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MATHEMATICAL REASONING AND EXTERNAL SYMBOLIC
SYSTEMS

CATARINA DUTILH NOVAES

It is an almost trivial observation that the practice of nemtlatics typically
involves a lot of ‘scribbling and fiddling’ with symbols, djeams and spe-
cial notations. Taking as a starting point the idea that buttwritten and the
oral languages used by mathematicians are philosophicg#yant aspects
of their practices, the aim of this paper is to discuss in nu@til the ex-
act status of external symbolic systems, systems of writirgarticular, for
mathematical reasoning and mathematical practice. Aserttexely conve-
nient devices? Are they essentially heuristic compone@G&? mathematics
be practiced without recourse to symbolic systems? In wages if any,
can different forms of writing be said to lmenstitutiveof doing mathemat-
ics?

The perspective adopted here is a combination of philosaplinalysis
with focus on empirical studies on numerical cognition ¢iag from cog-
nitive science to developmental psychology and anthrapgloas well as
on the history of notations in mathematicsndeed, the investigation takes
into account three different levels: the synchronic levieh @erson ‘doing
math’ at a given point in time; the diachronigvelopmentakevel of how an
individual learns mathematics; and the diachrohistorical level of the de-
velopment of mathematics as a discipline through time. lltve argued that
the use of external symbolic systems is constitutive of erattical reason-
ing and mathematical practice in a fairly strong sense afistitutive’, but
not in the sense that manipulating notations isathly route to mathematical
insight. Indeed, two case studies will illustrate this gficdtion: a man with
acquired savant syndrome and a blind mathematician.

1 This seems to me to be a fruitful way to adopt a practice-bpsédsophical perspec-
tive. As | have argued in (Dutilh Novaes 2012a), practicseeobphilosophy of any science
must be thoroughly empirically-informed.
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1. The relations between mathematics and its languages

In (Macbeth 2013), D. Macbeth discusses three differentipas one could
take on the role of notations and other graphic elements asatiagrams
— what she describes as “writing, broadly conceived” — fotheanatical
reasoning. (As she remarks, these are not only theoretically possible p
sitions; each of them has actually been defended by reall@&opet us
examine each of them in turn.

a. Written mathematical symbols are constitutive of mati&cal rea-
soning

Macbeth attributes this position to Kardind, as a more recent source, to
Rotman (2000). But the most outspoken (recent) defendeitseatiea that
external devices such as inscriptions of any kind — writatiggrams, nota-
tions etc. — are constitutive of the cognitive processes liickvthey are
involved are the proponents of tlextended mind thesisuch as (Clark
2008) and (Menary 2010a)). The extended mind thesis hasbakso ap-
plied specifically to mathematical notations in (De Cruz & Smedt 2013),
where a convincing case is made for the claim that matheataiatations
areconstitutive in a strong sense of the term, of mathematical reasoning and
mathematical practices. Quoting from the abstract:

This paper draws on the extended mind thesis to suggest titht m
ematical symbols enable us to delegate some mathematieed-op
tions to the external environment. In this view, mathenashtsym-
bols are not only used to express mathematical concepts y-atbe

2Naturally, ‘mathematical reasoning’ and ‘mathematicedqpices’ are blanket terms
covering a wide range of related but distinct phenomena.elthsse terms merely for the
sake of brevity; this should not be interpreted as an endwseof an overly homogeneous
view of mathematics as a discipline, or of the idea that tieeaecore essence to mathematical
reasoning — there may well be one, but arguing for such a \8evoi the aim of the present
analysis.

3«Kant famously held that writing broadly conceived as theciibing of marks is a
constitutive feature of mathematical practice.” (Mach2®i3, p. 25).
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constitutive of the mathematical concepts themselves.héfaht-
ical symbols are epistemic actions, because they enable nep1t
resent concepts that are literally unthinkable with oueldaninst
(De Cruz & De Smedt 2013, 3)

The two other positions described by Macbeth agree on teg@ction of
the idea of writing broadly construed (i.e. as manipulatdninscriptions)
as constitutive of mathematical reasoning. But they demagm whether
mathematical reasoning is inherenlilyguistic or not. According to one of
them, mathematical reasoning is in fact inherently tied adipular pub-
lic languages, namely the vernacular languages of ‘everiiti, but not
to the specifically designed mathematical notations. Irtresty according
to the third position, mathematical reasoning is not in ammy Wanguage-
dependent, or in any case not dependent onrblic language such as
speech or writing. Let me elaborate a bit on each of them.

b. Mathematical reasoning is conducted in vernacular laggs; nota-
tions are merely convenient short-hands

This position, as described by Macbeth, views mathemateadoning as
constitutively independent of special systems of notatimri as inherently
tied to vernacular languages. The medium in which mathesasi con-
ducted is a specialized dialect of English, or whateverrotkenacular lan-
guage(s) the mathematician is proficient in. Macbeth offieesfollowing
guote from a textbook to illustrate the position: “The syisbare simply a
convenience: It is easier to write?’ than ‘the square of’, and ‘z € A’ is
more compact thane'is an element of the set A. In each case the meaning
is the same?”

