of view, we insist on the fact that here (in
∑

Λ),
we clearly distinguish two types of objects:

- the “sets”, elementsx characterized (equivalently) by:x 6= Λ;
Λ ∈ x.

- the “void” or “nothing” or pre-elementΛ characterized by our ax-
ioms (1), (2) (section 1).

4.2. Internal and External Condition of Possibility

Lambda is a condition of possibility of elements (in the state of affairs, sets)
in two ways:

- as an internal condition of possibility,Λ enables a set to contain el-
ements. Lambda is the fundamental constituent of any set. This is
expressed by the axiom of the pre-element. Indeed, in order for a
set to contain other sets, an available space is necessary. Without
the internal condition of possibilityΛ, a set would be an atom, an
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ur-element, because there would be no way to make a distinction be-
tween the elements of a set.

- as an external condition of possibility,Λ also allows to have different
sets. Indeed, the “Nothing” plays the role of cut, thephysicalsepara-
tion between sets.

Thanks to this statute of condition of possibility, we thinkthat the use of
Lambda in set theory and the construction of

∑
Λ are not artificial.

4.3. Lambda and the “contradictory property”

The contradictory property is traditionally sufficient to define∅: {x : x 6= x}
= ∅. Here in

∑
Λ, that property offers some more possibilities:

- {x : x 6= x} = Λ.

- {x : x 6= x}Λ = {x : x 6= x}∗ = ∅.

4.4. Lambda versus the Null-Class (or Empty Set∅)

It is fundamentally clear thatΛ is not ∅, as the first is the (unique) pre-
element, while the second is an element (or set) (cf. 4.1). This has, of course,
many consequences on their respective behaviours; we give here some inter-
esting examples, involving cases where they behave in an analogous manner,
as well as cases where they don’t. For the notations (terms):cf. 2.2.

Lambda (Λ) Null Class (∅ = {Λ})⋂
Λ = V

⋂
∅ = Λ.⋂

Λ Λ = V
⋂

Λ ∅ = ∅.⋂∗ Λ = V
⋂∗ ∅ = V .

Λ ∩ ∅ = Λ ∅ ∩ ∅ = ∅.
Λ ∩ Λ = Λ ∅ ∩ ∅ = ∅.
{Λ} = ∅ {∅}∄.

As we have announced in section 2.2 as well, the classical anomaly of the
intersection reappears at a deeper level, at Lambda level. Nevertheless we
find interesting to see that it does not appear on the level of the sets any more.
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4.5. Lambda versus Ur-elements

The use of “nothing” also enables the distinction of the empty set from ur-
elements (or “atoms”), which are generally considered as kinds of empty
sets:

with u for an ur-element andx for a set, the expressionu ∈ x (which can
be true or false) is syntactically admitted, while the expressionx ∈ u is not
syntactically allowed.

Of course, “no thing” belongs to an ur-element, even not Lambda. This
is precisely why an ur-element is a kind of atom. But we can make the
distinction between Lambda and an ur-element too. Lambda belongs to the
empty set, and more, Lambda belongs to every set. As we have defined it, as
condition of possibility of elements, Lambda is apre-element.

Finally, Lambda is different from the empty set by definition, and by its
behaviour as we have seen in point 4.4.

Notice thatΛ also enables the distinction∅ from any ur-element.

4.6. Lambda as Generator of Sets

It is “ontologically interesting” to notice that, while we presented here
∑

Λ

as constructed on the basis of
∑

, where “∅” is already present, we can eas-
ily give an autonomous direct presentation of

∑
Λ where∅ would be “gen-

erated” (for example as{Λ} or ℘Λ, as we have seen) if
∑

Λ assumes the
Pairing axiom or the Power set axiom.

So it is possible to make redundant the classical axiom of existence; there
is no need any more to postulate the existence of a set. Moreover, we can
build the hierarchyVω of sets starting from Lambda (assuming the Pairing
Axiom), or even the Von Neumann Hierarchy (of the well-founded sets), if∑

extends ZF:

- Let V0 beΛ.
- For any ordinal numberβ, letVβ+1 be the Power set ofVβ. So,V1 is
℘(Λ) = ∅.

- For any limit ordinalλ, letVλ be the union of all theV -stages so far:
Vλ :=

⋃
β≤λ Vβ .

The classV is defined as the union of all theV -stages:V :=
⋃

α Vα.

For those who consider the need to postulate some primitive entities to be
problematic, we hope that Lambda will appear as a more attractive (pre-)
entity than theempty setor any otherprimitive set. Indeed, in this way,
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the theory is completed by the bottom, in a “minimal way” (Lambda being
“nothing”), and is more in adequacy with a possible “mathematical reality”
or at least with “formal possibilities”.

4.7. Lambda and Simplification of the Axiom of Infinity

Another nice consequence of the use ofΛ is the possibility - modulo a slight
modification - of simplifying the classical axiom of infinity, as used in ZF.

That axiom starts with an initial setb (often, but not necessarily,∅) and
postulates the existence of an infiniteset(“x”):

∃x(b ∈ x ∧ ∀y ( y ∈ x⇒ y ∪ {y} ∈ x)).

