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MATHEMATICAL REASONING AND EXTERNAL SYMBOLIC
SYSTEMS

CATARINA DUTILH NOVAES

It is an almost trivial observation that the practice of mathematics typically
involves a lot of ‘scribbling and fiddling’ with symbols, diagrams and spe-
cial notations. Taking as a starting point the idea that boththe written and the
oral languages used by mathematicians are philosophicallyrelevant aspects
of their practices, the aim of this paper is to discuss in moredetail the ex-
act status of external symbolic systems, systems of writingin particular, for
mathematical reasoning and mathematical practice. Are they merely conve-
nient devices? Are they essentially heuristic components?Can mathematics
be practiced without recourse to symbolic systems? In what sense, if any,
can different forms of writing be said to beconstitutiveof doing mathemat-
ics?

The perspective adopted here is a combination of philosophical analysis
with focus on empirical studies on numerical cognition (ranging from cog-
nitive science to developmental psychology and anthropology), as well as
on the history of notations in mathematics.1 Indeed, the investigation takes
into account three different levels: the synchronic level of a person ‘doing
math’ at a given point in time; the diachronic,developmentallevel of how an
individual learns mathematics; and the diachronic,historical level of the de-
velopment of mathematics as a discipline through time. It will be argued that
the use of external symbolic systems is constitutive of mathematical reason-
ing and mathematical practice in a fairly strong sense of ‘constitutive’, but
not in the sense that manipulating notations is theonly route to mathematical
insight. Indeed, two case studies will illustrate this qualification: a man with
acquired savant syndrome and a blind mathematician.

1This seems to me to be a fruitful way to adopt a practice-basedphilosophical perspec-
tive. As I have argued in (Dutilh Novaes 2012a), practice-based philosophy of any science
must be thoroughly empirically-informed.
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1. The relations between mathematics and its languages

In (Macbeth 2013), D. Macbeth discusses three different positions one could
take on the role of notations and other graphic elements suchas diagrams
— what she describes as “writing, broadly conceived” — for mathematical
reasoning.2 (As she remarks, these are not only theoretically possible po-
sitions; each of them has actually been defended by real people.) Let us
examine each of them in turn.

a. Written mathematical symbols are constitutive of mathematical rea-
soning

Macbeth attributes this position to Kant3 and, as a more recent source, to
Rotman (2000). But the most outspoken (recent) defenders ofthe idea that
external devices such as inscriptions of any kind — writing,diagrams, nota-
tions etc. — are constitutive of the cognitive processes in which they are
involved are the proponents of theextended mind thesis(such as (Clark
2008) and (Menary 2010a)). The extended mind thesis has alsobeen ap-
plied specifically to mathematical notations in (De Cruz & DeSmedt 2013),
where a convincing case is made for the claim that mathematical notations
areconstitutive, in a strong sense of the term, of mathematical reasoning and
mathematical practices. Quoting from the abstract:

This paper draws on the extended mind thesis to suggest that math-
ematical symbols enable us to delegate some mathematical opera-
tions to the external environment. In this view, mathematical sym-
bols are not only used to express mathematical concepts — they are

2 Naturally, ‘mathematical reasoning’ and ‘mathematical practices’ are blanket terms
covering a wide range of related but distinct phenomena. I use these terms merely for the
sake of brevity; this should not be interpreted as an endorsement of an overly homogeneous
view of mathematics as a discipline, or of the idea that thereis a core essence to mathematical
reasoning — there may well be one, but arguing for such a view is not the aim of the present
analysis.

3 “Kant famously held that writing broadly conceived as the inscribing of marks is a
constitutive feature of mathematical practice.” (Macbeth2013, p. 25).
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constitutive of the mathematical concepts themselves. Mathemat-
ical symbols are epistemic actions, because they enable us to rep-
resent concepts that are literally unthinkable with our bare brains.4

(De Cruz & De Smedt 2013, 3)

The two other positions described by Macbeth agree on their rejection of
the idea of writing broadly construed (i.e. as manipulationof inscriptions)
as constitutive of mathematical reasoning. But they disagree on whether
mathematical reasoning is inherentlylinguistic or not. According to one of
them, mathematical reasoning is in fact inherently tied to particular pub-
lic languages, namely the vernacular languages of ‘everyday life’, but not
to the specifically designed mathematical notations. In contrast, according
to the third position, mathematical reasoning is not in any way language-
dependent, or in any case not dependent on anypublic language such as
speech or writing. Let me elaborate a bit on each of them.

b. Mathematical reasoning is conducted in vernacular languages; nota-
tions are merely convenient short-hands

This position, as described by Macbeth, views mathematicalreasoning as
constitutively independent of special systems of notation, but as inherently
tied to vernacular languages. The medium in which mathematics is con-
ducted is a specialized dialect of English, or whatever other vernacular lan-
guage(s) the mathematician is proficient in. Macbeth offersthe following
quote from a textbook to illustrate the position: “The symbols are simply a
convenience: It is easier to write ‘x

2’ than ‘the square ofx’, and ‘x ∈ A’ is
more compact than ‘x is an element of the set A’. In each case the meaning
is the same.”5

4Philosophers working within the extended mind framework diverge on whether they
seek to emphasize thesimilarities or thedifferencesbetween cognitive processes involving
or not involving external devices. Those who emphasize the similarities typically endorse the
so-called ‘parity principle’ and concentrate on the metaphysical question of the boundaries
of the mind. By contrast, those who emphasize the differences rely on the so-called ‘com-
plementarity principle’, and seek to investigate the transformative power of engaging with
external devices for human cognition (see the editor’s introduction in (Menary 2010a)). De
Cruz and De Smedt clearly belong to the second group, and so doI (Dutilh Novaes 2012b).

