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LAMBDA THEORY : INTRODUCTION OF A CONSTANT FOR
“NOTHING” INTO SET THEORY, A MODEL OF CONSISTENCY
AND MOST NOTICEABLE CONCLUSIONS

LAURENT DUBOIS

Abstract

The purpose of this article is to present several immediatse-
quences of the introduction of a new constant called Lamibaat-i
der to represent the object “nothing” or “void” into a stardiaet
theory. The use of Lambda will appear natural thanks to i&s 0b
condition of possibility of sets.

On a conceptual level, the use of Lambda leads to a legitimati
of the empty set and to a redefinition of the notion of set.t# &dso
clearly appear the distinction between the empty set, thiimp
and the ur-elements.

On a technical level, we introduce the notion of pre-elenzemt
we suggest a formal definition of the nothing distinct of tbathe
null-class. Among other results, we get a relative resotutf the
anomaly of the intersection of a family free of sets and ths-po
sibility of building the empty set from “nothing”. The thgois
presented with equi-consistency results (model and irg&fon).

On both conceptual and technical levels, the introductibn o
Lambda leads to a resolution of the Russell’s puzzle of thHe nu
class.

1. Introduction
1.1. Why

Our aim is to clarify the real puzzle of Russell’s conceptifithe null class
as developed in the “Principles of Mathematics”[1]: ‘Butthvthe strictly
extensional view of classes propounded above, a class vidigmo terms
fails to be anything at all: what is merely and solely a cdiltat of terms
cannot subsist when all the terms are removed.’; RussellVihilehead
will formally express this inexistence in “The Principia Mamatica[2]:
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‘= .= 3! A’.2 Russell could not accept the existence of the null class snd a
similates it to “nothing”, while recognising its techniadility, which is not
conceptually satisfying for us. Notice thatfine Russell conceives the null
class as the standard empty set (symii: ‘By symbolic logicians, who
have experienced the utility of the null-class, this willfbk as a reactionary
view. But | am not at present discussing what should be dotieeifiogical
calculus, where the established practice appears to mestitehdut what is
the philosophical truth concerning the null-class’ [3].

Other logicians and mathematicians saw ontological diffiesiwith a class
free of elements.

The first of them, Frege[4], strongly inspired Russell witk &nalytical
philosophy approach in general, and his conception of tiiectass in par-
ticular: ‘When a class is composed of objects, when a seteisdiiective
union of these, then it must disappear, when these objesappiear. If we
burn down all the trees of a wood, we thereby burn down the wood

The fathers of the standard axiomatic set theory agreedthigtview. So,
in 1908, Zermelo [5] wrote: ‘There existsfigtitious set, the null set, 0, that
contains no element at all.’. In 1923, Fraenkel [6] addedr {purely formal
reasons, i.e. to be able to express some facts in a more samgladequate
manner, let us introduce here an improper setejgentliche Mendethe
alleged set zeroNullmengé. . ./... Itis defined by the fact that it does not
contain any element; so it is not really a set, but it must kertaas such and
be designed by 0.

In his nominalist approach, Lesniewski[7] denies any kihéxastence to
classes in general and to the null-class in particular: vehaways rejected,
...l..., the existence of theoretical monsters such as ltss of squared
circles, being aware that nothing can be constituted of \@bas not exist'.
Lesniewski only concedes the use of a nominal constant footdgy the
nothing

These quotations show that the doubts about the conceptitiiiacy of
the null-class don’'t come only from detractors of set thdigy Lesniewski,
but mainly from several fathers themselves of the set theory