4Philosophers working within the extended mind framewonketie on whether they
seek to emphasize ttggmilarities or the differenceshetween cognitive processes involving
or not involving external devices. Those who emphasizeithiéagities typically endorse the
so-called ‘parity principle’ and concentrate on the meyaital question of the boundaries
of the mind. By contrast, those who emphasize the differemely on the so-called ‘com-
plementarity principle’, and seek to investigate the tfamsative power of engaging with
external devices for human cognition (see the editor'oahiction in (Menary 2010a)). De
Cruz and De Smedt clearly belong to the second group, and k(Dddilh Novaes 2012b).

5 (Schumacher 2001, 1). Arguably, this position would alsmie a more thorough elab-
oration of possible significant differences between vauteaspeech and vernacular writing,
as clearly the assumption being made is that vernaculaingrig on a par with, or in any
case much closer to, vernacular speech than to written matieal notations. However,
there are reasons to think that this is a misguided appraaehiting — see (Kramer 2003),
(Harris 1995) and (Menary 2007). Moreover, the very idea there is a clear-cut distinc-
tion between ‘natural’ and ‘artificial’ languages is deephpblematic; insofar as writing is
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c. Mathematical reasoning is not language-dependent

On this view, to ‘do’ mathematics would be a purely privateér process,
which can then bexpressec&ndcommunicate@ posteriori in some public
medium such as systems of notations or spoken languagesbéiies ex-
ample of a proponent of this position is Fields medalist Mfifl Thurston.)
Rotman’s convenient term to describe this position is ‘coentist’: “This is
the view that language, whether written or spoken, is iadyi after the fact
in mathematics, serving only to document or report restitained indepen-
dently.” (Macbeth 2013, p. 27) In other words, the claim & tmathematical
reasoning is metaphysically independent of, and tempopaibr to, its ex-
pression in any form of public language; it requires no exdemedium at
all to come about.

Thus, positions b. and c. both reject the notion that mattieedgwritten)
notations are constitutive of mathematical practice. tRos a. and b. have
in common the idea that mathematical reasoning requireg sonh of exter-
nal, linguistic medium to come about (as opposed to thorlyuigiternalist
position c.), yet disagreeing on the exact nature of thisiomed

The constitutivity question can thus be formulated witHeddgnt degrees
of generality. Iswriting (mathematical notations in particular) constitutive
of mathematical reasoning and mathematical practice 1rsitively, areex-
ternal mediain general (including inscriptions, utterances and, as &l s
see shortly, other kinds of external representations)titotige of mathe-
matical reasoning and mathematical practice? Positiomswears ‘no’ to
both questions; position b. answers ‘no’ to the first quastiot ‘yes’ to the
second; position a. answers ‘yes’ to both (naturally, atp@sanswer to the
first question entails a positive answer to the second qugsti

There is of course a weak sense in which mathematical peactexjuire
external media, namely in the sense that mathematics ssquiblic justi-
fication of chains of reasoning. A mathematical demonstration isagyof
discourse presupposing a putative audience; it puts foraarhain of rea-
soning for public scrutiny. But here we can turn to the goatiditinction
between context of discovery and context of justificatioarngue that math-
ematical practices and mathematical reasoning, broadigtaeed, should
not be reduced to contexts of justification; beyond justiiica we may also
want to understand the contexts of mathematiistovery The question is
thus whether external media are required for mathematisabvery given
that external media are trivially constitutive of matheieitjustification.

However, there is another crucial dimension relevant femtbtion of ‘be-
ing constitutive of doing mathematics’ (i.e. including bgustification and

clearly a cultural technology, one could argue that it falisthe same side of the natural vs.
artificial divide as mathematical notations.
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discovery), namely é¢emporaldimension. We must consider three distinct
levels: the synchronic level of the mathematician ‘doingtheenatics’ at
a given point in time; the diachronic, ‘ontogenetic’ (deymhental) level
of how mathematical skills are acquired by a given individaad the di-
achronic, ‘phylogenetic’ (historical) level of how mathatical knowledge
has emerged and developed throughout the history of matfesm®istin-
guishing these three levels is essential if we are to makeesafithe idea of
a particular external medium (be it vernacular speech,iajeems of writ-
ing such as mathematical notations or yet other media) hmingtitutive of
mathematics. In the next section | discuss each of these ligwels, drawing
in particular on studies on numerical cognition, anthrogg| developmen-
tal psychology, and the history of mathemafics.

2. Numerical cognition and external symbolic systems
2.1. The synchronic level

Superficial phenomenological observation strongly suggbst mathemat-
ical notations play a crucial role in mathematical pracicéndeed, it is a
well-known fact that, in practice, anyone doing mathensaffarofessional
mathematicians, those in the process of learning mathesndlie lay per-
son doing a simple calculation, etc.) almost invariably esak&xtensive use
of writing devices (pencil and paper, chalk and blackboatd.)’

Again, nobody would deny that making use of writing greatigiitates
mathematical reasoning, if nothing else because it offlogdsnal working
memory. For example, it is much easier to undertake a longukzlon if
one can rely on pen and paper to keep track of its steps elyerather
than internally. But this may also simply be (at least in partontingent
result of how people happen to be trained to do mathematitsiacessarily
something inherent to the cognitive activity of doing maitiagics in general.
The idea of ‘being constitutive’ seems to entail somethingrger, namely
that it should bempossibleto engage in a given practice in any other way.

SWhile it goes without saying that mathematics goes well belyoumerical cognition,
thus far the empirical studies have almost exclusively $ed.on this particular area. Hence,
at this point the analysis is less wide-ranging than whahtrtig hoped for, but this is related
to the somewhat limited availability of empirical data cenmting other aspects of mathemat-
ics. At any rate, given limitations of space, it also appearBe a methodologically sound
approach to focus on what is arguably the most basic leveladhematical cognition.