5 (Schumacher 2001, 1). Arguably, this position would also require a more thorough elab-
oration of possible significant differences between vernacular speech and vernacular writing,
as clearly the assumption being made is that vernacular writing is on a par with, or in any
case much closer to, vernacular speech than to written mathematical notations. However,
there are reasons to think that this is a misguided approach to writing — see (Krämer 2003),
(Harris 1995) and (Menary 2007). Moreover, the very idea that there is a clear-cut distinc-
tion between ‘natural’ and ‘artificial’ languages is deeplyproblematic; insofar as writing is
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c. Mathematical reasoning is not language-dependent

On this view, to ‘do’ mathematics would be a purely private, inner process,
which can then beexpressedandcommunicateda posteriori in some public
medium such as systems of notations or spoken languages. (Macbeth’s ex-
ample of a proponent of this position is Fields medalist William Thurston.)
Rotman’s convenient term to describe this position is ‘documentist’: “This is
the view that language, whether written or spoken, is invariably after the fact
in mathematics, serving only to document or report results obtained indepen-
dently.” (Macbeth 2013, p. 27) In other words, the claim is that mathematical
reasoning is metaphysically independent of, and temporally prior to, its ex-
pression in any form of public language; it requires no external medium at
all to come about.

Thus, positions b. and c. both reject the notion that mathematical (written)
notations are constitutive of mathematical practice. Positions a. and b. have
in common the idea that mathematical reasoning requires some sort of exter-
nal, linguistic medium to come about (as opposed to thoroughly internalist
position c.), yet disagreeing on the exact nature of this medium.

The constitutivity question can thus be formulated with different degrees
of generality. Iswriting (mathematical notations in particular) constitutive
of mathematical reasoning and mathematical practice? Alternatively, areex-
ternal mediain general (including inscriptions, utterances and, as we shall
see shortly, other kinds of external representations) constitutive of mathe-
matical reasoning and mathematical practice? Position c. answers ‘no’ to
both questions; position b. answers ‘no’ to the first question but ‘yes’ to the
second; position a. answers ‘yes’ to both (naturally, a positive answer to the
first question entails a positive answer to the second question).

There is of course a weak sense in which mathematical practices require
external media, namely in the sense that mathematics requirespublic justi-
ficationof chains of reasoning. A mathematical demonstration is a piece of
discourse presupposing a putative audience; it puts forward a chain of rea-
soning for public scrutiny. But here we can turn to the good old distinction
between context of discovery and context of justification toargue that math-
ematical practices and mathematical reasoning, broadly construed, should
not be reduced to contexts of justification; beyond justification, we may also
want to understand the contexts of mathematicaldiscovery. The question is
thus whether external media are required for mathematicaldiscovery, given
that external media are trivially constitutive of mathematical justification.

However, there is another crucial dimension relevant for the notion of ‘be-
ing constitutive of doing mathematics’ (i.e. including both justification and

clearly a cultural technology, one could argue that it fallson the same side of the natural vs.
artificial divide as mathematical notations.
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discovery), namely atemporaldimension. We must consider three distinct
levels: the synchronic level of the mathematician ‘doing mathematics’ at
a given point in time; the diachronic, ‘ontogenetic’ (developmental) level
of how mathematical skills are acquired by a given individual; and the di-
achronic, ‘phylogenetic’ (historical) level of how mathematical knowledge
has emerged and developed throughout the history of mathematics. Distin-
guishing these three levels is essential if we are to make sense of the idea of
a particular external medium (be it vernacular speech, special forms of writ-
ing such as mathematical notations or yet other media) beingconstitutive of
mathematics. In the next section I discuss each of these three levels, drawing
in particular on studies on numerical cognition, anthropology, developmen-
tal psychology, and the history of mathematics.6

2. Numerical cognition and external symbolic systems

2.1. The synchronic level

Superficial phenomenological observation strongly suggests that mathemat-
ical notations play a crucial role in mathematical practices. Indeed, it is a
well-known fact that, in practice, anyone doing mathematics (professional
mathematicians, those in the process of learning mathematics, the lay per-
son doing a simple calculation, etc.) almost invariably makes extensive use
of writing devices (pencil and paper, chalk and blackboard,etc.).7

Again, nobody would deny that making use of writing greatly facilitates
mathematical reasoning, if nothing else because it offloadsinternal working
memory. For example, it is much easier to undertake a long calculation if
one can rely on pen and paper to keep track of its steps externally rather
than internally. But this may also simply be (at least in part) a contingent
result of how people happen to be trained to do mathematics, not necessarily
something inherent to the cognitive activity of doing mathematics in general.
The idea of ‘being constitutive’ seems to entail something stronger, namely
that it should beimpossibleto engage in a given practice in any other way.