We want to introduce here a clear distinction between thenaif empty

set and the one of “nothing” (or “void”), that we will distingsh from() via

the symbolA.? The “nothing” must be conceived as the free space in any
set (so also in the empty set): this is intuitively linked e haive image of

a set, as a “box” containing “objects” and where this is melyi possible

aN.B. In Russell A denotes the null-class, which is assimilatecdohing

PIn the use we make of itA is not a class as in Russell; it is a new object that will be
defined as a pre-element and a condition of possibility af, sehong others of the empty set.
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because the box presents a “free space”. This conditionsHilpitity is also
a condition of possibility in other fields, like the one of nioens and letters,
see Pythagoras[8]: ‘The void exists... It is the void whigeps the things
distinct, being a kind of separation and division of thingsis is true first
and foremost of numbers; for the void keeps them distinatfdHve see that
the “nothing” clearly plays the role afut

The naive acceptance of the idea of “set” is then somehowlataid in the
case of the empty set: the empty set is a collection of “ngthin

Furthermore, this will allow the symbolic representatidntioe “empty
space” that is intuitively present in any set, particulanlyhe traditional pic-
tures of sets.

It would be natural to use the terminology of “inclusion” ftire fact that
the “empty space’A is “in any set”. Nevertheless we show that the same
symbol e can be used safely to express the fact of “belonging” to afeet,
an object that is noA (and such an object is then called an “element” or a
“set”), as well as the fact to be “the spatgpresent in a set” (“space” called
“pre-element”).

More precisely:

“r € y” will express thatz is an “element” ofy only whenz =# A (corre-
sponding to the usual way of “belonging”).

“A € y” will express thatA is “present iny”; and we use then the word
“pre-element” instead of “element” to avoid any confusion.

Also, when more complex objects are constructed (via “t&rsee section
2.2), the same kind of careful distinctions will be takeroiatcount, as sev-
eral interpretations are available. For example the usngleton “{ a }” is
simply “standard” in the universe “without”, while in the “completed uni-
verse” it will appear as something likg &, A}”. This is further discussed
in section 2.2).

However, even if the same-symbol is used in our theory, the roles of the
elements/sets and of the unique pre-element are neversamhfthis imme-
diately comes from the characteristic properties:

zis an “element = dyy € =

risa“pre-element’ = [(Byy € )& (Vz#z2 € 2)]

and these properties are guaranteed by the axioms (seanse@).
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In addition, if the nothing-void is conceived as a potentiaé Lambda the-
ory is the first step forward to a theory where the notion ofté¢mbial mem-
bership” (“potentially belongs to”) can be conceived. latthvay, we can
hope to handle the strange “ubiquity property” of the emgtty($heory in
development).

Finally, we want to reduce significantly the ontological aoitment of set
theory. The classical axiom of existence becomes uselesee is no need
to postulate the existence of a set any more (should it bertiptyeset) as
Lambda (the “Void”, the “Nothing”) can be now seen as a getoeraf a

hierarchy of standard sets.

Picture of a set and representation of Lambda

Lambda denotes the free zone around the element “a”. Thectetqun here
is {a} in the universel” of a standard set theofy'. In the universé/, of
the A-theory) ,, the set pictured here {g;, A} .

1.2. How

Let's simply use the usual symbalto express thad is “in ()", in the same
way asA is “in any set x”. Starting from some set theopy (in which
the extensionality axiom holds and whérexists), in the current first-order
languagel = (€,=), we define a new theory_, in the expanded lan-
guageL, = (€,=,A) (whereA is a new constant symbol). This allows to
give several distinct interpretations to the terms coresbin a classical way.
Some of these new distinct interpretations produce infegesesults, like:
{A} = 0, and relative “solutions” to the well-known “anomaly” ofgtusual
phenomenon: “the intersection of an empty family is the ersal class”. If
we call “sets” (in)_,) all the objects distinct from\, we expect that their
behaviour is fundamentally the one describedBy

The behaviour of\ will be governed (iny_ ,) by the two following axioms:
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(1) Axiom of thePre-ElementVz (z # A = A € z)

(2) Axiom of theNothing-Void Vz (= (z € A)).

Notice that there can only be one “object” suchAass axiom (1) is in con-
tradiction with:3y # AVz—(x € y).

