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Abstract
In this paper we present a unified approach to three topics: struc-
tures, formal languages and models. We begin by presenting agen-
eral theory of set theoretical structures. Formal languages and mod-
els are both structures inside this framework. We also present the
link between languages and models given through a set theoreti-
cal predicate in the style of Suppes. The association of languages
with structures satisfying certain conditions (given by set theoretical
predicates) allow us to present an interesting applicationof the re-
sulting framework: one is now able to characterize rigorously some
classes of models. The classes of models so characterized play the
role of scientific theories according to a version of the semantic ap-
proach to scientific theories. This is a first step in making explicit
some of the underlying assumptions of the semantic approachto
theories. In the end we give the example of how particle mechanics
may be viewed as a theory according to that approach inside our
framework.

1. Introduction

In this paper we present with great generality three topics of common inter-
est for logicians and philosophers of science: structures,formal languages
and scientific theories. Our approach follows the work of N.C.A. da Costa,
who presents in a very general setting a theory of structuresencompassing all
usual mathematical theories. Of particular interest for usis the development
of free algebras inside this theory of structures, for they can be used to give
a rigorous account of formal languages. Both of these topicsare well-known
by logicians, but in general, a rigorous unifying treatmentis still lacking. In
particular, we deal with the problem of specifying a language to be used to
talk about the elements of a structure. With these two notions in hand, sci-
entific theories can then be viewed as classes of structures satisfying axioms
formulated in an adequate language specified for them, whichamounts to
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da Costa’s formalization of Suppes’ ideas on these topics. One of our aims
is to unify these approaches appearing in da Costa’s work which were not
completely linked by him yet.

We believe that the main interest of this kind of work relies precisely in
its potential applicability to conceptual clarification inthe philosophy of sci-
ence1 . According to a widespread philosophical conception of scientific the-
ories, known as the ‘semantic view’ of scientific theories, atheory is defined
as a kind of model or as a class of models. One of the troubles for this po-
sition is that the precise meaning of the word ’model’ in suchdiscussions
is not always as clear as it would be desirable in such contexts. However,
some have claimed that for a rigorous treatment of the subject, all the rele-
vant senses in which that word is used can be reduced to the settheoretical
meaning (see [7], and [8]), the one which we shall deal with here. What
is generally lacking in such discussions is a rigorous development of these
models and the languages used to talk about them, mainly in case we want
to axiomatize them or to discuss notions such as definabilityof elements of
the domain or relations and operations on them. The approachof Suppes as
formalized in da Costa and Chuaqui ([2]) is an option for making concepts
clearer in these discussions and gives a rigorous meaning tothe idea that a
theory is a class of models specified by a set theoretical predicate. We show
how this predicate can be written according to the approach to structures
presented here.

Our strategy in this paper will be the following one: workinginside first-
order ZFC set theory, we first develop a theory of structures following da
Costa and Rodrigues (see [3]). Using that theory as a basis, two distinct
branches can then be developed: i) the algebraic conceptionof formal lan-
guages, and ii) the semantic conception of theories. Both branches, as we
have said, are developed inside the theory of structures, that is, languages
will be a kind of structure, and the models which are used to characterize
theories are also structures. What is common to these two branches, as will
be seen, is their underlying basis, the general theory of structures. Finally,
we make the link between these last two points through Suppes’ predicate,
as developed by da Costa and Chuaqui ([2]). In a Suppes’ predicate, as
this notion is understood by da Costa and Chuaqui, we employ the formal
languages previously developed to write the axioms that thestructures con-
stituting a certain theory must obey. In this way, for example, we need the
language of field theory to express the axioms that fields mustobey, and a
field is a kind of structure that obeys those axioms, something expressed by
the Suppes’ predicate for fields. So, as one can see, a concernwith formal

1 It is not our aim in this work to deal with all the details of those applications. Here
we begin by putting the whole formal machinery to work. Otheraspects of the discussion as
based in this framework are forthcoming.
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languages is not totally absent in thesemanticview either (cf. the discussion
in section 4).

In the following we give a rigorous treatment of those topics, without be-
ing exhaustive. Our main aim here is to give a unifying treatment of those
themes, which somehow have already appeared in a fragmentary manner in
different places and even serving different purposes, and show their coherent
unity. Once the whole formal apparatus and its general motivation is set, it
may be easier to simply depart from it and go ahead to provide the relevant
philosophical discussions with adequate rigour.

