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STRUCTURES, LANGUAGES AND MODELS:
A UNIFYING APPROACH

JONAS R. BECKER ARENHART AND FERNANDO T.F. MORAES

Abstract

In this paper we present a unified approach to three topicsc-st
tures, formal languages and models. We begin by presentieg-a
eral theory of set theoretical structures. Formal langsiage mod-
els are both structures inside this framework. We also ptabe
link between languages and models given through a set tieore
cal predicate in the style of Suppes. The association ofuages
with structures satisfying certain conditions (given bitkeoretical
predicates) allow us to present an interesting applicaticime re-
sulting framework: one is now able to characterize rigopgeme
classes of models. The classes of models so characteriagdhgl
role of scientific theories according to a version of the samap-
proach to scientific theories. This is a first step in makinglieit
some of the underlying assumptions of the semantic apprtmch
theories. In the end we give the example of how particle mgcka
may be viewed as a theory according to that approach inside ou
framework.

1. Introduction

In this paper we present with great generality three topicommon inter-
est for logicians and philosophers of science: structdmsal languages
and scientific theories. Our approach follows the work of M.CGla Costa,
who presents in a very general setting a theory of strucemesmpassing all
usual mathematical theories. Of particular interest fasuke development
of free algebras inside this theory of structures, for they lse used to give
arigorous account of formal languages. Both of these tapiesvell-known
by logicians, but in general, a rigorous unifying treatmisrstill lacking. In
particular, we deal with the problem of specifying a langeidg be used to
talk about the elements of a structure. With these two nstinrhand, sci-
entific theories can then be viewed as classes of structatis§ying axioms
formulated in an adequate language specified for them, wdmcbunts to
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68 JONAS R. BECKER ARENHART AND FERNANDO T.F. MORAES

da Costa’s formalization of Suppes’ ideas on these topicse @ our aims
is to unify these approaches appearing in da Costa’'s workhmvere not
completely linked by him yet.

We believe that the main interest of this kind of work religsqisely in
its potential applicability to conceptual clarificationthre philosophy of sci-
encé. According to a widespread philosophical conception dfsiific the-
ories, known as the ‘semantic view’ of scientific theorietheory is defined
as a kind of model or as a class of models. One of the troublehifopo-
sition is that the precise meaning of the word 'model’ in sditussions
is not always as clear as it would be desirable in such catestbwever,
some have claimed that for a rigorous treatment of the sylgédche rele-
vant senses in which that word is used can be reduced to thleeseetical
meaning (see [7], and [8]), the one which we shall deal wittehéVhat
is generally lacking in such discussions is a rigorous agaknt of these
models and the languages used to talk about them, mainlysiwa want
to axiomatize them or to discuss notions such as definabiliglements of
the domain or relations and operations on them. The apprai@8hppes as
formalized in da Costa and Chuaqui ([2]) is an option for mgkioncepts
clearer in these discussions and gives a rigorous meanitig tinlea that a
theory is a class of models specified by a set theoreticaiqated We show
how this predicate can be written according to the approacstruictures
presented here.

Our strategy in this paper will be the following one: workimgide first-
order ZFC set theory, we first develop a theory of structuodsviing da
Costa and Rodrigues (see [3]). Using that theory as a bagisdistinct
branches can then be developed: i) the algebraic concegtiftimmal lan-
guages, and ii) the semantic conception of theories. Bahdbres, as we
have said, are developed inside the theory of structures,ighlanguages
will be a kind of structure, and the models which are used tratterize
theories are also structures. What is common to these twiwhes, as will
be seen, is their underlying basis, the general theory otsires. Finally,
we make the link between these last two points through Sujppedicate,
as developed by da Costa and Chuaqui ([2]). In a Suppes’ qatedias
this notion is understood by da Costa and Chuaqui, we empkyarmal
languages previously developed to write the axioms thastihetures con-
stituting a certain theory must obey. In this way, for exaenple need the
language of field theory to express the axioms that fields sy, and a
field is a kind of structure that obeys those axioms, somgtbkpressed by
the Suppes’ predicate for fields. So, as one can see, a cowitbrformal

LIt is not our aim in this work to deal with all the details of geapplications. Here
we begin by putting the whole formal machinery to work. Otagpects of the discussion as
based in this framework are forthcoming.
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languages is not totally absent in themantioview either €f. the discussion
in section 4).