It is easy to construct (in a metatheory like Zermelo-Fra®n& modelM,
for >, starting from a model\/ for ) : we just artificially add a new
element (‘A") to the universe of\f and extend adequately tkerelation of
M. The axiom of extensionality will still be applicable . It is easy,
modulo some minimal conditions on,, to improve this result, namely to
give an interpretation of _, in ) (instead of astricto senstmodel” as just
described), and to clarify the possibility of usidgas parameter in several
comprehension axiomgnter alia the example of separation, which is valid
in My even forL x-formulas, once it is valid il (for £-formulas).

2. The theory

We start with a set theory, expressed i = (€,=), and assumeT”, “ L”
(respectively “true”, “false”) as primitive symbols in o(slassical) logic.

We expect) | to satisfy at least the 3 following conditions:

- > FEXT,
where EXT is the Extensionality axiom¥azVyVt(t € @ <=t €
y) =z =y.

-> F3JaVa(x ¢ a);so“30".

->Y. FVaVb3IcVr(zr € c <= (x =aVzx =0>));
(the classical “Pairing axiom”).

Our theory) ", in the languagely = (€, =, A) initially assumes the ax-
ioms described hereunder (2.1), but can surely be enricaseldon the ob-
servation of the moded/, obtained by modification ol (see section 3).
For convenient purposes, we introduce the following akibtons:
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- V" for “Va # A"
- I for“ Jx #£ A
A will be called “the Nothing” or “the Void”; and the “sets” atbe objects
x such thate # A.
For ¢ a formula inL, (with “T, L, allowed), ©* will be obtained fromy
by replacing inp eachv by v* and eachd by 3*.
If I' is a theory (list of axioms)™* will denote the list ofo™*, with o in I".
2.1. Axioms ofy_
(1) V*z(A € z).
(2) Vz(z ¢ A).
(3) o* for any axiomo of ) (so) , “contains”) ).
Remarks:
One can easily check that:
- >, F EXT, i.e. EXT is applicable in the “full” universe (setsAy).
- >\ FVz(z € 0 < z = A), i.e. 0 is the “singleton” ofA (cf.
hereunder our discussion about “terms”).
2.2. Interpretations for terms
Usually, the termr = {x | ¢} is the name of the (unique via EXT) set b such
thatVz(xz € b <= ¢). In the theory) ", however, we can now distinguish
different interpretations for a term = {z | ¢} based on a formula (in
ﬁA)Z
Definitions:
1) 7 = {z | p}* is the unique set (if it exists) b (so A) such that :
Vix(z € b < ¢*), or equivalently:(Vz(x € b <= ¢))*.
S
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2) A = {z | p}a is the unique set (if it exists) b (so# A) such that
» Vz(x € b <= o), or equivalently (in)_,): (Vz(z € b <
(pVa=A)).

3) 7 = {x | ¢} is the unique object (if it exists) b (it could b¥) such
that :Vz(zx € b < ¢).

We will also use these indices “*” and\” for the notations that abbreviate
several classical terms, like:

{a}:= {z | x = a} (singleton)
{a,b}:={x | x =aV x = b} (pair)
pa:={x | z C a} (power set)
Ua:={z |3y € a, x € y} (general union)
aUb:={x|x € aVx € b} (binary union)
Na:={z|VYy € a, x € y} (general intersection)
anb:={xz |z € aAnx e b} (binary intersection)
With these clarifications, one can easily check thad, Jj:
- {A} = {A}r = {A}* = (: the empty set is the singleton Af
- pA = paA = p*A = (): the empty set is the Power setof
- A © = 0: this constitutes @elative solution (Indeed, as we will see
in section 4.4, itis the case th@af, A = V') to the well known clas-
sical “anomaly” of(() = V, that is in dissymetry with J) = . In
the Lambda theory,), 0 = |J, 0 = 0.

-0 = A. In the same wayl J0 = A. So, once again we have a
symetry between union and intersection of an empty family.