2. Structures

We work in the first-order ZFC set theory, and although we keepour presen-
tation informal, our development of the topics is rigorous.In this section,
we follow the approach presented in [3], but, differently from the exposition
there, we allow that the domain of the structures be composedof more than
one set, and allow other simplifications which will be explained later.

Our first definition is of the setτ of types. These types are not to be
confused with the ones of type theory. This set will be important also for the
development of the languages in the next section so when we speak of the
set of types, we always mean the setτ given by the following definition:

Definition 2.1: The setτ of types is the least set satisfying the following
conditions:

1. The symbols0, 1, . . . , n− 1 belong toτ ;

2. If a0, a1, . . . , an−1 ∈ τ , then〈a0, a1, . . . , an−1〉 ∈ τ , 1 ≤ n < ω,
where〈a0, a1, . . . , an−1〉 is the finite sequence ofn terms, composed
bya0, a1, . . . , an−1.

We now define the order of the elements ofτ .

Definition 2.2: If a ∈ τ , the order ofa, denoted ord(a), is defined by:

1. ord(k) = 0, for k = 0, 1,. . ., n-1;

2. ord(〈a0, a1, . . . , an−1〉) = max{ord(a0), ord(a1), . . . , ord(an−1)}
+1.

These definitions will be useful in the next sections, when wetalk about the
order of a language. The following definitions help us to construct relations
and properties based onDn, a non-empty family of sets, which will soon
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be called the domain of the structure. We hope that the context will make
it clear when we writeDn whether we are speaking about a family of sets
that constitute the domain or about the n-th member of that family, in case
there is one. In the next definition, the usual set-theoretical operations of
power set and cartesian product are being used, and are denoted respectively
by “×” and “P”.

Definition 2.3: Given a familyDn of non-empty sets (that is,D0,D1, . . . ,
Dn−1) we define a functiont, called scale based onDn, having τ as its
domain, as follows:

1. t(k) = Dk, for k = 0, 1, . . . , n− 1;

2. If a0, a1, . . . , an−1 ∈ τ , then t(〈a0, a1, . . . , an−1〉) = P(t(a0) ×
t(a1)× . . .× t(an−1)).

Thus, metaphorically speaking, the functiont gives us a kind of layered
universe based on the familyDn where, as the orders of types increase, the
objects attributed to them byt increase in complexity too. Givena ∈ τ , the
elements oft(a) are said to be of typea. To make this point clear, we give
some examples. The elements of type1, say, (that is, elements ofD1, since
t(1) = D1) are called individuals. The elements oft(〈〈1〉〉), are properties
of properties of individuals, as one can check following thedefinition above.
For another example, let us consider relations between objects of type0 and
1. The elements oft(〈0, 0, 1〉) are ternary relations in which the first two
relata are of type0 and the third is of type1, and the elements oft(〈〈0, 1〉, 1〉)
are relations between a relation and an object.

We denote the set
⋃

(range t(Dn)) by ε(Dn).

Definition 2.4: The cardinalKDn
associated toε(Dn) is defined as

KDn
= sup{|

n−1
⋃

k=0

Dk|, |P(

n−1
⋃

k=0

Dk)|, |P
2(

n−1
⋃

k=0

Dk)|, . . .}.

Here,|
⋃n−1

k=0
Dk| denotes the cardinal of the set

⋃n−1

k=0
Dk.

Definition 2.5: A structure e based on the familyDn is an ordered pair of
the form

e= 〈Dn, Rι〉.

Here,Rι is a sequence of elements ofε(Dn), and we suppose that the
domain of this sequence is strictly less thanKDn

, whereDn, as we said
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before, is the family of sets on the domain of the functiont. We say that
KDn

is the cardinal associated withe, and thatε(Dn) is the scale associated
with e.

As we said before, each element ofε(Dn) has a certain type, for it belongs
to t(a) for somea ∈ τ . Now, the order of a relation is defined as the order
of its type. The order ofe, denoted ord(e), is the order of the greatest of the
types of the relations of the familyRι, if there is one, and if there is no such
relation, we put ord(e)=ω.