6While it goes without saying that mathematics goes well beyond numerical cognition,
thus far the empirical studies have almost exclusively focused on this particular area. Hence,
at this point the analysis is less wide-ranging than what might be hoped for, but this is related
to the somewhat limited availability of empirical data concerning other aspects of mathemat-
ics. At any rate, given limitations of space, it also appearsto be a methodologically sound
approach to focus on what is arguably the most basic level of mathematical cognition.

7 “A . . . mathematician generally works by sitting around scribbling on paper: According
to one legend, the maid of a famous mathematician, when askedwhat her employer did all
day, reported that he wrote on pieces of paper, crumpled themup, and threw them into the
wastebasket.” (Jackson 2002, 1246)
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Indeed, the claim that writing is constitutive of mathematical reasoning en-
tails that it not onlyrecordsindependent processes; writing is in fact viewed
as an integral part (embodiment) of these very cognitive processes — that
is, at the very leastwhen they are accompanied by writing. The opening
passage in Clark’sSupersizing the Mind(2008) recounts an anecdote in this
spirit, involving the legendary physicist Richard Feynman:

Consider this famous exchange between the Nobel Prize-winning
physicist Richard Feynman and the historian Charles Weiner. Weiner,
encountering with a historian’s glee a batch of Feynman’s origi-
nal notes and sketches, remarked that the materials represented “a
record of [Feynman’s] day-to-day work.” But instead of simply ac-
knowledging this historic value, Feynman reacted with unexpected
sharpness:

“I actually did the work on the paper,” he said.
“Well,” Weiner said, “the work was done in your head, but the
record of it is still here.”
“No, it’s not a record, not really. It’s working. You have to work on
paper and this is the paper. Okay?” (from Gleick 1993, 409)

Feynman’s suggestion is, at the very least, that the loop into the
external medium was integral to his intellectual activity (the “work-
ing”) itself. But I would like to go further and suggest that Feynman
was actually thinking on the paper. (Clark 2008, xxv)

The ‘thinking on the paper’ claim must be spelled out. Of course, it is per-
fectly possible to engage in practices that are properly described as ‘doing
mathematics’ without manipulating notations at a given time (e.g. mental
calculation, to be discussed shortly). But the claim seems to be that,whena
particular person is doing mathematicsaccompanied by such manipulations,
then the manipulations themselves are constitutive of thatparticular process.
This would be a weaker (but still non-trivial) sense in whichthe idea that
writing is constitutive of doing mathematics can be cashed out: constitutive,
but onlywhen present.

Ultimately, whether mathematical reasoning requires the manipulation of
external representational vehicles is essentially anempirical question. The
different ways to formulate the issue and the various implications of each po-
sition may be discussed on a philosophical, abstract level,but at the end of
the day we must look into how people actually ‘do mathematics’ to address
these questions. I here argue that, based on empirical data drawn from dif-
ferent fields, a strong case can be made for the claim that external media are
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constitutive of mathematical knowledge and mathematical reasoning in the
stronger sense that, even when a given person is apparently not manipulating
symbols, such as a mental calculator, she in fact typically relies extensively
on internalized versions of external devices (at least in most cases).

Let us thus start with the several reported cases of mental calculators, i.e.
people who can perform incredibly long, complicated calculations without
resorting to paper and pencil or anything of the kind.8 Naturally, the general
idea of ‘mathematical reasoning’ goes much beyond making numerical cal-
culations, but mental calculators are a good example to illustrate the claims
I am about to make.

The main question is: in what sense are mental calculators calculating
mentally? By and large, they seem to be resorting to internalized external
representations such as: words and symbols for numbers, paper-and-pencil
algorithms which are simulated internally, mnemonic devices, tables of mul-
tiplication learned by heart by oral repetition etc. Importantly, there are dif-
ferent styles of mental calculation. For example, mental calculations per-
formed by people trained in the Hindu-Arabic numeral systemtypically rely
on strategies emerging from features of the decimal system.It is known for
example that the fastest and least error-prone mental calculations are those
consisting in adding a given number smaller than 10 to a multiple of 10 (10,
20, 30 etc.); this is arguably because the reasoner mentally‘replaces’ the 0
on the right-side of one of the numerals with the other numeral.9 So it seems
that, while not using ‘paper and pencil’ at that particular moment, the oper-
ation being implemented relies significantly on the mode of presentation of
the Hindu-Arabic numeral system as a place-value system, and thus on an
internalization of external symbols.

Besides inscriptions and utterances, numbers can be represented externally
in a variety of ways. Indeed, humans have a long history of developing calcu-
lating devices/objects such as counting rods and abacuses,and each of them
presupposes that quantities be represented so that they canbe ‘operated on’
for calculation. So abacuses and counting rods can also be seen as symbolic
systems, and as it turns out, they can also be ‘internalized’.

In Japan, a popular technique for mental calculation relieson internal
representations of abacuses, and is known asanzan.10 A large number of
children attend abacus clubs and first learn to perform calculations with a
physical abacus (the Japanese version is calledsoroban), so that they be-
come familiar with the processes. Once they are proficient calculators with
the actual abacus (which usually involves years of training), they can begin

8See (Bellos 2010, 143–148) for an account of the variety of ways in which the practice
of mental calculation has been and still is engaged in.

9These are known asdecade effects. See (De Cruz et al. 2010, 93–94).
10See (Bellos 2010, 68–75) for details.
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the training of mentally simulating the processes by visualizing an ‘internal’
abacus. The results are astonishing, including the abilityto perform mental
calculations while having one’s attention distracted by other elements such
as playing word games.