- Notice that)" # = V, as in the “classical” situation.
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3. Modelisation
3.1. The Idea

Working in Zermelo-Fraenkel as meta-theory, we can statt wimodel (in
the stricto sensisense, as in [9]) fop _:

M = (Un, €nr), WherelU)y, is a set andk ; is a binary relation or/.

The desired model foy, is simply Mx = (Ua, €4), WhereUy = Uy U
{A} ande, is the obvious extension @f); such that¥z € Uy (A €,
xz)andVz € Up—(z €p A), whereA is some chosen element, not in
Un.

One can easily check that'y models) .

The initial set theonp  should only satisfy the basic conditions described in
section 2. When stronger theori®s are considered, new interesting prop-
erties appear i/, , for example wher)  satisfies the Power set Axiom, or
other specific forms of comprehension. For further detailsase refer to
section 3.3. Examples: one can take (Jo) ZF, or NF (Quine’s New Foun-
dations), or a “positive set theory” [10]. Furthermore, vem werify that for
these “agreeable theories”, there are corresponding @mapsion axioms
still applicable inM, even when the involved formulais in £, (instead

of in £). As a consequencd, may appear as a parameter.

For example: the sdtr € a | ¢}* exists inM, whenM is a model of ZF,
even whenp is in Ly; similarly, {z | ¢}* exists inM, when} is a model
of NF (andy is stratified): the reason is that by replacingdrany atomic
formulaxz € A;A € xz,x = A, etc. by (the “ad hoc”)L or T, one gets an
equivalent formula irC, stratified if was.

3.2. Interpretation of) _ , in )

The interpretation o}, in ) here developed guarantees the equi-consis-
tency of) | and)_ ,; the converse interpretation (df in ) ) is obviously
given by the initial universe of .. The construction described in 3.1 is the
classical model-theoretic one. However if equi-consisgeonly is consid-
ered, this construction can be improved and we can give atdireerpreta-

tionof ), in)".

Just take, in the universg of > , a copyU’ of that universe, such that
U’ # U, this allows to choose an object i \ U’, and we call this object
HA”.
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The usual technical trick to get suchld and A (consider f.ex.U’ :=
U x {0},andA := (0, {0})is perfectly available here (modulo our con-
ditions on}_; cf. section 2).

Of course we transfer isomorphically therelation on the universE to the
universel’, so that U/, €’) satisfiesy .. As universe for our interpretation
of >, in >, we take then the clag$, := U’ U { A}, and apply on it the
obvious class-relatioa 5 defined by:

xeyyiff[(zeUANyeUANz€e y)Vie=ANyeU)]

The conclusion is now similar to the one of 3.1iy(, €,) interprets) , (in

>0
3.3. Enriched Theories

We already mentioned in 3.1 thaf, (model in 3.1 or interpretation in 3.2)
presents new interesting properties, when stronger #dri are consid-
ered.

This is particularly the case for comprehension schemeascan be ex-
plained very simply modulo the following technical remarks

From the construction, it is obvious that, M, any atomic formula con-
taining the symboA (z € A, A € A, A € =z, x = A, etc) is equivalent
to L or T, if the variables are supposed to represent objects distom A.

As a consequence, for any senteacgsentence: formula without free vari-
able) in the languagg ,, the sentence* is equivalent, inMy, to a sentence
(6)*, whereg is obtained fronmv by replacing each atomic formula contain-
ing the symbol A” (adequately) by L.” or “ T", the choice being determined
by the axioms (concerning) of > (see 2.1).

Examples:

One will replace“x € A", “A € A", “x = A" by “L”; and“A € 2"
by “T”.

This elementary fact proves the following technical lemma:

If > F (6)* thenMy = o*.
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This has interesting consequences on several so-calletigtehension
schemes”; three examples are described below:

1

2)

3)

stratified comprehension, i.e. the scheme of axioms:

o (the universal closure of)3aVz(z € a <= 1), for each
stratified formulay.