In
∑

Λ, the part “b ∈ x” can be removed, asΛ is “omnipresent” as pre-
element in any set. So that the axiom of infinity can be reformulated as:

∃∗x∀y(y ∈ x ⇒ y ∪ {y} ∈ x).

4.8. Lambda as solution to the Puzzle of the Null-Class

We have seen that the Puzzle of the Null-Class as found in Russell consists in
the dichotomy between the technical legitimacy of the use ofthe Null-Class
and its ontological illegitimacy.

In the “Principia”, Russell justifies this ontological illegitimacy in two
ways:

- the null-class does not exist because it does not contain anything.
- the null-class does not exist because it cannot belong to any class.c

In the “Principles”, Russell did not really succeed in giving conceptual le-
gitimacy to the null-class; in the “Principia”, he does not even try to do it.
However he seems to be satisfied in some way with the conceptual use of the
“nothing” since he reduces the null-class to it. Indeed, if the “Nothing” had
no legitimacy at all, the reduction of the null-class to the “Nothing” would
make no sense.

The trick of Lambda theory here consists in starting from andexploiting this
conceptuallegitimacy of the “Nothing” in order to give it atechnicallegiti-
macy as well.

c A.N. WHITEHEAD, B. RUSSELL. Principia Mathematica To *56.Cambridge Univer-
sity Press, (1997) p. 227.
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The way to give technical legitimacy to the “Nothing” is the introduction of
the axiom of the “pre-element”.

While Russell justifies the inexistence of the null-class bydenying it the
privilege of belonging to another class, the axiom of the “pre-element” says
that Lambda denotes the “Nothing” because it belongs toanyset. In the spirit
of the definition of the inclusion of the empty set in any set, we could say
that, since Lambda denotes the “Nothing”, there is no set to which Lambda
cannot belong. So Lambda belongs to the empty set too.

The empty set becomes the set that contains only Lambda.

The fact that our intuitive wishes about an adequate behaviour of Lambda
can be formally axiomatized and lead to equiconsistency results gives a tech-
nical legitimacy to the notion of “void”.

In this way, not only the null-class seems to acquire complete (conceptual
and technical) legitimacy in set theory, but the “Nothing” doestoo.

5. Conclusion

“Nothing” is added to set theory. This means: the introduction of the constant
Lambda denoting the “Nothing” (the Void) in the language of set theory does
not imply that some new thing (in the sense of: “new set”) is added to the
theory. The Nothing is subjacent to the standard set theory as a pre-element.
It is a condition of possibility for the elements of the theory. The Nothing
has two functions:

- the first one is the function ofinternal condition of possibility. This
enables a set to contain elements. Lambda is the fundamentalcon-
stituent of any set, and this is expressed by the axiom of the pre-
element;

- the second one is the function ofexternalcondition of possibility.
Lambda plays the role of thephysicalspace, of cut, between sets and
allows to have distinct sets; this can be more specifically studied by
formal ontology.

We believe that, as condition of possibility of sets, Lambdais more fun-
damental than sets and should not be reduced to a technical artifice. The
Lambda theory is a natural approach of set theory and probably introduces
the smallest, the minimal constituent that can be added to a set theory.
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The use of Lambda leads to several interesting and/or surprising conceptual
and/or technical results.

1) Introducing the Nothing in the language of set theory allows to dis-
tinguish the Nothing from the empty set, solving what we called the
puzzle of Lambda in Russell’s approach (see section 1.1).

2) The notion of “set” acquires here a real ontological dimension. In
the naiveconception of a set, a set is a collection of elements, and
therefore it is not easy to give conceptual legitimacy to theempty
set. The Lambda theory legitimates and gives an emblematic status
to the empty set, now defined in a positive way: it is the only set that
contains only Nothing.

3) More generally, the Lambda theory also allows to redefine the con-
cept of set: a set can contain sets or objects thanks to the free space
denoted byΛ. Thenaiveacceptance of set is in some way validated
in the case of the empty set: the empty set is a collection of “Noth-
ing”.

4) The Lambda theory also allows to build the empty set by means of
the axiom of pairing and also by means of the axiom of the powerset
applied to Lambda:∅ = {Λ} = ℘(Λ). In classical ZF set theory, the
existence of a set is to be postulated; in Lambda theory, the first set
is built from “Nothing”.

5) In the Lambda theory, the axiom of the existence of the empty set or
the construction of the empty set by means of a contradictoryprop-
erty becomes useless. “Something”, or rather apre-thingbelongs to
the empty set: the “Nothing”, and remember that the empty setis the
only set to which only Lambda belongs.

6) It also allows to distinguish the empty set from ur-elements, which
are generally considered as kinds of empty sets. No thing belongs to
an ur-element, not even Lambda. This is why an ur-element is akind
of atom. Now, no thing belongs to Lambda either. But we can make
the distinction between Lambda and an ur-element: Lambda belongs
to the empty set, moreover, Lambda belongs to every set.

7) Finally, the Lambda theory is the first step forward to a theory where
the notion of “potential membership” (“potentially belongs to”) can
be considered and formalized.
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So, the use of Lambda in set theory appears natural and could even be seen
as necessary.

For the theory, the balance in terms of investment and profitsis clearly
positive: the investment isquasi-null, the gains are numerous.
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