In the following we give a rigorous treatment of those topigghout be-
ing exhaustive. Our main aim here is to give a unifying treathof those
themes, which somehow have already appeared in a fragmengamer in
different places and even serving different purposes, bod ¢heir coherent
unity. Once the whole formal apparatus and its general o is set, it
may be easier to simply depart from it and go ahead to proVvidedlevant
philosophical discussions with adequate rigour.

2. Structures

We work in the first-order ZFC set theory, and although we laepresen-
tation informal, our development of the topics is rigorouis.this section,
we follow the approach presented in [3], but, differentlgrirthe exposition
there, we allow that the domain of the structures be compogatbre than
one set, and allow other simplifications which will be exp& later.

Our first definition is of the set of types. These types are not to be
confused with the ones of type theory. This set will be imgottlso for the
development of the languages in the next section so when eakspf the
set of types, we always mean the safiven by the following definition:

Definition 2.1 The setr of types is the least set satisfying the following
conditions:

1. The symbolg, 1,...,n — 1 belong tor;

2. Ifag,a1,...,ap—1 € 7, then(ag,a1,...,ap—1) € 7,1 < n < w,
where(ag, a1, ..., a,—1) is the finite sequence ofterms, composed
bya0>a17 ceeyAp—1-

We now define the order of the elementsrof

Definition 2.2 If a € 7, the order ofa, denoted ord(a), is defined by:
1. ord(k) =0, fork=0,1,..., n-1;
2. ord({ag,a1,...,an—1)) = max{ord(ap),ord(ay),...,ord(ay,—1)}
+1.

These definitions will be useful in the next sections, wherialkeabout the
order of a language. The following definitions help us to tts relations
and properties based dn,,, a non-empty family of sets, which will soon
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be called the domain of the structure. We hope that the comtiéixmake

it clear when we writeD,, whether we are speaking about a family of sets
that constitute the domain or about the n-th member of thatlyain case
there is one. In the next definition, the usual set-theaktperations of
power set and cartesian product are being used, and areedarspectively
by “x” and “P".

Definition 2.3 Given a familyD,, of non-empty sets (that i$)q, D1, ...,
D,,_1) we define a function, called scale based o®,,, havingr as its
domain, as follows:

1. t(k) =Dy, fork=0,1,...,n—1;

2. 1If ag,a1,...,0p—1 € T, thent((ao,al,...,an_1>) = P(t(ao) X
t(a1) X ... X t(apn—1)).

Thus, metaphorically speaking, the functibgives us a kind of layered
universe based on the family,, where, as the orders of types increase, the
objects attributed to them hyincrease in complexity too. Givene r, the
elements of(a) are said to be of type. To make this point clear, we give
some examples. The elements of typeay, (that is, elements @¥,, since
t(1) = Dy) are called individuals. The elements{(1))), are properties
of properties of individuals, as one can check followingdeénition above.
For another example, let us consider relations betweercishps typed and
1. The elements 0f((0,0, 1)) are ternary relations in which the first two
relata are of typ@ and the third is of typé, and the elements of((0, 1), 1))
are relations between a relation and an object.

We denote the sét|(range t(Dy,)) by e(Dy,).

Definition 2.4 The cardinalKp, associated te(D),,) is defined as
n—1 n—1 n—1
Kp, = sup{| | Dil,IP(| Dw)l,IP* (I Di)l,-- -}
k=0 k=0 k=0
Here,| Jj—} Dy| denotes the cardinal of the §gf ~ Dy
Definition 2.5 A structure e based on the family,, is an ordered pair of
the form

€= <Dm RL>‘

Here, R, is a sequence of elements «fD,,), and we suppose that the
domain of this sequence is strictly less tham, , whereD,,, as we said
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before, is the family of sets on the domain of the functionVe say that
Kp, is the cardinal associated wighand that(D,,) is the scale associated
with e.

As we said before, each element6D,,) has a certain type, for it belongs
to ¢(a) for somea € 7. Now, the order of a relation is defined as the order
of its type. The order o0&, denoted ord), is the order of the greatest of the
types of the relations of the familg,, if there is one, and if there is no such
relation, we put ordf)=w.