In the beginning of this section we remarked that our presentation makes
some simplifications on [3]. Here we depart from da Costa’s original work
in that we allow individuals and operations to occur in the structure, whereas
da Costa reduced operations to relations and identified individuals with their
unit sets. The main point of this change is to simplify the exposition in
our paper, and from a mathematical point of view the difference is purely
a matter of convention2 . So, in the definition of structures, the objects in
the familyRι may be not only relations, but operations as well, that is, rela-
tions satisfying the well-known functional condition, or even distinguished
elements from the domain, which we take to be0− ary operations. In these
cases we employ as usual the common notation for functions and objects.

3. Formal Languages

We now present an approach to formal languages which will make use of
the notion of structure just developed. Here, languages will be a special kind
of structure, a free-algebra. Our aim is to develop the language of simple
type theory, but before doing that, first we present some topics on Universal
Algebra.

3.1. Topics on Universal Algebra

In this section, to make our paper self-contained, we present the topics on
Universal Algebra required for our purposes. We follow closely the exposi-
tion in Barnes and Mack ([1]), but our exposition is totally developed in the
theory of structures presented above.

Definition 3.1: The similarity type of a structure e= 〈Dn, Rι〉 is a family
sλ<ι of types, such that for eachλ < ι, sλ is the type ofRλ.

2 In fact, to allow individuals as we are doing or to identify them with their unit sets are
both commitments to individuals anyway. If one is wishing toavoid individuals for struc-
turalist reasons, then maybe ZFC is not the best framework towork with, since individuals
are always given in the domain of the structure. Interestingas it is, we shall not concern
ourselves with structuralism in this particular paper.
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We say that two structures have the same similarity type whenthe family
s of types is equal for both, that is, their relations have the same type and the
family in the domain is composed of the same number of elements. Since
a family is always ordered, the same type of relations occur always in the
same order when the structures have the same similarity type.

Definition 3.2: A s-algebraA is a structure〈A,Rι〉 such thatord(Rn) ≤ 1
for eachn andA has similarity types.

The restriction to order 1 or less serves to make eachs-algebra into an
algebra in the usual sense, that is, a set with a family of operations defined
over this set and distinguished elements taken from the domain.

Definition 3.3: LetA, B bes-algebras withA = 〈A,Rι〉 andB = 〈B,R′
ι〉.

A homomorphism fromA into B is a functionϕ : A → B such that, for all
Rλ<ι of thes-algebraA whose type is〈01, . . . , 0k〉,

ϕ(Rλ<ι(a1, . . . , ak)) = R′
λ<ι(ϕ(a1), . . . , ϕ(ak)).

Definition 3.4: LetA, B bes-algebras andϕ : A → B a homomorphism.
If ϕ is a bijection we say that it is an isomorphism between the algebras.

Definition 3.5: LetX be any set, letF be as-algebra with domainF and let
σ : X → F be a function. We say that〈F, σ〉 (also, for simplicity, denoted
by F ) is a frees-algebra on the setX of free generators if, for everys-
algebraA and functionα : X → A, there exists a unique homomorphism
ϕ : F → A such thatϕσ = α.

Theorem 3.1: For any setX and any similarity types, there exists a free
s-algebra onX. This frees-algebra onX is unique up to isomorphism.

Proof. a) Uniqueness: We show first that if〈F, σ〉 is free onX, and ifϕ :
F → F is a homomorphism such thatϕσ = σ, thenσ = 1F , the identity
map onF . To show this , we takeA = F and τ = σ in the defining
conditions. Then1F : F → F has the required property forϕ, and hence by
its uniqueness is the only such map.

Now let 〈F, σ〉 and〈G, ς〉 be frees-algebras onX. Since〈F, σ〉 is free,
there exists a homomorphismϕ : F → G such thatϕσ = ς. Since〈G, ς〉
is free, there exists a homomorphismφ : G → F such thatφς = σ. Hence
φϕσ = φς = σ, and by the result above,φϕ = 1F . Similarly, ϕφ =
1F . Thusϕ andφ are mutually inverse isomorphisms, and so uniqueness is
proved.
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b) Existence: An algebraF will be constructed as a union of setsFn

(n ∈ ω), which are defined inductively as follows:
1) F0 = X
2) Fr is defined for0 ≤ r < n. Then defineFn = {(st, a1, . . . , ak)|st is

a term of s,st = 〈01, . . . , 0k〉, ai ∈ Fri ,
∑k

i=1
ri = n− 1}

3) Put

F =
⋃

n∈ω

Fn

The setF is now given. In order to make it into as-algebra, we must
specify the action of the operations corresponding to the types ofs.