Let's consider here even a stratifigdn £, (v “stratified” for £,
is obtained from a stratified formula i, where one or more free
variables have been replaced by’y. Then it is clear thatp is again
stratified (in£ this time).

So, if ¥ is the system NF (cf.[9]), theh/, = o*, even wherr is a
stratified comprehension axiom within £ .

Separation and Replacement (as in ZF):

for o an instance of one of these classical schemes, Avitiow ad-
mitted as parameter in the involved formultaswe obviously have
thats is again an instance of the same schemeC(this time).

Let us briefly detail this for separation (the case of replaest is
analogous):

Let's considero (the universal closure of )/ bJaVz (z € a <~
(z € b A ¢)),withpin L, (our formulay hereis:z € b A ).
Theng is (the universal closure of)fb3aVz (z € a < (z €
b A ¢)), which is again an axiom of separation (.

Conclusion: ify  is ZF, thenM satisfies the versions of Separation*
and replacement* that admit as parameter. (i.e. involved formulas

Yin L)
Positive Comprehension:

several such systems have been proposed and studied; gti@scr
and references can be found in [9].

The basic idea is to consider comprehension for “positieeiniu-
las, i.e. formulas not allowing negation (nor, of courseplisation);
notice that “L” and “T” are considered as positive formulas. The
corresponding scheme is then made of sentem¢asiversal closure
of): JaVa(z € a < ), for any positivep.
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Now, let’s allow also positive formulag in L. It is obvious thatp
is again positive (i), so thatz is still in the same scheme.

So, if ) is a positive set theory (one of the existing variants), then
M), satisfies the version of_* that allows A as parameter in the
comprehension scheme.

Synthetic conclusion:
Our model/interpretation construction (cf. 3.1, 3.2) gieguiconsis-
tency results for several “enriched” theories; more pedgis

for > satisfying specific “comprehension schemes” (as described
above), we have the equiconsistency betwgérand Zj{, where:

Ej( is >, enriched withl™, I" being one of the types of schemes
1), 2), 3), that admits herA as parameter in the involved formulas

®.
4. Interest, Naturek: Properties ofA

4.1. Terminology

From an ontological point of view, we insist on the fact thaten(in)_,),
we clearly distinguish two types of objects:

- the “sets”, elementsz characterized (equivalently) byr # A;
A€ .

- the “void” or “nothing” or pre-elementA characterized by our ax-
ioms (1), (2) (section 1).

4.2. Internal and External Condition of Possibility

Lambda is a condition of possibility of elements (in the esstatt affairs, sets)
in two ways:

- as an internal condition of possibilith, enables a set to contain el-
ements. Lambda is the fundamental constituent of any sds i¥h
expressed by the axiom of the pre-element. Indeed, in oaten f
set to contain other sets, an available space is necessatliolV
the internal condition of possibilit\, a set would be an atom, an
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ur-element, because there would be no way to make a distmb#-
tween the elements of a set.

- as an external condition of possibility,also allows to have different
sets. Indeed, the “Nothing” plays the role of cut, gtg/sicalsepara-
tion between sets.

Thanks to this statute of condition of possibility, we thitilat the use of
Lambda in set theory and the constructiordgf, are not artificial.

4.3. Lambda and the “contradictory property”

The contradictory property is traditionally sufficient tefthe): {z : = # =}
= (. Here in}_ ,, that property offers some more possibilities:

-{z:x#x}=A.
-z Fapy={r:x#x}*=0.
4.4. Lambda versus the Null-Class (or Empty ®et

It is fundamentally clear thah is not (), as the first is the (unique) pre-
element, while the second is an element (or set) (cf. 4.1i% Ads, of course,
many consequences on their respective behaviours; we gireessbhme inter-
esting examples, involving cases where they behave in dogows manner,
as well as cases where they don’t. For the notations (terwhs): 2.