A ... mathematician generally works by sitting around Bbting on paper: According
to one legend, the maid of a famous mathematician, when agkatiher employer did all
day, reported that he wrote on pieces of paper, crumpled tiggrand threw them into the
wastebasket.” (Jackson 2002, 1246)
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Indeed, the claim that writing is constitutive of matheroatreasoning en-
tails that it not onlyrecordsindependent processes; writing is in fact viewed
as an integral part (embodiment) of these very cognitivegsses — that
is, at the very leastvhenthey are accompanied by writing. The opening
passage in Clark’Supersizing the Min¢2008) recounts an anecdote in this
spirit, involving the legendary physicist Richard Feynman

Consider this famous exchange between the Nobel Prizeiwgnn
physicist Richard Feynman and the historian Charles Weilleiner,
encountering with a historian’s glee a batch of Feynmanigi-or
nal notes and sketches, remarked that the materials repeds@a
record of [Feynman’s] day-to-day work.” But instead of slynpc-
knowledging this historic value, Feynman reacted with peeted
sharpness:

“l actually did the work on the paper,” he said.

“Well,” Weiner said, “the work was done in your head, but the
record of it is still here.”

“No, it's not a record, not really. It's working. You have tcovk on
paper and this is the paper. Okay?” (from Gleick 1993, 409)

Feynman’s suggestion is, at the very least, that the loap tim
external medium was integral to his intellectual activitye(“work-
ing”) itself. But I would like to go further and suggest thayfmman
was actually thinking on the paper. (Clark 2008, xxv)

The ‘thinking on the paper’ claim must be spelled out. Of seuit is per-
fectly possible to engage in practices that are properlgriesd as ‘doing
mathematics’ without manipulating notations at a givenetife.g. mental
calculation, to be discussed shortly). But the claim seentetthatwhena
particular person is doing mathematascompanied by such manipulations
then the manipulations themselves are constitutive ofghdtcular process.
This would be a weaker (but still non-trivial) sense in whible idea that
writing is constitutive of doing mathematics can be cashatd constitutive,
but onlywhen present

Ultimately, whether mathematical reasoning requires theipulation of
external representational vehicles is essentiallgr@pirical question. The
different ways to formulate the issue and the various inagilins of each po-
sition may be discussed on a philosophical, abstract lewtlat the end of
the day we must look into how people actually ‘do mathematicaddress
these questions. | here argue that, based on empirical ciatandrom dif-
ferent fields, a strong case can be made for the claim thatnaxktmedia are
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constitutive of mathematical knowledge and mathematieasoning in the
stronger sense that, even when a given person is apparentityamipulating
symbols, such as a mental calculator, she in fact typicaligs extensively
on internalized versions of external devices (at least istroases).

Let us thus start with the several reported cases of mertallators, i.e.
people who can perform incredibly long, complicated caltiahs without
resorting to paper and pencil or anything of the KinNaturally, the general
idea of ‘mathematical reasoning’ goes much beyond makimgermical cal-
culations, but mental calculators are a good example tstilite the claims
| am about to make.

The main question is: in what sense are mental calculatdcsilaiing
mentally? By and large, they seem to be resorting to internalizedrmaite
representations such as: words and symbols for numbersr-pag-pencil
algorithms which are simulated internally, mnemonic desjdables of mul-
tiplication learned by heart by oral repetition etc. Impaity, there are dif-
ferent styles of mental calculation. For example, ment&dutations per-
formed by people trained in the Hindu-Arabic numeral systgpically rely
on strategies emerging from features of the decimal systeismknown for
example that the fastest and least error-prone mentallatitms are those
consisting in adding a given number smaller than 10 to a pialof 10 (10,
20, 30 etc.); this is arguably because the reasoner mergtiiaces’ the 0
on the right-side of one of the numerals with the other nuhfe&o it seems
that, while not using ‘paper and pencil’ at that particulasment, the oper-
ation being implemented relies significantly on the moderetpntation of
the Hindu-Arabic numeral system as a place-value systethtrars on an
internalization of external symbols.

Besides inscriptions and utterances, numbers can be egpeelsexternally
in a variety of ways. Indeed, humans have a long history o¢liging calcu-
lating devices/objects such as counting rods and abacasgé®ach of them
presupposes that quantities be represented so that thdecaperated on’
for calculation. So abacuses and counting rods can alsodgmeasesymbolic
systems, and as it turns out, they can also be ‘internalized’

In Japan, a popular technique for mental calculation rediesnternal
representations of abacuses, and is knowarasan'® A large number of
children attend abacus clubs and first learn to perform Glons with a
physical abacus (the Japanese version is catedbar), so that they be-
come familiar with the processes. Once they are proficidiculzors with
the actual abacus (which usually involves years of traipitigey can begin

8See (Bellos 2010, 143-148) for an account of the variety gfsvila which the practice
of mental calculation has been and still is engaged in.

9These are known atecade effectsSee (De Cruz et al. 2010, 93-94).

105ee (Bellos 2010, 68-75) for details.
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the training of mentally simulating the processes by vigirad an ‘internal’
abacus. The results are astonishing, including the albdifyerform mental
calculations while having one’s attention distracted byeotelements such
as playing word games.