4) If st = 〈01, . . . , 0k〉, putst(a1, . . . , ak) = (st, a1, . . . , ak).

This makesF into as-algebra. Now, this point deserves some comments.
We are constructing ans-algebra, and for that we must specify the operations
of that algebra. As an abuse of language, we allow that the operation being
constructed be named almost exactly as the type of the element of sequences
which determines the similarity type of the algebra being constructed, as can
be seen from item 4 above, where on the left side of the equality st denotes
the operation being defined, and on the right, without overline,st denotes the
type of the sequences. The reason for that identification comes from the fact
that we still do not have a structure with operations, for theoperations are
being built from the elements of the setsFn. To complete the construction,
we must give the mapσ : X → F .

5) For eachx ∈ X, putσ(x) = x ∈ F0.

Finally, we need to prove that F is free onX, i.e., we must show that if
A is anys-algebra andτ : X → A any map of X intoA, then there exists
a unique homomorphismϕ : F → A such thatϕσ = τ . We do this by
constructing inductively the restrictionϕn of ϕ to Fn and by showing that
ϕn is completely determined byτ and byϕk for k < n.

We haveF0 = X. For x ∈ X the homomorphism condition requires
ϕσ(x) = τ(x), and sinceσ(x) = x ∈ F0, we must haveϕ0(x) = τ(x).
Thusϕ0 : F0 → A is defined, and it is uniquely determined by the conditions
to be satisfied byϕ.

Suppose thatϕk is defined and uniquely determined fork < n. An ele-
ment ofFn(n > 0) is of the form(st, a1, . . . , ak) with st = 〈01, . . . , 0k〉
ai ∈ Fri , and

k
∑

i=1

ri = n− 1.
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Thusϕri(ai) is already uniquely defined fori = 1, . . . , k. Furthermore,
since(st, a1, . . . , an) = st(a1, . . . , ak) and since the homomorphism prop-
erty ofϕ requires thatϕ(st, a1, . . . , ak) = st(ϕ(a1), . . . , ϕ(ak)), we define
ϕn(st, a1, . . . , ak) = st(ϕri(a1), . . . , ϕri(ak)).

This determinesϕn uniquely, and as each element ofF belongs to exactly
one subsetFn, in puttingϕ(α) = ϕn(α) for α ∈ Fn (n ≥ 0), we see that
ϕ is a homomorphism fromF into A satisfyingϕσ(x) = ϕ0 = τ(x) for
all x ∈ X as required, and thatϕ is the only such homomorphism, and this
completes the proof. �

Now, we pass to the development of languages properly, whichwill be
considered as specific frees-algebras as presented above.

3.2. The Language of Simple Type Theory

In this section we shall present as a specifics-algebra the language of simple
type theory.

For each typea ∈ τ , we have:

1. a denumerable setVa, called the set of variables of typea.

2. a setRa of the constant symbols of typea, which may be eventually
empty for some of the elements ofτ .

Also, we define the set of all variables and constants of the language.

Definition 3.6: For all a ∈ τ :

1. V =
⋃

Va, the set of variables;

2. R =
⋃

Ra, the set of constants.

As we can see there will be in particular variables for each set of the do-
main, that is, for each setDk, there will be a family of variables restricted to
Dk, so that our language is a many-sorted one when1 ≤ k, for only in these
cases we will have more than one set in the domain.

For each element ofτ , we define the terms of that type:

Definition 3.7: If a ∈ τ the setT of terms is defined by:

Ta = Va ∪Ra

Since we are treating formal languages as algebras, the nextstep is to
specify the set of generators of a free algebra accordingly.We takeX as
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the following set:X = {T a(t0, . . . , tn−1)|T
a ∈ Ta, a = 〈a0, . . . , an−1〉 ∈

τ, tk ∈ Tk}.
As one can see, in this definitiona 6= 0, 1, . . . , n− 1. The intuitive idea is

that individual terms should not by themselves form atomic formulas.
Let s = {¬,→, (∀x)|x ∈ Va, a ∈ τ}, where¬ = 〈0〉, →= 〈0, 0〉, and

(∀x) = 〈0〉 for each such symbol. Here, the reader should keep in mind
the identification made in the proof in the last section of theoperations in
the frees-algebra with the elements of the sequences. The connectives and
quantifiers of the language are not really types, but, as the construction made
above indicates, they are constructed from the corresponding types of the
sequences and, according to the convention made above, the same symbol
is used to name both.P (V,R) is the frees-algebra on the setX above,
with V andR as defined above. Once again, the reader should not confuse
the symbols, which will represent relations defined on the algebra with their
types, which tells us what kinds of objects it relates and theweight of the
relation.