In the beginning of this section we remarked that our predgem makes
some simplifications on [3]. Here we depart from da Costagimal work
in that we allow individuals and operations to occur in thracure, whereas
da Costa reduced operations to relations and identifiedithdils with their
unit sets. The main point of this change is to simplify the asifon in
our paper, and from a mathematical point of view the diffeeers purely
a matter of convention So, in the definition of structures, the objects in
the family R, may be not only relations, but operations as well, that ia;re
tions satisfying the well-known functional condition, orem distinguished
elements from the domain, which we take tolbe ary operations. In these
cases we employ as usual the common notation for functicth®hbjects.

3. Formal Languages

We now present an approach to formal languages which willemede of
the notion of structure just developed. Here, languagddwih special kind
of structure, a free-algebra. Our aim is to develop the lagguof simple
type theory, but before doing that, first we present somesopn Universal
Algebra.

3.1. Topics on Universal Algebra

In this section, to make our paper self-contained, we ptebentopics on
Universal Algebra required for our purposes. We follow elgghe exposi-
tion in Barnes and Mack ([1]), but our exposition is totallgveloped in the
theory of structures presented above.

Definition 3.1 The similarity type of a structure & (D,,, R,) is a family
sa<, Of types, such that for each< ¢, s, is the type ofR,.

2In fact, to allow individuals as we are doing or to identifyeth with their unit sets are
both commitments to individuals anyway. If one is wishingatmid individuals for struc-
turalist reasons, then maybe ZFC is not the best framewowot& with, since individuals
are always given in the domain of the structure. Interessisgt is, we shall not concern
ourselves with structuralism in this particular paper.
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We say that two structures have the same similarity type vithefiamily
s of types is equal for both, that is, their relations have traestype and the
family in the domain is composed of the same number of elesnegince
a family is always ordered, the same type of relations octways in the
same order when the structures have the same similarity type

Definition 3.2 A s-algebra2l is a structure(A, R,) such thatord(R,,) <1
for eachn and®l has similarity types.

The restriction to order 1 or less serves to make eaalgebra into an
algebra in the usual sense, that is, a set with a family ofatjpers defined
over this set and distinguished elements taken from the oloma

Definition 3.3 Letl, B be s-algebras wittRl = (A, R,) andB = (B, R)).
A homomorphism frorl into %5 is a functiony : A — B such that, for all
Ry, of thes-algebra?l whose type i01, ..., 0g),

(P(R)\<L(ala cee 7ak)) = R/>\<L(90(a1)7 oo 790(6%))'

Definition 3.4 Let%, B be s-algebras andy : A — B a homomorphism.
If ¢ is a bijection we say that it is an isomorphism between thelatgs.

Definition 3.5 Let X be any set, lef be as-algebra with domainF” and let

o : X — F be afunction. We say thaf’, o) (also, for simplicity, denoted
by F) is a free s-algebra on the seX of free generators if, for every-
algebra®l and functiona : X — A, there exists a unigue homomorphism
¢ F'— Asuch thatpo = «.

Theorem 3.1 For any setX and any similarity types, there exists a free
s-algebra onX. This frees-algebra onX is unique up to isomorphism.

Proof. a) Uniqueness We show first that if ', o) is free onX, and if ¢ :
F — F'is a homomorphism such that = o, theno = 1p, the identity
map onF'. To show this , we taked = F andT = o in the defining
conditions. Therd g : F' — F has the required property fagr, and hence by
its uniqueness is the only such map.

Now let (F, o) and (G, <) be frees-algebras onX. Since(F, o) is free,
there exists a homomorphisg: F' — G such thatpo = ¢. Since(G,<)
is free, there exists a homomorphigm G — F' such thaiys = 0. Hence
opo = ¢¢ = o, and by the result abovejp = 1p. Similarly, p¢ =
1r. Thusy and¢ are mutually inverse isomorphisms, and so uniqueness is
proved.
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b) Existence An algebraF’ will be constructed as a union of sef$
(n € w), which are defined inductively as follows:

DEy=X

2) F, is defined for0 < r < n. Then defineF,, = {(s¢, a1,...,ar)|s¢ 1S
atermofs,s; = (01,...,0,),a; € F,.,, Zle rp=n—1}

3) Put
F=|JF,
new
The setF' is now given. In order to make it into &algebra, we must
specify the action of the operations corresponding to thegyofs.