Lambda \) Null Class @ ={A})

NA=V N
ﬂA A=V ﬂA
And=A 0n
ANA=A 0
{A} =0

D
SN =2
s oo
HeSS S S P

As we have announced in section 2.2 as well, the classicahalyoof the
intersection reappears at a deeper level, at Lambda levalertheless we
find interesting to see that it does not appear on the levlakadéts any more.
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4.5. Lambda versus Ur-elements

The use of “nothing” also enables the distinction of the gngatt from ur-
elements (or “atoms”), which are generally considered adiof empty
sets:

with « for an ur-element and for a set, the expressian € x (which can
be true or false) is syntactically admitted, while the egprenz € u is not
syntactically allowed.

Of course, “no thing” belongs to an ur-element, even not LdanbT his
is precisely why an ur-element is a kind of atom. But we can enthie
distinction between Lambda and an ur-element too. Lambbimfs to the
empty set, and more, Lambda belongs to every set. As we héimedd, as
condition of possibility of elements, Lambda ipee-element

Finally, Lambda is different from the empty set by definiti@md by its
behaviour as we have seen in point 4.4.

Notice thatA also enables the distinctidhfrom any ur-element.

4.6. Lambda as Generator of Sets

It is “ontologically interesting” to notice that, while wegsented herg

as constructed on the basis)J, where )" is already present, we can eas-
ily give an autonomous direct presentation)af, where() would be “gen-
erated” (for example agA} or pA, as we have seen) ¥, assumes the
Pairing axiom or the Power set axiom.

So it is possible to make redundant the classical axiom aftexce; there

is no need any more to postulate the existence of a set. Mereae can
build the hierarchy,, of sets starting from Lambda (assuming the Pairing
Axiom), or even the Von Neumann Hierarchy (of the well-foaddsets), if

> extends ZF:

- LetV, beA.

- For any ordinal numbe#, let V3, be the Power set dfg. So,V; is
p(A) = 0.

- For any limit ordinal), let V, be the union of all thé’-stages so far:

The clasd/ is defined as the union of all tHe-stagesV := J,, Va.
For those who consider the need to postulate some primititides to be

problematic, we hope that Lambda will appear as a more &tteafpre-)
entity than theempty setbor any otherprimitive set Indeed, in this way,
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the theory is completed by the bottom, in a “minimal way” (Lzsha being
“nothing”), and is more in adequacy with a possible “mathtcaareality”
or at least with “formal possibilities”.

4.7. Lambda and Simplification of the Axiom of Infinity

Another nice consequence of the usé\dé the possibility - modulo a slight
modification - of simplifying the classical axiom of infinjtgs used in ZF.

That axiom starts with an initial sét(often, but not necessarily) and
postulates the existence of an infinset (“ z"):

dx(bexAVy(y €z =yU{y} €x)).

In>",, the part b € 2" can be removed, a is “omnipresent” as pre-
element in any set. So that the axiom of infinity can be refdated as:

FaVyly € x = yU{y} € x).
4.8. Lambda as solution to the Puzzle of the Null-Class

We have seen that the Puzzle of the Null-Class as found indRgssisists in
the dichotomy between the technical legitimacy of the ugh®Null-Class
and its ontological illegitimacy.

In the “Principia”, Russell justifies this ontological igimacy in two
ways:

- the null-class does not exist because it does not contgihiag.
- the null-class does not exist because it cannot belongytclass:

In the “Principles”, Russell did not really succeed in giyioonceptual le-
gitimacy to the null-class; in the “Principia”, he does ngée try to do it.

However he seems to be satisfied in some way with the condeseaf the
“nothing” since he reduces the null-class to it. Indeednhé tNothing” had
no legitimacy at all, the reduction of the null-class to tidothing” would

make no sense.

The trick of Lambda theory here consists in starting from exuloiting this
conceptualegitimacy of the “Nothing” in order to give it technicallegiti-
macy as well.

©A.N. WHITEHEAD, B. RUSSELL. Principia Mathematica To *56Cambridge Univer-
sity Press, (1997) p. 227.
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The way to give technical legitimacy to the “Nothing” is th@rbduction of
the axiom of the “pre-element”.