Thus, it would seem that, at least in most cases, mentallasitms, even
when performed by calculating prodigies, are essentiatgrnal manipula-
tions of previously mastered external symbolic systems. Add#icupport
for this hypothesis comes from the study presented in (Tarad. €2006),
summarized in (De Cruz et al. 2010, 82):

An intriguing fMRI study by Tang et al. (2006) provides ingfit
support for the role of symbolic representation in numemcegni-
tion. In this study, both native English speakers and n&iimese
speakers solved arithmetical operations. Although the[lR&-
parietal sulci] were active in both groups, they exhibitedrked
differences in other brain areas. Whereas the English spedlad
a stronger activation in perisylvian, language-relatezgharsuch as
Broca and Wernicke’s areas, the Chinese speakers showemt an e
hanced response in premotor areas, involved in the plarofinm-
tor actions. The authors offered a possible reason for tiereas
English speakers learn arithmetical facts in verbal mengery.,
when they learn multiplication tables), Chinese spealaysan the
abacus in their schooling. These differences in schoolirgntstill
be reflected in arithmetical practice, with English speakaen-
tally relying on language-based strategies, and Chinessksps on
motor-based strategies.

The exact neuronal details need not concern us here, bettbeglts clearly
suggest that mental calculations by Chinese participargage motor pro-
cessing; perhaps even unbeknownst to them (and withouptwas train-
ing given to the Japanese calculating prodigies mentiobege, they are
to some extent reenacting calculating procedures perberternally with
the abacus. English speakers, by contrast, having leaoreaddulate mostly
relying on language-based strategies, apparently cantinuely on these
strategies even when performing mental calculations.

2.2. The diachronic, ontogenetic (developmental) level
Hence, it seems that the cognitive processes of ‘doing madties’ on the

synchronic level vary per individual, and in particular un€tion of the
way in which she learned mathematics, i.e. what | have desgras the
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diachronic, ontogenic, developmental level. This is fownmost conspic-
uous for number cognition, but it may well carry over to ‘hégHevels’ of

mathematical practice — for example, when a professiondhemaatician

mentally formulates a mathematical theorem (but agais,athypothesis to
be investigated empirically).

Thus, the ontogeny of mathematical skills in a given indigidmust be
brought into the picture. Naturally, the topic has been msitely stud-
ied, and it would be pointless to try to summarize the mainlteshere.
For our purposes, a key issue is the extent to which humarsegesnnate
mathematical concepts, and the extent to which matherhaticaepts and
mathematical reasoning must be learned (from experiempesare, formal
education etc.) (De Cruz & De Smedt 2010). Specifically on erical
cognition, one currently widely accepted account is the pmoposed by S.
Dehaene (1997); according to his model, humans possesaig igrasp
of very small exact quantities (up to 3 or 4), and an innat@aot approx-
imate grasp of larger quantities. Still on this model, basiact arithmetic
emerges from a combination of these two innate capacitigsi brucially
depends on the existence of external symbolic represensator numbers
(exact quantities) and on extensive training to arise. heiowords, it re-
quires the very practice of counting, i.e. associating ‘egnto exact quan-
tities, which, although highly pervasive, is not a univéfeature of human
languages (more on this shortly). One implication of thigelas thus that,
in the absence of external symbolic representations oft exemtities, even
very basic arithmetical abilities should not emerge; seefyj a person who
was never explicitly taught to count will not be able to lebasic arithmetic
operations at a later stage.

This hypothesis is further corroborated by anthropoldgstiadies of cul-
tures whose languages have very few words for numbers. Tab&and the
Mundukuru, two tribes in the Amazon, do not have words for hara be-
yond very low ones (the Mudukuru have words to name quasiiieto five,
but beyond three they are not consistently usédjven when, later in life,
speakers of these languages learn another language whastdoe words
for numbers, they never seem to be able to learn basic extchatic. Their
ability to estimate quantities and to calculate with appr@ations, however,
is very similar to that of people fully embedded in ‘numetricaltures’!?

But spoken words are not the only external devices used fontoa.
Some cultures have counting systems based on body partsatseaich ex-
act amount would correspond to a given body part. The Oksapni?apua
New Guine, for example, point at the corresponding body gadt utter its
name to indicate a certain quantity. (Naturally, such ciogrgystems have a

11see (De Cruz et al. 2010, section 2.4).
125ee (Pica et al. 2004).
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fairly low upper bound; in the case of the Oksapmin, it goesoup/.) Cru-
cially, when members of such cultures are probed for theiitiab in exact
arithmetic (both as a result of formal training and of spaetaus learning),
their performance is much more aligned with that of e.g. etdtbspeakers
of English than with the performance of members of culturegtvsimply
do not systematically engage in the practice of keepinktodexact quan-
tities with external symbols at all (such as the Piraha aadvthrukundu):?
These results suggest that, more than language-depedeant,numerical
cognition isexternal-symbol-dependerit presupposes the very concept of
exact quantities, which may only emerge by means of exg@&sociation to
external symbols and the practice of counting beyond vedlssimounts.