4)If sy = (01,...,0), putsi(ay,...,ax) = (s¢,a1,...,ax).

This makesF' into a s-algebra. Now, this point deserves some comments.
We are constructing astalgebra, and for that we must specify the operations
of that algebra. As an abuse of language, we allow that theatipe being
constructed be named almost exactly as the type of the etehsequence
which determines the similarity type of the algebra beingstaucted, as can
be seen from item 4 above, where on the left side of the egumldenotes
the operation being defined, and on the right, without onerk; denotes the
type of the sequence The reason for that identification comes from the fact
that we still do not have a structure with operations, fordperations are
being built from the elements of the sdts. To complete the construction,
we must givethemap : X — F.

5) Foreachr € X, puto(z) = z € Fp.

Finally, we need to prove that F is free df, i.e., we must show that if
Ais anys-algebra and- : X — A any map of X intoA, then there exists
a unique homomorphisp : F' — A such thatpoc = 7. We do this by
constructing inductively the restrictiop,, of ¢ to F,, and by showing that
v IS completely determined by and by, for k£ < n.

We havely = X. Forxz € X the homomorphism condition requires
po(x) = 7(x), and sincer(z) = = € Fp, we must havepy(z) = 7(z).
Thusyy : Fy — Aisdefined, and itis uniquely determined by the conditions
to be satisfied by.

Suppose thapy, is defined and uniquely determined for< n. An ele-
ment of F,(n > 0) is of the form(s¢, a1, ..., ax) with s, = (0q,...,0x)

a; € F,,,and
k
Zri =n-—1.
i=1
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Thus ¢y, (a;) is already uniquely defined far = 1,...,k. Furthermore,
since(st, ay,...,a,) = s¢(aq,...,ax) and since the homomorphism prop-
erty of p requires thatp(s¢, a1, ..., axr) = si(p(a1),...,e(ax)), we define
(Pn(sta ay, ... 7ak) - St(@?”i(al)a e 7%07”1' (ak))

This determine,, uniquely, and as each elementfobelongs to exactly
one subsef,,, in puttingy(a) = ¢,(a) for a € F, (n > 0), we see that
¢ is a homomorphism fron#' into A satisfyingyo(z) = @9 = 7(z) for
all z € X as required, and that is the only such homomorphism, and this
completes the proof. O

Now, we pass to the development of languages properly, wihitthbe
considered as specific freealgebras as presented above.

3.2. The Language of Simple Type Theory

In this section we shall present as a specifalgebra the language of simple
type theory.
For each type € 7, we have:

1. adenumerable s&f,, called the set of variables of tyjpe
2. asetR, of the constant symbols of type which may be eventually
empty for some of the elements of

Also, we define the set of all variables and constants of thguage.

Definition 3.6 For all ¢ € 7:

1. V = V,, the set of variables;
2. R =J R,, the set of constants.
As we can see there will be in particular variables for ea¢tosthe do-
main, that is, for each séd;,, there will be a family of variables restricted to
Dy, so that our language is a many-sorted one whenk, for only in these

cases we will have more than one set in the domain.
For each element af, we define the terms of that type:

Definition 3.7 If a € 7 the setl’ of terms is defined by:
T,=V,UR,

Since we are treating formal languages as algebras, thestegxtis to
specify the set of generators of a free algebra accordinglg. take X as
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the following set: X = {T%(to,...,tn—1)|T* € Ty,a = (ag,...,an—1) €
T, t € Tk}.

As one can see, in this definitian~ 0,1, ...,n — 1. The intuitive idea is
that individual terms should not by themselves form atororoifulas.