An elementw of P (V,R) is called a formula.

Definition 3.8: Givenw ∈ P (V,R), the setV (w) is the set of variables of
the formulaw, defined as

V (w) =
⋂

{U |U ⊆ V,w ∈ P (U,R)}

The variables occurring in a formula may be bound or free. We define the
set of free variables as follows:

Definition 3.9: Letw ∈ P (V,R). The setvar(w) of free variables ofw is
inductively defined:

1. var(Ra(t0, . . . , tn−1)) = {ti : ti ∈ Vi};

2. var(Xa(t0, . . . , tn−1)) = {ti : ti ∈ Vi} ∪ {Xa};

3. var(¬w) = var(w);

4. var(w1 → w2) = var(w1) ∪ var(w2);

5. var(∀xw) = var(w) − {x}.

The language thus created is the language of type theory. Onecan now
easily go ahead and present axioms and inference rules for it, but we shall
not do such things here.
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3.3. The order of a language

We can now consider fragments of the language of type theory.It is easy
to see how one can obtain, for example, from the language of the theory of
types as exposed here, what is usually known as first-order, second-order
or n-th order languages in general. We begin approaching the topic more
rigorously with the following definition:

Definition 3.10: The order of a term is the order of its type.

Now, restricting ourselves to terms of order1 or less, and in particular to
variables of order1 or less, we can easily obtain second order languages.
When we restrict ourselves this way, we consider in buildingthe similarity
types only quantifiers over variables of the types available to us,which are
the ones of order one or less, and so, we quantify only over individuals or
properties and relations over individuals. In the same way,we can obtain
n-th order languages by restricting ourselves to the sets of terms of order
n − 1 and less, and, in this way, allowing quantification over variables of
ordern− 1 and less.

Definition 3.11: The order of a language £ is defined as

ord(£) = max{ord(xa) : xa ∈ Va}+ 1.

So, the order of a language gives us information on the sets over which
we quantify, or, more precisely, over the order of objects over which we
quantify.

4. The language of a structure

In this section, we relate both proposals made above: the theory of structures
and the language of types seen as a free algebra. An interesting discussion
in the philosophy of mathematics and foundations is whetherthere is a most
natural language to use associated with a given structure. According to our
approach, associated with every structuree there will be a language which
is the one in which we will talk about the elements of the structure, having
as constant symbols exactly one symbol for each relation occurring in the
structure, with both the symbol and the corresponding relation being of the
same type. As we said before, given a structuree, to build one language for
this structure we consider ord(e) and restrict ourselves to terms of this order
or less. Also, the set X of generators of the free algebra willbe restricted
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accordingly, that is, in building the language as a free algebra, the generators
will be the atomic formulas built from the symbols availableto us.

As a consequence of this discussion, the languages in which we can treat
more adequately the elements of a structure are the languages £ such that
ord(e) ≤ ord(£)3 . So, for example, in first-order structures, we must use
at least first-order languages. To consider a simple example, let’s take group
theory, which deals with groups (first-order structures). These structures,
according to the approach adopted in this work, are most naturally treated
by second-order languages, for we must talk about subgroupsand quantify
over subsets of the domain. That does not mean that it is impossible or not
fruitful to use first-order languages; in fact, the work is commonly done in
first-order language, as when we use set theory to develop group theory, or
other mathematical theories such as well-ordered structures or Dedekind-
complete fields, theories which are not first-order (see discussion in [5, pp.
89, 90]).

There is a live discussion on this topic in the philosophy andfoundations
of mathematics. Should we restrict ourselves to first-orderlanguages or
should we adopt higher-order languages? We shall not enter into the dis-
pute here (for a defence of second-order logic in these contexts, see, for
example, Shapiro in [6]). The general approach followed in this work sug-
gests that a pluralist view should be pursued: it is fruitfulto explore higher-
order languages as well as first-order languages. Even though the latter have
the preference of most philosophers, one must recognize that some kinds of
structures employ more naturally dealt with higher-order languages. In fact,
the reader may even wonder whether the problem of a “better” language for
certain mathematical theories is a legitimate one (for agnosticism about this
problem, see Hodges [4, pp. 71-73]).