Developmental studies with young children seem to confilistilipothe-
sis. According to a popular (though not unanimously acabptiew, infants
and young children have a logarithmic, non-linear repregiem of quanti-
ties in that the ‘distance’ between 1 and 2, for example, ngelathan the
‘distance’ between 8 and 9. This was observed in experimeh&se they
were asked to represent quantities in a number line. Witbdig, how-
ever, their conception of quantities gradually convergegatds the linear
conception characteristic of the series of the natural rersth Moreover,
in similar experiments with members of a culture with few defor num-
bers (the Mundukuru), the same logarithmic representatias observed®

In fact (and as parents of young children know all too weldy;, fost
children, learning to count, i.e. to associate exact gtiagtio particular
external symbols (usually spoken words), requires rathignsive training
to be mastered. Counting is a practice which only emerges egplicit
instruction. The development of the concept of the lineat|-ardered series
of natural numbers then typically continues in formal ediocel settings
(pre-school etc.), which is a pre-condition for the childearn arithmetic
operations.

What do these considerations entail for the question of kdrespoken
language, and external symbols more generally, is (aresfitotive for math-
ematical reasoning? It would seem that even at the most leagitof nu-
merical cognition, external representations are indegdired for the devel-
opment of the concept of exact quantities beyond very snmadiuats (ar-
guably, up to three). What both the anthropological and taeldpmental
data suggest is that humans in fact require the existencderhal symbols

135ee (Saxe 1982) and (Saxe 1985).
143ee (Siegler & Booth 2004).
153ee (Dehaene et al. 2008).
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and the appropriate training in order to develop the verycephof exact
quantitiest®

Going back to the three positions presented above, it selearstbat, even
if at specific occasions (i.e. the synchronic level), ‘domgth’ does not re-
quire the act of manipulating external symbols (as the aifenf position
c., the ‘documentist’, would have it), from a diachronicyel®pmental point
of view, external symbols appear to be a necessary conditiotihe emer-
gence of mathematical concepts and mathematical reasoMogeover, |
have argued that many of the processes which appear to tage exclu-
sively ‘in the head’ are in fadnternal simulations of external processas
such cases, there is a clear sense in which external refagses are consti-
tutive of mathematical reasoning, even if they are simdlated manipulated
mentally.

Thus, | claim that position c. is severely weakened by theigoap ev-
idence discussed so far. But this body of evidence does eoh $e offer
sufficient data to ‘break the tie’ between positions a. anthbeed, | have
stressed the crucial role @pokenwords in particular for the emergence
of exact numerical cognition; how could the proponent of lzent further
argue against b.? Let us turn to the third level of analysis,diachronic-
phylogenetic-historical level, which will provide impartt additional ele-
ments for the analysis.

2.3. The diachronic, phylogenetic (historical) level

It is common knowledge that major advancements in the hisibmathe-
matics were almost invariably accompanied by significaainges in math-
ematical notation: the adoption of the Hindu-Arabic nurheyatem and the
astonishing progress in Indian mathematics; the develapofespecial no-
tations in North Africa which were then brought to Europe bg tibbaco
schools traditiory Viete’s and Descartes’ groundbreaking algebraic inno-
vations?® Leibniz and the development of calcutfsamong others. Here is
an apt summary of the overall ‘phylogeny’ of mathematicabtions:

Over the course of history, mathematical formalisms hawéived
so that they are cognitively helpful devices, and this evotuhas
entailed making apparently superficial, but practicallyctal, form

161t may seem that this will end up being a chicken-egg situetiom a historical point of
view: how did external symbols for exact numbers first em@ngthat came first, the concept
or the representation? We will briefly discuss these maltelmw.

17See (Hayrup 2010).

183ee (Macbeth 2004), and (Heeffer 2010) for precursors de@énovations.

195ee (Knobloch 2010).
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changes. For example, the convention introduced by Descart
which letters near the beginning of the alphabet are usedriotd
constants and those near the end to denote variables, desu

the burden of remembering which are which and allows us to use
our memory for other aspects of a mathematical situatiomndly

and Goldstone 2007, 2039)

Thus, formalisms and notational systems are cognitivenigdgies which
must beusableby agents with specific sensorimotor and cognitive charac-
teristics, but which must also hesefulin that they allow these agents to
perform cognitive tasks which would be otherwise more diffior even
impossible to perforn?

Still, it may well be that mathematical notations are noeesal for these
bouts of progress, but rather that they simmgister newly made progress.
In other words, it may well be that the development of new thatal tech-
niques is theconsequenceather than theauseof progress in mathematics.
To quote D. Macbeth again (2013, p. 29): “The systems of aridigns
that have been devised for mathematics were devised forematiics that
already existed; it would be impossible to design a notafosrmathemat-
ics without knowing at least some of the mathematics thattiation was
designed to capture.”

But in practice, is this really always the case? There seebeta num-
ber of examples in the history of mathematics where spedifiations were
adopted even before it became clear which concept(s), iftary singled
out. Indeed, mathematical notation is often (though notagsy charac-
terized by what can be described as a processeedemantificatignin S.
Kramer's (2003) fitting terminology. If a given system of atbns has a
well-defined syntax, and in particular clearly formulatatés of transforma-
tion, it is possible to operate within the system even if sahigs symbols
have no fixed reference — in fact, even if one is not sure trat thave a
reference at all.