Lets = {—, =, (Va)|z € V,,a € 7}, where—~ = (0), —»= (0,0), and
(Vz) = (0) for each such symbol. Here, the reader should keep in mind
the identification made in the proof in the last section of dperations in
the frees-algebra with the elements of the sequenc&he connectives and
quantifiers of the language are not really types, but, asghstouction made
above indicates, they are constructed from the correspgrngpes of the
sequence and, according to the convention made above, the same symbol
is used to name bothP(V, R) is the frees-algebra on the seX above,
with V and R as defined above. Once again, the reader should not confuse
the symbols, which will represent relations defined on tigetada with their
types, which tells us what kinds of objects it relates andvieeht of the
relation.

An elementw of P(V, R) is called a formula.

Definition 3.8 Givenw € P(V, R), the setV (w) is the set of variables of
the formulaw, defined as

=({U|U C V,w € P(U,R)}

The variables occurring in a formula may be bound or free. @fend the
set of free variables as follows:

Definition 3.9 Letw € P(V, R). The setwar(w) of free variables ofv is
inductively defined:

1. var(R*(to,...,th—1)) ={ti: t; € Vi};

2. r(X (toy.wstn_1)) = {ti: t; € V;} U{X*};

3. var(-w) = (w):

4. r(w1 — wg) var(wy) Uvar(ws);

5. var(Vzw) = var(w) — {z}.

The language thus created is the language of type theory.c@m@&ow

easily go ahead and present axioms and inference rules fartitve shall
not do such things here.
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3.3. The order of a language

We can now consider fragments of the language of type thdbig. easy
to see how one can obtain, for example, from the languageeahtory of
types as exposed here, what is usually known as first-ordegnsl-order
or n-th order languages in general. We begin approaching thHe topre
rigorously with the following definition:

Definition 3.10 The order of a term is the order of its type.

Now, restricting ourselves to terms of ordeor less, and in particular to
variables of orden or less, we can easily obtain second order languages.
When we restrict ourselves this way, we consider in buildhey similarity
type s only quantifiers over variables of the types available tontsch are
the ones of order one or less, and so, we quantify only ovevidwhls or
properties and relations over individuals. In the same wiggycan obtain
n-th order languages by restricting ourselves to the setsraid of order
n — 1 and less, and, in this way, allowing quantification over afales of
ordern — 1 and less.

Definition 3.11 The order of a language £ is defined as
ord(£) = mazx{ord(z,) : xq € Vo } + 1.

So, the order of a language gives us information on the seswkich
we quantify, or, more precisely, over the order of objectsravhich we

quantify.

4. The language of a structure

In this section, we relate both proposals made above: tloythod structures
and the language of types seen as a free algebra. An intgyelticussion
in the philosophy of mathematics and foundations is whdtiere is a most
natural language to use associated with a given structureordling to our
approach, associated with every structaitbere will be a language which
is the one in which we will talk about the elements of the gtre, having
as constant symbols exactly one symbol for each relationrdag in the
structure, with both the symbol and the corresponding iogldieing of the
same type. As we said before, given a struckji® build one language for
this structure we consider ogj(and restrict ourselves to terms of this order
or less. Also, the set X of generators of the free algebrabeltestricted
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accordingly, that is, in building the language as a freelalgehe generators
will be the atomic formulas built from the symbols availabbeus.

As a consequence of this discussion, the languages in wheatew treat
more adequately the elements of a structure are the languagach that

ord(e) < ord(£)3. So, for example, in first-order structures, we must use

at least first-order languages. To consider a simple exanepketake group
theory, which deals with groups (first-order structureshege structures,
according to the approach adopted in this work, are mostalhtureated

by second-order languages, for we must talk about subgrangsjuantify

over subsets of the domain. That does not mean that it is isitgesor not

fruitful to use first-order languages; in fact, the work isrooonly done in

first-order language, as when we use set theory to develapdheory, or

other mathematical theories such as well-ordered strestar Dedekind-
complete fields, theories which are not first-order (seeudision in [5, pp.

89, 90)).

There is a live discussion on this topic in the philosophy fmohdations
of mathematics. Should we restrict ourselves to first-otdaguages or
should we adopt higher-order languages? We shall not emi@ithe dis-
pute here (for a defence of second-order logic in these xtmtsee, for
example, Shapiro in [6]). The general approach followechia work sug-
gests that a pluralist view should be pursued: it is fruittuéxplore higher-
order languages as well as first-order languages. Evenltribedatter have
the preference of most philosophers, one must recognizedhze kinds of
structures employ more naturally dealt with higher-or@giguages. In fact,
the reader may even wonder whether the problem of a “bettiaguage for
certain mathematical theories is a legitimate one (for aticism about this
problem, see Hodges [4, pp. 71-73]).