While Russell justifies the inexistence of the null-classdeypying it the
privilege of belonging to another class, the axiom of thee*ptement” says
that Lambda denotes the “Nothing” because it belongsitset. In the spirit
of the definition of the inclusion of the empty set in any se¢, eould say
that, since Lambda denotes the “Nothing”, there is no setiiclwLambda
cannot belong. So Lambda belongs to the empty set too.

The empty set becomes the set that contains only Lambda.

The fact that our intuitive wishes about an adequate behawiblLambda
can be formally axiomatized and lead to equiconsistenayltegives a tech-
nical legitimacy to the notion of “void”.

In this way, not only the null-class seems to acquire coreplebnceptual
andtechnical) legitimacy in set theory, but the “Nothing” ddes.

5. Conclusion

“Nothing is added to set theory. This means: the introduction of tmestant

Lambda denoting the “Nothing” (the Void) in the languageetftheory does
not imply that some new thing (in the sense of: “new set”) ideatito the
theory. The Nothing is subjacent to the standard set thepaypae-element.
It is a condition of possibility for the elements of the thgohe Nothing

has two functions:

- the first one is the function afternal condition of possibility. This
enables a set to contain elements. Lambda is the fundancantal
stituent of any set, and this is expressed by the axiom of the p
element;

- the second one is the function ekternalcondition of possibility.
Lambda plays the role of thghysicalspace, of cut, between sets and
allows to have distinct sets; this can be more specificalldist by
formal ontology.

We believe that, as condition of possibility of sets, Lamlislanore fun-
damental than sets and should not be reduced to a techniitalear The
Lambda theory is a natural approach of set theory and prgbatbbduces
the smallest, the minimal constituent that can be added &b thesory.
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The use of Lambda leads to several interesting and/or surgrconceptual
and/or technical results.

1

2)

3)

4)

5)

6)

7)

Introducing the Nothing in the language of set theoryvedldo dis-
tinguish the Nothing from the empty set, solving what weaththe
puzzle of Lambda in Russell’s approach (see section 1.1).

The notion of “set” acquires here a real ontological disien. In

the naive conception of a set, a set is a collection of elements, and
therefore it is not easy to give conceptual legitimacy to ehgpty

set. The Lambda theory legitimates and gives an emblemiatigss

to the empty set, now defined in a positive way: it is the ontytisat
contains only Nothing.

More generally, the Lambda theory also allows to redetigecbn-
cept of set: a set can contain sets or objects thanks to taesjfrace
denoted byA. Thenaiveacceptance of set is in some way validated
in the case of the empty set: the empty set is a collection otliN
ing”.

The Lambda theory also allows to build the empty set by medin
the axiom of pairing and also by means of the axiom of the p@ser
applied to Lambda) = {A} = p(A). In classical ZF set theory, the
existence of a set is to be postulated; in Lambda theory, ithiesit
is built from “Nothing”.

In the Lambda theory, the axiom of the existence of the gregt or
the construction of the empty set by means of a contradigtoop-
erty becomes useless. “Something”, or rathprexthingbelongs to
the empty set: the “Nothing”, and remember that the emptissbe
only set to which only Lambda belongs.

It also allows to distinguish the empty set from ur-elemsemwhich
are generally considered as kinds of empty sets. No thirgnhgslto

an ur-element, not even Lambda. This is why an ur-elemenkiisca

of atom. Now, no thing belongs to Lambda either. But we cananak
the distinction between Lambda and an ur-element: Lambldags

to the empty set, moreover, Lambda belongs to every set.

Finally, the Lambda theory is the first step forward to atlevhere
the notion of “potential membership” (“potentially belatp”) can
be considered and formalized.
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So, the use of Lambda in set theory appears natural and ceetdbe seen
as necessatry.

For the theory, the balance in terms of investment and prisfitdearly
positive: the investment iguasi-null the gains are numerous.
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