Thus, it would seem that, at least in most cases, mental calculations, even
when performed by calculating prodigies, are essentiallyinternal manipula-
tionsof previously mastered external symbolic systems. Additional support
for this hypothesis comes from the study presented in (Tang et al. 2006),
summarized in (De Cruz et al. 2010, 82):

An intriguing fMRI study by Tang et al. (2006) provides indirect
support for the role of symbolic representation in numerical cogni-
tion. In this study, both native English speakers and nativeChinese
speakers solved arithmetical operations. Although the IPS[intra-
parietal sulci] were active in both groups, they exhibited marked
differences in other brain areas. Whereas the English speakers had
a stronger activation in perisylvian, language-related areas such as
Broca and Wernicke’s areas, the Chinese speakers showed an en-
hanced response in premotor areas, involved in the planningof mo-
tor actions. The authors offered a possible reason for this:whereas
English speakers learn arithmetical facts in verbal memory(e.g.,
when they learn multiplication tables), Chinese speakers rely on the
abacus in their schooling. These differences in schooling might still
be reflected in arithmetical practice, with English speakers men-
tally relying on language-based strategies, and Chinese speakers on
motor-based strategies.

The exact neuronal details need not concern us here, but these results clearly
suggest that mental calculations by Chinese participants engage motor pro-
cessing; perhaps even unbeknownst to them (and without the special train-
ing given to the Japanese calculating prodigies mentioned above), they are
to some extent reenacting calculating procedures performed externally with
the abacus. English speakers, by contrast, having learned to calculate mostly
relying on language-based strategies, apparently continue to rely on these
strategies even when performing mental calculations.

2.2. The diachronic, ontogenetic (developmental) level

Hence, it seems that the cognitive processes of ‘doing mathematics’ on the
synchronic level vary per individual, and in particular in function of the
way in which she learned mathematics, i.e. what I have described as the
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diachronic, ontogenic, developmental level. This is for now most conspic-
uous for number cognition, but it may well carry over to ‘higher levels’ of
mathematical practice — for example, when a professional mathematician
mentally formulates a mathematical theorem (but again, it is a hypothesis to
be investigated empirically).

Thus, the ontogeny of mathematical skills in a given individual must be
brought into the picture. Naturally, the topic has been extensively stud-
ied, and it would be pointless to try to summarize the main results here.
For our purposes, a key issue is the extent to which humans possess innate
mathematical concepts, and the extent to which mathematical concepts and
mathematical reasoning must be learned (from experience, exposure, formal
education etc.) (De Cruz & De Smedt 2010). Specifically on numerical
cognition, one currently widely accepted account is the oneproposed by S.
Dehaene (1997); according to his model, humans possess an innate grasp
of very small exact quantities (up to 3 or 4), and an innate inexact, approx-
imate grasp of larger quantities. Still on this model, basicexact arithmetic
emerges from a combination of these two innate capacities, but it crucially
depends on the existence of external symbolic representations for numbers
(exact quantities) and on extensive training to arise. In other words, it re-
quires the very practice of counting, i.e. associating ‘names’ to exact quan-
tities, which, although highly pervasive, is not a universal feature of human
languages (more on this shortly). One implication of this model is thus that,
in the absence of external symbolic representations of exact quantities, even
very basic arithmetical abilities should not emerge; seemingly, a person who
was never explicitly taught to count will not be able to learnbasic arithmetic
operations at a later stage.

This hypothesis is further corroborated by anthropological studies of cul-
tures whose languages have very few words for numbers. The Pirahã and the
Mundukuru, two tribes in the Amazon, do not have words for numbers be-
yond very low ones (the Mudukuru have words to name quantities up to five,
but beyond three they are not consistently used).11 Even when, later in life,
speakers of these languages learn another language which does have words
for numbers, they never seem to be able to learn basic exact arithmetic. Their
ability to estimate quantities and to calculate with approximations, however,
is very similar to that of people fully embedded in ‘numerical cultures’.12

But spoken words are not the only external devices used for counting.
Some cultures have counting systems based on body parts, so that each ex-
act amount would correspond to a given body part. The Oksapmin in Papua
New Guine, for example, point at the corresponding body partand utter its
name to indicate a certain quantity. (Naturally, such counting systems have a

11See (De Cruz et al. 2010, section 2.4).
12See (Pica et al. 2004).
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fairly low upper bound; in the case of the Oksapmin, it goes upto 27.) Cru-
cially, when members of such cultures are probed for their abilities in exact
arithmetic (both as a result of formal training and of spontaneous learning),
their performance is much more aligned with that of e.g. schooled speakers
of English than with the performance of members of cultures which simply
do not systematically engage in the practice of keeping track of exact quan-
tities with external symbols at all (such as the Pirahã and the Murukundu).13

These results suggest that, more than language-dependent,exact numerical
cognition isexternal-symbol-dependent; it presupposes the very concept of
exact quantities, which may only emerge by means of explicitassociation to
external symbols and the practice of counting beyond very small amounts.