Having a language with which we can talk about the elements ibfis
now simple to define for this language the notions of the sireamodeling
a sentencex of the language, that i€ & «, as well as other semantical
notions, but we will not do that here.

5. Suppes’ Predicate

Given a structure and some language adequate for this gteyave now
discuss how to formulate a Suppes’ predicate for that siraeaising that
language (we follow da Costa and Chuaqui, see [2]). Firstlpive recall
the definition of the similarity type of a structuegwhich is a family of types
that determines the kinds of the relations present in thetstre. According

3We are following here also some suggestions made by da CGostagh personal com-
munications in seminars.
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to this definition, two structures have the same similagipetif the types of
their relations form the same family and they have the samaoeu of sets
in their domain.

Now, given structureg = (D,,, R,) andg = (E,,, L,) of the same sim-
ilarity type, we consider how to extend a given functipn Dy — FE,, for
k < n to a function mapping from(D,,) to (E,,).

Definition 5.1 Given the functiory as described above, for each type
we define:

1. For the objects of type k, with < k < n f(Dy) = {f(x) : = €
Dy)};

2. Fora € 7 such thata = (ay,...,a,—1), and R the set of objects of
type a, we havg (R) = P(f(ta,) X f(tay) X ... X f(ta, 1))

This function maps objects of the typen «(D,,) to objects of type: in
e(Ey,). The interesting case occurs when the following definitowerified:

Definition 5.2 Given structures e= (D,,, R,) and g= (E,, L,) of the same
similarity typesy«,, and f a bijection fromD;, to £}, with0 < k < n, we
say that the familyf’ = f,,_ is an isomorphism between e and g when
fa(R*) = L*, whereR® and L* means that R and L have type

Definition 5.3 A sentence of the language appropriate for the structure e
is called transportable if for any structure g isomorphiceto

eEPegE9.

Definition 5.4 A Suppes’predicate is a formula P(e) of set theory which says
that e is a structure of similarity type satisfyingI", a set of transportable
sentence® of the language adequate for e.

When P§), that is, where satisfies P, we say thatis a P-structure. Ac-
cording to da Costa and Chuaqui ([2, p.104]), this definitaptures the
sense in which we can say that a theory is a class of modelsselg the
class of models that are P-structures for some adequate P.

We now consider some examples of Suppes’ predicates for dwoges.
Our goal is to show how classical particle mechanics can mereatized in
the approach exposed here.
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Example 5.1 A Suppes’ Predicate for Group Theory

Let G be a set; as defined above, we introduce the funatigror simply
t, whose domain is the set to create the scale(G). Then, we choose a
relation o of type(0,0,0), that is,c € P(G x G x G), a relation— of the
type(0, 0), thatis,— € P(G x ) and an elementof type0, thatis,i € G.
As one can check from the definitions, the order of each ofalagions isl
and the order of is 0. Remembering that a-ary function is an + 1-ary
relation, we have that the usual composition operation bee® a ternary
relation, the opposite relation becomes a binary relation.

The structure of groups i& = (G, o, —, i) and the order of this structure
is the greatest order of its relations, 8od(®) is 1. The theory is not done
yet, for we need to write the postulates and give the set¢lieal predicate.

As defined above, the language @is a second-order language. The set
T of terms is formed by a set of variables= | V,,, whereord(a) < 1 and
the set{o{%:0.0) _(0.0) ;01 of constant symbols. So, the $ebf free genera-
torsisX = {T%(to,...,tn-1)|T* € Ty,a = {ag,...,an—1) € 7, t; € Ti},
and by the theorem above, there is a free algebra upon thd s&teogener-
ators X, and it is the language for the structueg.

With the language so developed we can write the usual axiongdup
theory, let’s call them Al, A2 and A3, respectively as fallow

1 Vavy¥z(((zoy) o 2) = (z o (yo 2)))
2. Va3dy(x —y =1)
3. Vz(roi=ux)
Then, a Suppes predicate for group theory can be written lasifs:

G(X) < 3GIoI — Ji(X = (G,o0,—,i) A AL A A2 A A3)

Now, we finally proceed to present the Suppes’ predicateléssical par-
ticle mechanics.