Having a language with which we can talk about the elements ofe, it is
now simple to define for this language the notions of the structure modeling
a sentenceα of the language, that is,e |= α, as well as other semantical
notions, but we will not do that here.

5. Suppes’ Predicate

Given a structure and some language adequate for this structure, we now
discuss how to formulate a Suppes’ predicate for that structure using that
language (we follow da Costa and Chuaqui, see [2]). First of all, we recall
the definition of the similarity type of a structuree, which is a family of types
that determines the kinds of the relations present in the structure. According

3We are following here also some suggestions made by da Costa through personal com-
munications in seminars.
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to this definition, two structures have the same similarity type if the types of
their relations form the same family and they have the same number of sets
in their domain.

Now, given structurese = 〈Dn, Rι〉 andg = 〈En, Lι〉 of the same sim-
ilarity type, we consider how to extend a given functionf : Dk 7→ Ek for
k < n to a function mapping fromε(Dn) to ε(En).

Definition 5.1: Given the functionf as described above, for each typea ∈ τ
we define:

1. For the objects of type k, with0 ≤ k < n f(Dk) = {f(x) : x ∈
Dk)};

2. For a ∈ τ such thata = 〈a0, . . . , an−1〉, and R the set of objects of
type a, we havef(R) = P(f(ta0)× f(ta1)× . . . × f(tan−1

))

This function maps objects of the typea in ε(Dn) to objects of typea in
ε(En). The interesting case occurs when the following definition is verified:

Definition 5.2: Given structures e= 〈Dn, Rι〉 and g= 〈En, Lι〉 of the same
similarity typesλ<ι, andf a bijection fromDk to Ek with 0 ≤ k < n, we
say that the familyf ′ = fsλ<ι

is an isomorphism between e and g when
fa(R

a) = La, whereRa andLa means that R and L have typea.

Definition 5.3: A sentenceΦ of the language appropriate for the structure e
is called transportable if for any structure g isomorphic toe

e |= Φ ⇔ g |= Φ.

Definition 5.4: A Suppes’predicate is a formula P(e) of set theory which says
that e is a structure of similarity types satisfyingΓ, a set of transportable
sentencesΦ of the language adequate for e.

When P(e), that is, whene satisfies P, we say thate is a P-structure. Ac-
cording to da Costa and Chuaqui ([2, p.104]), this definitioncaptures the
sense in which we can say that a theory is a class of models, precisely, the
class of models that are P-structures for some adequate P.

We now consider some examples of Suppes’ predicates for sometheories.
Our goal is to show how classical particle mechanics can be axiomatized in
the approach exposed here.
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Example 5.1: A Suppes’ Predicate for Group Theory
LetG be a set; as defined above, we introduce the functiontG, or simply

t, whose domain is the setτ , to create the scaleε(G). Then, we choose a
relation ◦ of type〈0, 0, 0〉, that is,◦ ∈ P(G × G × G), a relation− of the
type〈0, 0〉, that is,− ∈ P(G×G) and an elementi of type0, that is,i ∈ G.
As one can check from the definitions, the order of each of the relations is1
and the order ofi is 0. Remembering that an-ary function is an + 1-ary
relation, we have that the usual composition operation becomes a ternary
relation, the opposite relation becomes a binary relation.

The structure of groups isG = 〈G, ◦,−, i〉 and the order of this structure
is the greatest order of its relations, soord(G) is 1. The theory is not done
yet, for we need to write the postulates and give the set-theoretical predicate.

As defined above, the language forG is a second-order language. The set
T of terms is formed by a set of variablesV =

⋃

Va, whereord(a) ≤ 1 and
the set{◦〈0,0,0〉,−〈0,0〉, i0} of constant symbols. So, the setX of free genera-
tors isX = {T a(t0, . . . , tn−1)|T

a ∈ Ta, a = 〈a0, . . . , an−1〉 ∈ τ, tk ∈ Tk},
and by the theorem above, there is a free algebra upon the set of free gener-
atorsX, and it is the language for the structureG.