Developmental studies with young children seem to confirm this hypothe-
sis. According to a popular (though not unanimously accepted) view, infants
and young children have a logarithmic, non-linear representation of quanti-
ties in that the ‘distance’ between 1 and 2, for example, is larger than the
‘distance’ between 8 and 9. This was observed in experimentswhere they
were asked to represent quantities in a number line. With schooling, how-
ever, their conception of quantities gradually converges towards the linear
conception characteristic of the series of the natural numbers.14 Moreover,
in similar experiments with members of a culture with few words for num-
bers (the Mundukuru), the same logarithmic representationwas observed.15

In fact (and as parents of young children know all too well), for most
children, learning to count, i.e. to associate exact quantities to particular
external symbols (usually spoken words), requires rather intensive training
to be mastered. Counting is a practice which only emerges upon explicit
instruction. The development of the concept of the linear, well-ordered series
of natural numbers then typically continues in formal educational settings
(pre-school etc.), which is a pre-condition for the child tolearn arithmetic
operations.

What do these considerations entail for the question of whether spoken
language, and external symbols more generally, is (are) constitutive for math-
ematical reasoning? It would seem that even at the most basiclevel of nu-
merical cognition, external representations are indeed required for the devel-
opment of the concept of exact quantities beyond very small amounts (ar-
guably, up to three). What both the anthropological and the developmental
data suggest is that humans in fact require the existence of external symbols

13See (Saxe 1982) and (Saxe 1985).
14See (Siegler & Booth 2004).
15See (Dehaene et al. 2008).
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and the appropriate training in order to develop the very concept of exact
quantities.16

Going back to the three positions presented above, it seems clear that, even
if at specific occasions (i.e. the synchronic level), ‘doingmath’ does not re-
quire the act of manipulating external symbols (as the defender of position
c., the ‘documentist’, would have it), from a diachronic, developmental point
of view, external symbols appear to be a necessary conditionfor the emer-
gence of mathematical concepts and mathematical reasoning. Moreover, I
have argued that many of the processes which appear to take place exclu-
sively ‘in the head’ are in factinternal simulations of external processes; in
such cases, there is a clear sense in which external representations are consti-
tutive of mathematical reasoning, even if they are simulated and manipulated
mentally.

Thus, I claim that position c. is severely weakened by the empirical ev-
idence discussed so far. But this body of evidence does not seem to offer
sufficient data to ‘break the tie’ between positions a. and b.Indeed, I have
stressed the crucial role ofspokenwords in particular for the emergence
of exact numerical cognition; how could the proponent of a. then further
argue against b.? Let us turn to the third level of analysis, the diachronic-
phylogenetic-historical level, which will provide important additional ele-
ments for the analysis.

2.3. The diachronic, phylogenetic (historical) level

It is common knowledge that major advancements in the history of mathe-
matics were almost invariably accompanied by significant changes in math-
ematical notation: the adoption of the Hindu-Arabic numeral system and the
astonishing progress in Indian mathematics; the development of special no-
tations in North Africa which were then brought to Europe by the abbaco
schools tradition;17 Viète’s and Descartes’ groundbreaking algebraic inno-
vations;18 Leibniz and the development of calculus;19 among others. Here is
an apt summary of the overall ‘phylogeny’ of mathematical notations:

Over the course of history, mathematical formalisms have evolved
so that they are cognitively helpful devices, and this evolution has
entailed making apparently superficial, but practically crucial, form

16It may seem that this will end up being a chicken-egg situation from a historical point of
view: how did external symbols for exact numbers first emerge? What came first, the concept
or the representation? We will briefly discuss these mattersbelow.

17See (Høyrup 2010).
18See (Macbeth 2004), and (Heeffer 2010) for precursors of Viète’s innovations.
19See (Knobloch 2010).
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changes. For example, the convention introduced by Descartes in
which letters near the beginning of the alphabet are used to denote
constants and those near the end to denote variables, frees us from
the burden of remembering which are which and allows us to use
our memory for other aspects of a mathematical situation. (Landy
and Goldstone 2007, 2039)

Thus, formalisms and notational systems are cognitive technologies which
must beusableby agents with specific sensorimotor and cognitive charac-
teristics, but which must also beuseful in that they allow these agents to
perform cognitive tasks which would be otherwise more difficult or even
impossible to perform.20

Still, it may well be that mathematical notations are not essential for these
bouts of progress, but rather that they simplyregisternewly made progress.
In other words, it may well be that the development of new notational tech-
niques is theconsequencerather than thecauseof progress in mathematics.
To quote D. Macbeth again (2013, p. 29): “The systems of written signs
that have been devised for mathematics were devised for mathematics that
already existed; it would be impossible to design a notationfor mathemat-
ics without knowing at least some of the mathematics that thenotation was
designed to capture.”

But in practice, is this really always the case? There seem tobe a num-
ber of examples in the history of mathematics where specific notations were
adopted even before it became clear which concept(s), if any, they singled
out. Indeed, mathematical notation is often (though not always) charac-
terized by what can be described as a process ofde-semantification, in S.
Krämer’s (2003) fitting terminology. If a given system of notations has a
well-defined syntax, and in particular clearly formulated rules of transforma-
tion, it is possible to operate within the system even if someof its symbols
have no fixed reference — in fact, even if one is not sure that they have a
reference at all.