[...] signs can be manipulated without interpretation. sTtgalm
separates the knowledge of how to solve a problem from therkno
edge of why this solution functions. (Kramer 2003, 532)

O)tis important that they should represent a significant mrpment over cognitive pro-
cesses unaided by such devices, otherwise the cost ofrganow to operate with them
would not justify their use; there must be a favorable trafldsetween learning investment
and benefits. For more on the historical development of magdtieal and logical notations,
see (Dutilh Novaes 2012b, chapter 3).
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The concept of zero is a case in point, a mathematical comddph emerged
in virtue of the characteristics of a notational conventioamely the place-
value system. Within such numerical systems, some devipeessing the
fact that a given position is not occupied by any number isrsd, roughly

functioning as a place-holder. Place-holder devices wseel dor the first
time by the ancient Babylonians over 4000 years ago, andflatiner de-

veloped within Indian mathematics. To express a number aa @046, for
example, some device is required to indicate the fact tleatb0’ position

is not filled; otherwise, it would be impossible to disamlzitgr 2046 from
24621 Other ancient mathematical traditions (Greek, Roman, sléwdid

not use a place-value system, and did not have a place-hsiddérol or the
concept of zero. In effect, the historical emergence of thecept of zero
in Indian mathematics is closely related to the notatiomsiak used to in-
dicate a ‘gap’ in the Indian place-value numerical systenly ¢ater did it

develop into a mathematical concept properly speakingiportantly, until

the beginning of modern times in Europe, zero was not vievseal rumber
on a par with other numbers; instead, it was viewed as a ‘dm’this did

not prevent mathematicians and users of mathematics talatdowith the
symbolas if it was a numbef®

Zero is not the only such case in the history of mathematicgth e
advent of calculus and infinitesimal mathematics, the goiscef infinitely
small and infinitely large numbers essentially emerged fthenvery for-
malism developed by Leibniz; they were not first introducedaeptually so
as to be put to use afterwards. In effect (as reported by Krg2@®3, fn.
36)), commenting on whether infinitely small or infinitelyde numbers are
‘actual’ numbers, Leibniz remarked: “On n’a point besoirfaiee dépendre
I'analyse mathématique des controverses métaphysig{igeete is no need
to let mathematical analysis depend on metaphysical ocgersies.)

As discussed in (Macbeth 2013), in the second half of tH& d@ntury
there was a general rejection of a ‘calculative’ approacmtihematics
(viewed as not sufficiently ‘concept-oriented’). Howewémpne considers
the totality of the history of mathematics, it is clear thagre have been sev-
eral instances of mathematical concepts actually emefgimg formalisms

?1see (Bellos 2010, chap. 3) for further details. Accordingiaplan 1999), already in
the 6" century AD zero began to be treated as a number rather thanatational device in
Indian mathematics.

223ee (Seife 2000) and (Kaplan 1999) for comprehensive festof the concept of zero.

23«The rules of calculus apply exclusively to the syntactiapsh of written signs, not to
their meaning: thus one can calculate with the sign ‘0’ loedpke it has been decided if
its object of reference, the zero, is a number, in other wdrdfore an interpretation for the
numeral ‘0’ — the cardinal number of empty sets — has beenddhat is mathematically
consistent.” (Kramer 2003, 532)
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and notational conventions. We need not claim that all onewest math-
ematical concepts emerged from ‘paper-and-pencil’ maaijuns of for-

malisms; it is sufficient to notice that some crucial deveiepts in the his-
tory of mathematics seem to have been prompted by the aeptivductive
power of well-designed notations.

Indeed, an important difference between ‘doing mathemaiticspoken
language or ‘doing mathematics’ in written language seamsetthat the
written medium lends itself more easily for operations tccheied outon
andwith the medium itself. Given that written symbols have a phygea
manence (on paper or other surfaces) that spoken symbotst thave, writ-
ten symbols can be used not onlyrépresentconcepts (such as the concepts
of exact quantities), but also to loperated on— what Menary (2010b) de-
scribes as ‘cognitive manipulations’. As Kramer obsenkesuathe decimal
place-value system,

this system made it possiBfenot only todepictall natural numbers
with ten written signs, but also walculatewith numbers. The dec-
imal place-value system is botmaediumfor representing numbers
and atool for operating with numbers. (Kramer 2003, 531)

In sum, this brief excursion on the history of mathematics arathemati-
cal notations suggests that, even if it might be possiblafteast conceiv-
able) to do mathematics with no recourse to any writing medivhatso-
ever, mathematicas we know ibnly emerged in close connection with the
development of specially designed systems of writing. Taleyw humans
not only to represent previously formulated mathematicalcepts, but ar-
guably also to produce new ones, and perhaps more impgrtemthperate
on them ‘hands-on’ by means of manipulations of symBols.

3. The exceptions confirming the rule?

I have argued that manipulating systems of writing is an irtgyd route to
mathematical knowledge, a fact deeply related to the cwgnihakeup of
humans. There are, however, extraordinary cases whicHystomot seem

24This claim is too strong; it would be more accurate to say thatplace-value system
facilitated the process of calculating with symbols rather than makinmpssible in an ab-
solute sense. Calculations are also possible with othebausystems. (I owe this point to
Dirk Schlimm.)

25Notice that my emphasis on the importance of notations faharaatical practice does
not commit me to a formalistic conception of mathematicsi(V®11). The claim is that
writing is usually essential for mathematical reasoning, ot that manipulation of symbols
is all there is to mathematical practice.
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to fit into this general picture, i.e. cases where ‘somethiegond notations
seems to be playing a decisive role for the production of sratitical in-
sight. In this section, | discuss two such cases: Jason Radgaan with
acquired savant syndrome who has the uncanny ability to lsmges and
numbers as fractals; and Bernard Morin, the blind mathemaatwho in the
1960s provided the first model for the eversion of the sphere.