With the language so developed we can write the usual axioms for group
theory, let’s call them A1, A2 and A3, respectively as follows:

1. ∀x∀y∀z(((x ◦ y) ◦ z) = (x ◦ (y ◦ z)))

2. ∀x∃y(x− y = i)

3. ∀x(x ◦ i = x)

Then, a Suppes predicate for group theory can be written as follows:

G(X) ⇐⇒ ∃G∃ ◦ ∃ − ∃i(X = 〈G, ◦,−, i〉 ∧A1 ∧A2 ∧A3)

Now, we finally proceed to present the Suppes’ predicate for classical par-
ticle mechanics.

Example 5.2: First, we need to present some mathematical structures: the
first one is the field of real numbersR. There is just one base set, the setR

of real numbers. The objects of this set are of type0. The operations are+,
·, 0, 1, <, which are of types〈0, 0, 0〉, 〈0, 0, 0〉, 0, 0 and 〈0, 0〉 respectively
(one must not confuse the symbol0 of types with the element0 of the field).
As usual, these are the operations of addition, multiplication, the identity
element of addition, the identity element of multiplication and the relation of
less than between real numbers. The language of the field of real numbers
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according to our approach is a second-order language and theaxioms for
the field are well known and we can easily see that they are transportable.

The next structure is the vector space over the field of real numbersV.
In this case there are two base sets, the setV of vectors and the setR of
real numbers. The objects ofV are of type1. Besides the field’s operation
we have here+, ·, 0 which are respectively of types〈1, 1, 1〉, 〈0, 1, 1〉, 1.
A Euclidean vector space is a vector space with addition of inner product
and vector product, denoted by(x, y) and[x, y] of types〈1, 1, 0〉 and〈1, 1, 1〉
respectively. The order of vector space language and of the Euclidean vector
space is2 according to our approach, that is, a second-order language. The
axioms for these structures are well known and clearly transportable.

Next, we present the real affine space which is a vector space with an
addition domainA, whose elements are of type2. The new operation is
difference of points which, forp, q ∈ A is denoted byq − p, whose type is
〈2, 2, 1〉. The new axiom needed is the statement that difference of points
is vector and the law of addition of points, which says that for p, q, r ∈ A,
q − p + r − q = r − p. If the vector space is Euclidean, the affine space is
a Euclidean space. In Euclidean space we can define the distance between
pointsp, q ∈ A in the following way:d(p, q) = |q − p| =

√

(q− p, p− q).
Now, we present a Galilean space-time system. We add to the four dimen-

sional affine space presented earlier a new universeV1 which is a subset of
V , and operationt fromA intoR of type〈2, 0〉 and relations of type〈3, 3, 1〉
and〈3, 3, 3〉 denoted by(, ) and [, ] respectively.t represents the measure of
time. The two axioms following must be satisfied:

1. V1 is a three dimensional vector subspace ofV and (, ) and [, ] are
its scalar product and vector product, respectively;

2. t is a function fromA to R such that for eachP ∈ A the set{Q :
t(Q) = t(P )} is a three dimensional euclidian space with vector
spaceV1. The affine space fort(P ) = r denoted byA(r).

For a classical mechanical system we add new universeP, the set of par-
ticles and the setN of natural numbers to index the external forces. So the
family of universe can be given by the sequenceR, V , A, V1, P and N.
The operations on these sets are those necessary to makeR, V , A, V1 a
Galilean space-time system plus the following new relations:

1. A functiona of type〈0, 2〉 which gives the origin at each time;

2. A functions of type〈4, 0, 2〉 for the position of a particle in each time.
We writesp(t) for this function;

3. A mass function m of type〈4, 0〉;
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4. A force functionf of type〈4, 4, 0, 1〉 which represents the internal
forces;

5. A force functiong of type〈4, 0, 5, 1〉 which represents the external
forces.

For the specific axioms of mechanics we need notions of analysis such as
derivatives and convergence of series. The field of real numbers must be
completed with the corresponding operations of differentiation, integration
and addition of series. Since differentiation, for example, takes functions of
real numbers to functions of real numbers, the order of this operation will
be 2. So, the language needed to talk about this is structure is at least third-
order language.