[. . . ] signs can be manipulated without interpretation. This realm
separates the knowledge of how to solve a problem from the knowl-
edge of why this solution functions. (Krämer 2003, 532)

20 It is important that they should represent a significant improvement over cognitive pro-
cesses unaided by such devices, otherwise the cost of learning how to operate with them
would not justify their use; there must be a favorable trade-off between learning investment
and benefits. For more on the historical development of mathematical and logical notations,
see (Dutilh Novaes 2012b, chapter 3).
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The concept of zero is a case in point, a mathematical conceptwhich emerged
in virtue of the characteristics of a notational convention, namely the place-
value system. Within such numerical systems, some device expressing the
fact that a given position is not occupied by any number is essential, roughly
functioning as a place-holder. Place-holder devices were used for the first
time by the ancient Babylonians over 4000 years ago, and later further de-
veloped within Indian mathematics. To express a number suchas 2046, for
example, some device is required to indicate the fact that the ‘x00’ position
is not filled; otherwise, it would be impossible to disambiguate 2046 from
246.21 Other ancient mathematical traditions (Greek, Roman, Jewish) did
not use a place-value system, and did not have a place-holdersymbol or the
concept of zero. In effect, the historical emergence of the concept of zero
in Indian mathematics is closely related to the notational device used to in-
dicate a ‘gap’ in the Indian place-value numerical system; only later did it
develop into a mathematical concept properly speaking.22 Importantly, until
the beginning of modern times in Europe, zero was not viewed as a number
on a par with other numbers; instead, it was viewed as a ‘gap’,but this did
not prevent mathematicians and users of mathematics to calculate with the
symbolas if it was a number.23

Zero is not the only such case in the history of mathematics. With the
advent of calculus and infinitesimal mathematics, the concepts of infinitely
small and infinitely large numbers essentially emerged fromthe very for-
malism developed by Leibniz; they were not first introduced conceptually so
as to be put to use afterwards. In effect (as reported by Krämer (2003, fn.
36)), commenting on whether infinitely small or infinitely large numbers are
‘actual’ numbers, Leibniz remarked: “On n’a point besoin defaire dépendre
l’analyse mathématique des controverses métaphysiques.”(There is no need
to let mathematical analysis depend on metaphysical controversies.)

As discussed in (Macbeth 2013), in the second half of the 19th century
there was a general rejection of a ‘calculative’ approach tomathematics
(viewed as not sufficiently ‘concept-oriented’). However,if one considers
the totality of the history of mathematics, it is clear that there have been sev-
eral instances of mathematical concepts actually emergingfrom formalisms

21See (Bellos 2010, chap. 3) for further details. According to(Kaplan 1999), already in
the 6th century AD zero began to be treated as a number rather than as anotational device in
Indian mathematics.

22See (Seife 2000) and (Kaplan 1999) for comprehensive histories of the concept of zero.
23“The rules of calculus apply exclusively to the syntactic shape of written signs, not to

their meaning: thus one can calculate with the sign ‘0’ long before it has been decided if
its object of reference, the zero, is a number, in other words, before an interpretation for the
numeral ‘0’ — the cardinal number of empty sets — has been found that is mathematically
consistent.” (Krämer 2003, 532)
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and notational conventions. We need not claim that all or even most math-
ematical concepts emerged from ‘paper-and-pencil’ manipulations of for-
malisms; it is sufficient to notice that some crucial developments in the his-
tory of mathematics seem to have been prompted by the creative, productive
power of well-designed notations.

Indeed, an important difference between ‘doing mathematics’ in spoken
language or ‘doing mathematics’ in written language seems to be that the
written medium lends itself more easily for operations to becarried outon
andwith the medium itself. Given that written symbols have a physical per-
manence (on paper or other surfaces) that spoken symbols do not have, writ-
ten symbols can be used not only torepresentconcepts (such as the concepts
of exact quantities), but also to beoperated on— what Menary (2010b) de-
scribes as ‘cognitive manipulations’. As Krämer observes about the decimal
place-value system,

this system made it possible24 not only todepictall natural numbers
with ten written signs, but also tocalculatewith numbers. The dec-
imal place-value system is both amediumfor representing numbers
and atool for operating with numbers. (Krämer 2003, 531)

In sum, this brief excursion on the history of mathematics and mathemati-
cal notations suggests that, even if it might be possible (orat least conceiv-
able) to do mathematics with no recourse to any writing medium whatso-
ever, mathematicsas we know itonly emerged in close connection with the
development of specially designed systems of writing. Theyallow humans
not only to represent previously formulated mathematical concepts, but ar-
guably also to produce new ones, and perhaps more importantly, to operate
on them ‘hands-on’ by means of manipulations of symbols.25

3. The exceptions confirming the rule?

I have argued that manipulating systems of writing is an important route to
mathematical knowledge, a fact deeply related to the cognitive makeup of
humans. There are, however, extraordinary cases which simply do not seem

24This claim is too strong; it would be more accurate to say thatthe place-value system
facilitated the process of calculating with symbols rather than making it possible in an ab-
solute sense. Calculations are also possible with other number systems. (I owe this point to
Dirk Schlimm.)

25Notice that my emphasis on the importance of notations for mathematical practice does
not commit me to a formalistic conception of mathematics (Weir 2011). The claim is that
writing is usually essential for mathematical reasoning, but not that manipulation of symbols
is all there is to mathematical practice.
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to fit into this general picture, i.e. cases where ‘something’ beyond notations
seems to be playing a decisive role for the production of mathematical in-
sight. In this section, I discuss two such cases: Jason Padgett, a man with
acquired savant syndrome who has the uncanny ability to see shapes and
numbers as fractals; and Bernard Morin, the blind mathematician who in the
1960s provided the first model for the eversion of the sphere.