As noted above, the existence of mental calculators is abatimost of
them cannot be said to be ‘doing away’ completely with exderapresen-
tations, given that they essentially seem to simulate thegeesentations
mentally/internally. However, it is likely that at leastrse prodigies, some
savants in particular, might be attaining mathematicaliadge through al-
ternative route$® Some people seem to be able to ‘see’ mathematical facts
through means other than their embodiment in external septations.

Jason Padgett has acquired savant syndrome, most likehgagltof hav-
ing been beaten at a mugging incident in 2002 (Brogaard 2@&lfage then,
he has developed the unique ability to hand-draw fractalitiems of objects
and images; he claims to perceive some images as fractalgefd&s now
being studied by cognitive scientists, who seek to undedstie neurologi-
cal basis of his mathematical abilities. In a videotapedririew, he says the
following:?’

Many mathematiciansee numbers as digjtand while they can do
amazing things when it comes to understanding the very rioan o
equation, only whelyou ‘see’ it and do the mathematics together
can you really understand where it comes from.

Padgett’s claim that many (most?) mathematicians ‘see esrds digits’
is indeed very much in the spirit of the views defended heret s fi-

nal observation is what is most revealing: he refers to a fofriseeing’

the root of an equation that is independent of seeing nundsedsgits, and
thus a form of mathematical insight which is presumably nberently tied
to external representations (crucially, the fractals lavdrare renditions of
what he ‘sees’ prior to making the drawings themselves).idddtowever
Padgett’s suggestion thlabththis ‘seeing’ abilityand ‘doing the mathemat-
ics’ (presumably, operating with symbols) are requiredridarstand where
the root of an equation ‘comes from’. So Padgett seems to yiags¢hat

26The wide majority of mathematical savants seem to rely omiskzishortcuts, and at
any rate it is worth noticing that the mathematical featsadasits are typically not of the
creative kind, i.e. they do not represent genuine advaneemehe discipline (Koziol et al.
2010).

2TLink for the video: http://ww. q13f ox. com news/ kcpg- sci enti sts
-still-calling-in-on-federal - way- savant-20110622, 0, 7610032.
story
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external representations are necessary — although natienftfi— for this
kind of mathematical insight, even beyond the obviouslyiadoaspect of
communicating problems and results to peers.

Importantly, Padgett had virtually no mathematical tnagnprior to the in-
cident, and when he started drawing the fractals, he did astenthe math-
ematical concepts to be able to discuss his drawings in aemettically-
informed way (Brogaard 2011). Since then, he has taken sotiege-level
mathematics courses, but the fact remains that the cogmitocesses lead-
ing to his mathematical insights do not seem to involve thaeimdation of
external symbols in any fundamental way.

Now, if in typical cases manipulating portions of writingr@adly con-
strued) is a fundamental aspect of mathematical practiejroportant im-
plication seems to be that mathematicians rely substnbalvisionto do
mathematics (as well as in motor abilities to operate wgitievices). Does
this mean that it ismpossibleto do mathematics unless a given individual
is sighted? Naturally, this suggestion is immediately teduby the sheer
existence of a number of very gifted blind mathematiciansviQusly, they
‘do mathematics’ while not relying on the hands-on manifotaof written
symbols (not in the same way, at any rate; many of them do relgraille
or similar systems). But rather than disproving the clairt tmathemati-
cal practice is fundamentally tied to forms of writing, add¢ some blind
mathematicians seem in facteonfirmit in that the ways in which they pro-
duce mathematical knowledge are often significantly difféfrom those of
sighted mathematicians. To use Jason Padgett’s termiolagmight say
that, unlike most mathematicians, blind mathematiciagaatsly do not pre-
dominantly see ‘numbers as digits’, and at times this seerpsavide them
with privileged insight with respect to some specific protde

The American Mathematical Society published a fascinatingice on
blind mathematicians a few years ago (Jackson 2002), whales,ESaun-
derson, Pontryagin and Bernard Morin, among others, ardiomenl. The
notice focuses not only on their mathematical accomplistiméut also on
the methods and strategies they developed to practice matios while be-
ing blind2® Although the goal of the notice is not to offer a detailed and
scientifically-grounded account of the deeper cognitiyeeats of being a
blind mathematician, some observations already suggasttitere might

28_et me now offer in full a passage already quoted above, wiekents the general goal
of the AMS notice: “A sighted mathematician generally wolssitting around scribbling
on paper. [...] So how do blind mathematicians work? Theyoarely on back-of-the-
envelope calculations, half-baked thoughts scribbledestaurant napkins, or hand-waving
argument in which “this” attaches “there” and “that” intecss “here”. Still, in many ways,
blind mathematicians work in much the same way as sightetienaticians do.” (Jackson
2002, 1246)
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be significant differences with respect to sighted mathieimaas (against
a background of predominant commonalities).