Example 5.2 First, we need to present some mathematical structures: the
first one is the field of real numbe®s. There is just one base set, the Ret

of real numbers. The objects of this set are of t9p&he operations are-,

-, 0, 1, <, which are of types0, 0, 0), (0,0,0), 0, 0 and (0, 0) respectively
(one must not confuse the symbaif types with the elemenftof the field).

As usual, these are the operations of addition, multiplazat the identity
element of addition, the identity element of multiplicatend the relation of
less than between real numbers. The language of the fielcabhuenbers
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according to our approach is a second-order language andatkiems for
the field are well known and we can easily see that they arespranable.

The next structure is the vector space over the field of realbarsy.

In this case there are two base sets, thedatf vectors and the sék of
real numbers. The objects df are of typel. Besides the field’s operation
we have heret, -, 0 which are respectively of typeg, 1,1), (0,1,1), 1.
A Euclidean vector space is a vector space with addition oéirproduct
and vector product, denoted By, y) and|x, y] of types(1, 1,0) and(1, 1, 1)
respectively. The order of vector space language and of tioidean vector
space i according to our approach, that is, a second-order languafjee
axioms for these structures are well known and clearly tpantable.

Next, we present the real affine space which is a vector spabean
addition domainA, whose elements are of tyRe The new operation is
difference of points which, fgr, ¢ € A is denoted by; — p, whose type is
(2,2,1). The new axiom needed is the statement that difference wfspoi
is vector and the law of addition of points, which says thatyfay, r € A,
q—p-+r—q=r—p. Ifthe vector space is Euclidean, the affine space is
a Euclidean space. In Euclidean space we can define the destagtween
pointsp, ¢ € A in the following way:d(p,q) = |¢ — p| = v/(qa — p,p — q)-

Now, we present a Galilean space-time system. We add touhéifoen-
sional affine space presented earlier a new univérshich is a subset of
V', and operatiort from A into R of type(2, 0) and relations of typé3, 3, 1)
and (3, 3, 3) denoted by(, ) and[, | respectivelyt represents the measure of
time. The two axioms following must be satisfied:

1. V; is a three dimensional vector subspacelofind (,) and|[,] are
its scalar product and vector product, respectively;

2. tis a function fromA to R such that for eachP € A the set{Q :
t(Q) = t(P)} is a three dimensional euclidian space with vector
spaceV;. The affine space faf P) = r denoted byA(r).

For a classical mechanical system we add new univBrgbe set of par-
ticles and the selN of natural numbers to index the external forces. So the
family of universe can be given by the sequeRc¢d/, A, Vi, P and N.
The operations on these sets are those necessary to Riake A, V4 a
Galilean space-time system plus the following new relation

1. A functiona of type(0, 2) which gives the origin at each time;

2. Afunctiors of type(4, 0, 2) for the position of a particle in each time.
We writes, (¢) for this function;

3. A mass function m of tygd, 0);
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4. A force functionf of type (4, 4,0,1) which represents the internal
forces;

5. A force functiorg of type (4, 0,5, 1) which represents the external
forces.

For the specific axioms of mechanics we need notions of asaysh as
derivatives and convergence of series. The field of real eusnimust be
completed with the corresponding operations of diffeeditn, integration
and addition of series. Since differentiation, for exampa&es functions of
real numbers to functions of real numbers, the order of tisration will
be 2. So, the language needed to talk about this is strucsuaéleast third-
order language.

The kinematical axioms are:

1. The range of is an intervall of real numbers;

2. P is afinite and non-empty set;

3. ais a function from/ to A such that for each € T a(i) € A(4);
4

. sis a function fromP x I into A such that for eaclp € P andi € I
we have thas, (i) € A(t);

. mis a function fron® into R;
. fis a function fromP x P x I into Vi;
. gis afunction fromP x I x Ninto Vi;

0 N o O

. For everyp € P andi € I the vector functiors, (i) — a(z) is twice
differentiable at i.