As noted above, the existence of mental calculators is a fact, but most of
them cannot be said to be ‘doing away’ completely with external represen-
tations, given that they essentially seem to simulate theserepresentations
mentally/internally. However, it is likely that at least some prodigies, some
savants in particular, might be attaining mathematical knowledge through al-
ternative routes.26 Some people seem to be able to ‘see’ mathematical facts
through means other than their embodiment in external representations.

Jason Padgett has acquired savant syndrome, most likely as aresult of hav-
ing been beaten at a mugging incident in 2002 (Brogaard 2011). Since then,
he has developed the unique ability to hand-draw fractal renditions of objects
and images; he claims to perceive some images as fractals. Padgett is now
being studied by cognitive scientists, who seek to understand the neurologi-
cal basis of his mathematical abilities. In a videotaped interview, he says the
following:27

Many mathematicianssee numbers as digits, and while they can do
amazing things when it comes to understanding the very root of an
equation, only whenyou ‘see’ it and do the mathematics together
can you really understand where it comes from.

Padgett’s claim that many (most?) mathematicians ‘see numbers as digits’
is indeed very much in the spirit of the views defended here. But his fi-
nal observation is what is most revealing: he refers to a formof ‘seeing’
the root of an equation that is independent of seeing numbersas digits, and
thus a form of mathematical insight which is presumably not inherently tied
to external representations (crucially, the fractals he draws are renditions of
what he ‘sees’ prior to making the drawings themselves). Notice however
Padgett’s suggestion thatboththis ‘seeing’ abilityand ‘doing the mathemat-
ics’ (presumably, operating with symbols) are required to understand where
the root of an equation ‘comes from’. So Padgett seems to be saying that

26The wide majority of mathematical savants seem to rely on heuristic shortcuts, and at
any rate it is worth noticing that the mathematical feats of savants are typically not of the
creative kind, i.e. they do not represent genuine advancement in the discipline (Koziol et al.
2010).

27Link for the video: http://www.q13fox.com/news/kcpq-scientists
-still-calling-in-on-federal-way-savant-20110622,0,7610032.
story
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external representations are necessary — although not sufficient — for this
kind of mathematical insight, even beyond the obviously social aspect of
communicating problems and results to peers.

Importantly, Padgett had virtually no mathematical training prior to the in-
cident, and when he started drawing the fractals, he did not master the math-
ematical concepts to be able to discuss his drawings in a mathematically-
informed way (Brogaard 2011). Since then, he has taken some college-level
mathematics courses, but the fact remains that the cognitive processes lead-
ing to his mathematical insights do not seem to involve the manipulation of
external symbols in any fundamental way.

Now, if in typical cases manipulating portions of writing (broadly con-
strued) is a fundamental aspect of mathematical practice, one important im-
plication seems to be that mathematicians rely substantially on vision to do
mathematics (as well as in motor abilities to operate writing devices). Does
this mean that it isimpossibleto do mathematics unless a given individual
is sighted? Naturally, this suggestion is immediately refuted by the sheer
existence of a number of very gifted blind mathematicians. Obviously, they
‘do mathematics’ while not relying on the hands-on manipulation of written
symbols (not in the same way, at any rate; many of them do rely on Braille
or similar systems). But rather than disproving the claim that mathemati-
cal practice is fundamentally tied to forms of writing, at least some blind
mathematicians seem in fact toconfirmit in that the ways in which they pro-
duce mathematical knowledge are often significantly different from those of
sighted mathematicians. To use Jason Padgett’s terminology, we might say
that, unlike most mathematicians, blind mathematicians arguably do not pre-
dominantly see ‘numbers as digits’, and at times this seems to provide them
with privileged insight with respect to some specific problems.

The American Mathematical Society published a fascinatingnotice on
blind mathematicians a few years ago (Jackson 2002), where Euler, Saun-
derson, Pontryagin and Bernard Morin, among others, are mentioned. The
notice focuses not only on their mathematical accomplishments, but also on
the methods and strategies they developed to practice mathematics while be-
ing blind.28 Although the goal of the notice is not to offer a detailed and
scientifically-grounded account of the deeper cognitive aspects of being a
blind mathematician, some observations already suggest that there might

28Let me now offer in full a passage already quoted above, whichpresents the general goal
of the AMS notice: “A sighted mathematician generally worksby sitting around scribbling
on paper. [. . . ] So how do blind mathematicians work? They cannot rely on back-of-the-
envelope calculations, half-baked thoughts scribbled on restaurant napkins, or hand-waving
argument in which “this” attaches “there” and “that” intersects “here”. Still, in many ways,
blind mathematicians work in much the same way as sighted mathematicians do.” (Jackson
2002, 1246)
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be significant differences with respect to sighted mathematicians (against
a background of predominant commonalities).