To illustrate these possible differences, let us focus am&e Morin, the
mathematician who in 1967 first exhibited a homotopy thatieswrout the
eversion of a sphere, by creating clay models of it. In 195%8ale had
proved that the sphere can be everted, or turned insiderofatcfi, he proved
a more complicated statement which is equivalent to thes@arerclaim).
However, actually constructing a sphere eversion follgwhre arguments in
Smale’s paper is in no way straightforward; originally, pgreof was above
all a theoretical construction, a proof of possibility matlihan a display of
the process itself. (Indeed, we might say that the prooédedissentially
on the ‘manipulation of mathematical symbols’.) Morin wae first per-
son who could actually describe and implement the eversiocgss, and he
claims himself that being blind contributed to the feat. bliservations on
mathematical cognition, while of course remaining ességptanecdotal, are
very insightful:

Far from detracting from his extraordinary visualizatiohiligy,
Morin's blindness may have enhanced it. Disabilities likimd>
ness, he noted, reinforce one’s gifts and one’s deficitstteré are
more dramatic contrasts in disabled people,” he said. Mugiieves
there are two kinds of mathematical imagination. One kinklictv
he calls “time-like”, deals with information by proceedittyrough
a series of steps. This is the kind of imagination that allonse
to carry out long computations. “l was never good at comgyitin
Morin remarked, and his blindness deepened this deficit. t\Waa
excels at is the other kind of imagination, which he callsatsp
like” and which allows one to comprehend information all ate.
(Jackson 2002, 1248)

Indeed, what Morin describes as the ‘time-like’ mathenatrcay of reason-
ing is presumably intimately tied to performing computaticaand proceed-
ing step-wise, and as we have seen, manipulating extermddaic systems
greatly enhances calculating power. It is thus not so ssingyithat a blind
mathematician would be hampered on this |&¥eBut what does the ‘space-
like’ kind of imagination consist in for Morin in the partitar case of the
eversion of the sphere?

29But this is obviously not to be taken as a general rule. LarrgsVis a blind
mathematician-logician with remarkable results in autmdaheorem-proving. He works
on Braille terminals for programming.
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One thing that is difficult about visualizing geometric atigeis that
one tends to see only the outside of the objects, not theginaikich
might be very complicated. By thinking carefully about tvinnigs
at once, Morin has developed the ability to pass from outside
inside, or from one “room” to another. This kind of spatiakigina-
tion seems to be less dependent on visual experiences thaatibe
ones. (Jackson 2002, 1248)

Now, the crucial point is that Morin, as is often the case waiihd people,
has enhanced tactile perception in comparison with sightmple¥® So
this ‘edge’ over sighted people may have been crucial foritvitr be able
to reflect on the ‘inside’ as well as the ‘outside’ of a sph&reéit any rate,
it is clear that it wasiot by means of ‘cognitive manipulations’ of systems
of notations that Morin obtained his groundbreaking resualthe eversion
of the sphere. Thus, the point again (as with Padgett abewiat, while
writing (broadly construed) appears to be central for mathtéecal reasoning
in most cases, there is no doubt that there is more to matheihdiscovery
than the manipulation of notations. These two cases of iithglals with
what could be described as atypical cognitive apparatusasayant and a
blind person) suggest precisely that. How exactly thessradtive routes to
mathematical insight function cognitively is still a poprinderstood issue
(in fact, the cognition of mathematical insight in genegahains very poorly
understood), but there is no doubt that they exist.

Another possible interpretation of these cases of (whatdoe described
as) atypical mathematical insight is that they in fact oatlan aspect of
mathematical cognition that is present in everyone, butaderiess conspic-
uous by the presence of symbol manipulation, namely an aatoas layer
of mathematical intuition (Davis and Hersh 1981). Indeé@, main claim
defended here is not that the manipulation of portions ofimgiis sufficient
for mathematical knowledge and insight, but that it may weellat least to
some extennecessaryat any rate in most cases (which is of course also
related to the institutional aspect of how mathematicsugh#. Moreover,
in virtue of dissimilarities both in mathematical trainiagd in personal in-
clination, one should expect to observe significant indigicddifferences in
the production of mathematical knowledge: some will relyrenextensively
on intuitions, while others generate new ideas predomiyndyt working
‘hands-on’ with the formalism.

30|ndeed, there is empirical evidence to support the ideathli®tunused’ parts of the
brain in people with certain disabilities (blindness, aesk) are co-opted for other kinds of
sensorial processing — see (Gougoux et al. 2005).

3 Notice though that, after Morin’s eversion, other eversioha sphere have been dis-
covered, including one by the very William Thurston menédrin section 1 above, who
found a way to make Smale’s original proof constructive k3ano 2002, 1248).



“0O4dutilh”
2013/3/3
page 63

e

MATHEMATICAL REASONING AND EXTERNAL SYMBOLIC SYSTEMS 63

At any rate, cases such as Morin’s and Padgett's are possiblptions
to the claim that manipulating portions of writing is cohgiive (though
not sufficient) for ‘doing mathematics’, and as such may lmveid as the
exceptions confirming the rule.

4. Conclusion

| have defended the claim that the existence and manipolatiexternal
symbolic systems (such as notations, words for numbers;uaba etc.)
are constitutive of mathematical reasoning and matheaiaiiactice in the
sense that, both from an ontogenetic and a phylogenetid pbiriew, the
development of mathematical abilities is intimately rethto acquiring mas-
tery of such systems. Occasional circumstances of ‘doingenaatics’ may
not require the actual ‘paper-and-pencil’ manipulatiomatations, but from
a diachronic point of view, notations are in fact a constaasence.

However, | have also argued that there seem to be other rtmuteathe-
matical insight, as suggested by the cases of individualk as Jason Pad-
gett and Bernard Morin. That is, in spite of the undeniablevance of
notations for mathematical practice, these cases remititatiany cognitive
account of mathematical practices and mathematical rgagomust remain
open to a multi-faceted approach.
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