Dynamical Axioms
9. Forp € P m(p) is a positive real number;
10. Forp,q € Pandi € I f(p,q,i) = —(q,p,1);
11. Forp,q € Pandi € I [s(p,i) —s(q,1),f(p,q,i) — f(q,p,1)] = 0;
12. Forp € Pandi € I the serie,,(g(p, 7, n) is absolutely convergent;

13. Forp € Pandi € I m(p)D?(sy(4)) = Zgepf(p, ¢,)+n(g(p, i, n).

whereD? is the second derivative with respectito

These formulas are transportable, in the sense definedquslyi The
motivations for these formulas can be found in the works pp8si cited in
the bibliography.
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6. Final Remarks

As a first remark, one should note that everything developd bould in
principle be done inside category theory. Our use of ZFCheirly reflects
primarily the fact that this kind of framework is the most akin mathe-
matical practice. Obviously, the specific apparatus in Wwioiae works may
have important consequences for the development of tteeadeording to
the semantic view. As an example, if we are working inside antable
model of first-order ZFC (which exists by Lowenheim-Skoldmedrem if
ZFC is consistent), then the set of real numbers, for one pbans de-
numerable. How does that impinge on physical theories thgtl@y real
numbers in an essential way? For another example, considacqnsistent
set theories. Inside those frameworks one may allow forradidtions in
the development of theories; could that bear fruitful cojpssces for our
understanding of current scientific theories? Those arstiguns which, to
our mind, are more easily noticeable and dealt with throhghuse of a rig-
orous framework such as the one presented here, even thaughall not
pursue those particular points nbw

Now that we reached our goal, it's time to make one final pdedrc The
presentation of particle mechanics above may have conveydt reader
the impression that the method proposed here is quite cangpld may
not repay our efforts. Suppes’ predicates, as they appetreirwork of
Suppes and his collaborators may seem preferable, it maygbhed since
they are easier to work with, they are more akin to the infdrshde of the
working mathematician. Given this situation, what can we isafavor of
the approach to scientific theories developed in this wankl, ia particular
to the theory of structures proposed here?

Our claim is that, despite our being conscious that the naefitoposed
here involves some additional complications when compaoe8uppes’
original approach, it has the great advantage of precisihtlae extra ef-
fort spent in working through its’ complications repays whege consider
the great promises of important results that may be achielfedcite but
one, we mention da Costa and Rodrigues Generalized Gakmsythdevel-
oped in [3]. Difficult problems of definability of concepts ynbe studied
according to their approach and the useful techniques cl@sél by them
apply to the framework presented here. When one is intef@sigrecise re-
sults and conceptual clarification, one needs a rigorousdweork to begin
with, and we think the one proposed here is apt for many agijdics. For
most practical applications in general philosophical ukstons we can relax
the rigour and proceed more or less informally, but when iihes the time
for some kinds of technical applications, such as demangeadine specific

4We thank an anonymous referee for pressing on this point.
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philosophical labor in foundational studies, it is betshift to a precise
framework like the one proposed here.

As one example of a philosophical investigation in which tbehnical
apparatus proposed here may help us, we could mention oagetag un-
covering of some underlying assumptions of the semantig vie scientific
theories, such as the use of formal languages to determengahs of mod-
els that a particular theory is. Philosophers of sciencd terbelieve that
this particular approach to determine a theory as a classodels is inde-
pendent of a formal language; as we have seen, if ‘model’ksntan the
rigorous set theoretical sense, then such a remark may nniéh€er his par-
ticular topic, as others previously mentioned, is of theatgst relevance for
the philosopher of science, and its investigation may ¥oltm the basis of
the present one. Another relevant application not notigechény concerns
the logical foundations of theories, and relates to themdiskinds of mod-
els obtained by the use of distinct kinds of languages. Fsiaite, to keep
talking about real numbers, if we change a little bit the lzage employed
in the axiomatization of mechanics and allow that the fieldeafl numbers
be axiomatized by a first-order language only, then nondsta@hmodels of
the reals enter in the theory too, in particular enumerahbelats. As far
as we know, little attention has been given to the problench $acts may
raise, mainly in the relationship of the field of real numbainsl the devel-
opment of mechanics, and we believe that the apparatusnpeesieere may
be helpful in such investigations.
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