To illustrate these possible differences, let us focus on Bernard Morin, the
mathematician who in 1967 first exhibited a homotopy that carries out the
eversion of a sphere, by creating clay models of it. In 1959, S. Smale had
proved that the sphere can be everted, or turned inside out (in fact, he proved
a more complicated statement which is equivalent to the eversion claim).
However, actually constructing a sphere eversion following the arguments in
Smale’s paper is in no way straightforward; originally, theproof was above
all a theoretical construction, a proof of possibility rather than a display of
the process itself. (Indeed, we might say that the proof relied essentially
on the ‘manipulation of mathematical symbols’.) Morin was the first per-
son who could actually describe and implement the eversion process, and he
claims himself that being blind contributed to the feat. Hisobservations on
mathematical cognition, while of course remaining essentially anecdotal, are
very insightful:

Far from detracting from his extraordinary visualization ability,
Morin’s blindness may have enhanced it. Disabilities like blind-
ness, he noted, reinforce one’s gifts and one’s deficits, so “there are
more dramatic contrasts in disabled people,” he said. Morinbelieves
there are two kinds of mathematical imagination. One kind, which
he calls “time-like”, deals with information by proceedingthrough
a series of steps. This is the kind of imagination that allowsone
to carry out long computations. “I was never good at computing,”
Morin remarked, and his blindness deepened this deficit. What he
excels at is the other kind of imagination, which he calls “space-
like” and which allows one to comprehend information all at once.
(Jackson 2002, 1248)

Indeed, what Morin describes as the ‘time-like’ mathematical way of reason-
ing is presumably intimately tied to performing computations and proceed-
ing step-wise, and as we have seen, manipulating external symbolic systems
greatly enhances calculating power. It is thus not so surprising that a blind
mathematician would be hampered on this level.29 But what does the ‘space-
like’ kind of imagination consist in for Morin in the particular case of the
eversion of the sphere?

29But this is obviously not to be taken as a general rule. Larry Wos is a blind
mathematician-logician with remarkable results in automated theorem-proving. He works
on Braille terminals for programming.
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One thing that is difficult about visualizing geometric objects is that
one tends to see only the outside of the objects, not the inside, which
might be very complicated. By thinking carefully about two things
at once, Morin has developed the ability to pass from outsideto
inside, or from one “room” to another. This kind of spatial imagina-
tion seems to be less dependent on visual experiences than ontactile
ones. (Jackson 2002, 1248)

Now, the crucial point is that Morin, as is often the case withblind people,
has enhanced tactile perception in comparison with sightedpeople.30 So
this ‘edge’ over sighted people may have been crucial for Morin to be able
to reflect on the ‘inside’ as well as the ‘outside’ of a sphere.31 At any rate,
it is clear that it wasnot by means of ‘cognitive manipulations’ of systems
of notations that Morin obtained his groundbreaking resulton the eversion
of the sphere. Thus, the point again (as with Padgett above) is that, while
writing (broadly construed) appears to be central for mathematical reasoning
in most cases, there is no doubt that there is more to mathematical discovery
than the manipulation of notations. These two cases of individuals with
what could be described as atypical cognitive apparatuses (a savant and a
blind person) suggest precisely that. How exactly these alternative routes to
mathematical insight function cognitively is still a poorly understood issue
(in fact, the cognition of mathematical insight in general remains very poorly
understood), but there is no doubt that they exist.

Another possible interpretation of these cases of (what could be described
as) atypical mathematical insight is that they in fact outline an aspect of
mathematical cognition that is present in everyone, but is made less conspic-
uous by the presence of symbol manipulation, namely an autonomous layer
of mathematical intuition (Davis and Hersh 1981). Indeed, the main claim
defended here is not that the manipulation of portions of writing issufficient
for mathematical knowledge and insight, but that it may wellbe at least to
some extentnecessary, at any rate in most cases (which is of course also
related to the institutional aspect of how mathematics is taught). Moreover,
in virtue of dissimilarities both in mathematical trainingand in personal in-
clination, one should expect to observe significant individual differences in
the production of mathematical knowledge: some will rely more extensively
on intuitions, while others generate new ideas predominantly by working
‘hands-on’ with the formalism.

30 Indeed, there is empirical evidence to support the idea thatthe ‘unused’ parts of the
brain in people with certain disabilities (blindness, deafness) are co-opted for other kinds of
sensorial processing — see (Gougoux et al. 2005).

31Notice though that, after Morin’s eversion, other eversions of a sphere have been dis-
covered, including one by the very William Thurston mentioned in section 1 above, who
found a way to make Smale’s original proof constructive (Jackson 2002, 1248).
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At any rate, cases such as Morin’s and Padgett’s are possibleexceptions
to the claim that manipulating portions of writing is constitutive (though
not sufficient) for ‘doing mathematics’, and as such may be viewed as the
exceptions confirming the rule.

4. Conclusion

I have defended the claim that the existence and manipulation of external
symbolic systems (such as notations, words for numbers, abacuses etc.)
are constitutive of mathematical reasoning and mathematical practice in the
sense that, both from an ontogenetic and a phylogenetic point of view, the
development of mathematical abilities is intimately related to acquiring mas-
tery of such systems. Occasional circumstances of ‘doing mathematics’ may
not require the actual ‘paper-and-pencil’ manipulation ofnotations, but from
a diachronic point of view, notations are in fact a constant presence.

However, I have also argued that there seem to be other routesto mathe-
matical insight, as suggested by the cases of individuals such as Jason Pad-
gett and Bernard Morin. That is, in spite of the undeniable relevance of
notations for mathematical practice, these cases remind usthat any cognitive
account of mathematical practices and mathematical reasoning must remain
open to a multi-faceted approach.
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