The kinematical axioms are:

1. The range oft is an intervalI of real numbers;

2. P is a finite and non-empty set;

3. a is a function fromI to A such that for eachi ∈ I a(i) ∈ A(i);

4. s is a function fromP× I into A such that for eachp ∈ P andi ∈ I
we have thatsp(i) ∈ A(t);

5. m is a function fromP into R;

6. f is a function fromP× P× I into V1;

7. g is a function fromP× I × N into V1;

8. For everyp ∈ P and i ∈ I the vector functionsp(i) − a(i) is twice
differentiable at i.

Dynamical Axioms

9. For p ∈ P m(p) is a positive real number;

10. Forp, q ∈ P andi ∈ I f(p, q, i) = −(q, p, i);

11. Forp, q ∈ P andi ∈ I [s(p, i) − s(q, i), f(p, q, i) − f(q, p, i)] = 0;

12. Forp ∈ P andi ∈ I the seriesΣn(g(p, i, n) is absolutely convergent;

13. Forp ∈ P andi ∈ I m(p)D2(sp(i)) = Σq∈Pf(p, q, i)+Σn(g(p, i, n).

whereD2 is the second derivative with respect toi.
These formulas are transportable, in the sense defined previously. The

motivations for these formulas can be found in the works of Suppes cited in
the bibliography.
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6. Final Remarks

As a first remark, one should note that everything developed here could in
principle be done inside category theory. Our use of ZFC set theory reflects
primarily the fact that this kind of framework is the most usual in mathe-
matical practice. Obviously, the specific apparatus in which one works may
have important consequences for the development of theories according to
the semantic view. As an example, if we are working inside a countable
model of first-order ZFC (which exists by Löwenheim-Skolem theorem if
ZFC is consistent), then the set of real numbers, for one example, is de-
numerable. How does that impinge on physical theories that employ real
numbers in an essential way? For another example, consider paraconsistent
set theories. Inside those frameworks one may allow for contradictions in
the development of theories; could that bear fruitful consequences for our
understanding of current scientific theories? Those are questions which, to
our mind, are more easily noticeable and dealt with through the use of a rig-
orous framework such as the one presented here, even though we shall not
pursue those particular points now4 .

Now that we reached our goal, it’s time to make one final point clear. The
presentation of particle mechanics above may have conveyedto the reader
the impression that the method proposed here is quite complex and may
not repay our efforts. Suppes’ predicates, as they appear inthe work of
Suppes and his collaborators may seem preferable, it may be argued, since
they are easier to work with, they are more akin to the informal style of the
working mathematician. Given this situation, what can we say in favor of
the approach to scientific theories developed in this work, and in particular
to the theory of structures proposed here?

Our claim is that, despite our being conscious that the method proposed
here involves some additional complications when comparedto Suppes’
original approach, it has the great advantage of precision and the extra ef-
fort spent in working through its’ complications repays when we consider
the great promises of important results that may be achieved. To cite but
one, we mention da Costa and Rodrigues Generalized Galois theory, devel-
oped in [3]. Difficult problems of definability of concepts may be studied
according to their approach and the useful techniques developed by them
apply to the framework presented here. When one is interested in precise re-
sults and conceptual clarification, one needs a rigorous framework to begin
with, and we think the one proposed here is apt for many applications. For
most practical applications in general philosophical discussions we can relax
the rigour and proceed more or less informally, but when it comes the time
for some kinds of technical applications, such as demanded by some specific

4 We thank an anonymous referee for pressing on this point.
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philosophical labor in foundational studies, it is better to shift to a precise
framework like the one proposed here.

As one example of a philosophical investigation in which thetechnical
apparatus proposed here may help us, we could mention once again the un-
covering of some underlying assumptions of the semantic view on scientific
theories, such as the use of formal languages to determine the class of mod-
els that a particular theory is. Philosophers of science tend to believe that
this particular approach to determine a theory as a class of models is inde-
pendent of a formal language; as we have seen, if ‘model’ is taken in the
rigorous set theoretical sense, then such a remark may not betrue. This par-
ticular topic, as others previously mentioned, is of the greatest relevance for
the philosopher of science, and its investigation may follow on the basis of
the present one. Another relevant application not noticed by many concerns
the logical foundations of theories, and relates to the distinct kinds of mod-
els obtained by the use of distinct kinds of languages. For instance, to keep
talking about real numbers, if we change a little bit the language employed
in the axiomatization of mechanics and allow that the field ofreal numbers
be axiomatized by a first-order language only, then non-standard models of
the reals enter in the theory too, in particular enumerable models. As far
as we know, little attention has been given to the problems such facts may
raise, mainly in the relationship of the field of real numbersand the devel-
opment of mechanics, and we believe that the apparatus presented here may
be helpful in such investigations.
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