EVERY SENTENTIAL LOGIC HAS A
TWO-VALUED WORLDS SEMANTICS
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No one anywhere will design a sentential logic without a
quite familiar kind of semantics, and no one can now scorn
any such logic just because it lacks a semantics. For just as
every sentential logic has a characteristic Lindenbaum algebra,
so, and less trivially, every such logic has a bivalent rela-
tional (and also an operational) semantics.

Each semantical model is built on a class K — of worlds,
scenarios, indices, set-ups, context-situations, or whatever —
which contains a (distinguished) element 0 — the actual

world, current scenario, etc. As well as K each model con-
tains a function, f say, which assigns to each connective of
the logic analysed a relation of one-place more than the con-
nective, e.g. where C" is an n-place connective S* = {(C") is
an (n + 1)-place relation. S" is a relation whose first place is
on K and whose remaining places are on V, the set of ranges
of the logic, i.e. 8" is defined on the (n + 1)-place Cartesian
product KX VX ...X V. A range or LA-proposition is a set
of worlds, and the range of formula B is the set of worlds
where B holds (as in Carnap [6]). Thus far the models are
orthodox (and like those reached in [7], § 13). What is differ-
ent, but not new, as the idea has already been used in the se-
mantical analysis of tense logics and indeed much earlier by
Henkin [11] in the semantics for type theory, is to add a set
V to each model. This set V, which is a subset of the power
set of K, is to be construed as the class of LA-propositions of
the logic analysed, and represents all that the logic can assert.
Finally, each logic contains a standard bivalent valuation
function v such that for each initial formula p and each world
a of K, v(p, a) has one of the values T or F, The evaluation of
compound formulae is accomplished by a simple extension of
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«neighbourhood» semantical rules (already used in [7]); for
example,

I(CP A, ... Ay a) = T iff S"afAq] ... [Ad),

where [A;] = {0eK:I(A; a) = T}, i.e. canonically [A;] is the
range of A;. In sum, a uniform general semantics is not obtain-
ed by some sort of cheating, by some new device that tri-
vializes the modellings. There is nothing in the semantics that
has not already been used and accepted in semantical analy-
ses of intensional logics; nor for that matter are the proof
methods used conspicuously new, but mainly an elaboration
of those of [1].

The fact that every sentential logic has a semantics does
not show that semantics is pointless (despite the vacuous con-
trast), any more than Gauss's theorem that every polynomial
has a root shows that the notion of having roots is trivial.
Semantical analyses remain the important foundations of full-
blown accounts of meaning; and they provide easy keys to
a great many logical doors.

Not surprisingly the uniform semantics provided by this
method often do not supply anything like the best or most
illuminating semantics for a system. For example, the «second-
order» semantics generated for the Lewis system S2 by the
uniform method are cumbersome indeed compared with the
neat «first-order» semantics Kripke found (though they in fact
facilitate the derivation of Kripke's semantics for S2). Further-
more the semantics are, in a sense, skew for such connectives
as disjunction and negation. Though the normal bivalent dis-
junction rule

I(AvB,a) = T iff I(A,a) = T or I(B,a) = T

holds for a very large class of systems, the models for these
systems furnished by the uniform method do not in general
admit the rule; and it can be recovered only after the class of
models is heavily pruned (in the manner of [1]). Also because
classical, or even normal, negation rules cannot be generally
recovered, the having of a model does not ensure consistency
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and a semantically sound and complete logic may be inconsist-
ent or even trivial. The method leads, in short, to a more
general model theory than that currently propounded (as ex-
plained in [10]).

But even if the models the method generates are some-
times skew, or even inconsistent, the method promises a big
payoff not only in logic, but also for linguistics and philosophy.
This payoff will be increased still further when the methods
are extended to logics and languages far richer than senten-
tial ones, as they can be (see [8]). Indeed the method presented
below already suffices for all zero-order logics under a truth-
valued interpretation; but for an objectual semantics fur-
ther features have to be included in the models (see [10]). We
conjecture that every logic has a two-valued worlds seman-
tics; but there remain some conspicuous problems in the way
of proving such a result, e.g. the problem of characterising
logics and logical languages generally.

The logical payoff comes through the theories and results
semantical analyses of logics and languages open up, for
example, theories of truth, reference, meaning and consequ-
ence, and, less generally, results such as compactness, sepa-
ration and decidability. The philosophical and linguistic pay-
off derives from this logical payoff: it is that any area of langu-
age that can be supplied with an exact logical syntax and set
of principles can automatically be furnished with an exten-
sional semantics, and so provided with associated logical
theories of truth, meaning, consequence and so on. If, for ex-
ample, the theory of propositional attitudes or notions such as
belief or perception have a logic, or a structure, then they have
a worlds semantics.

§ 1. Sentential languages and logics.

A senfential language SL is represented by a structure
<IWff, Imp, Wif>, where IWIf is the class of initial wif (well-
formed formulae) which we represent by sentential parameters
p: 4, I, P, q, etc.; Imp is the class of improper symbols con-
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sisting of (finitely many, in the main case considered) con-
nectives, and possibly containing as well various sorts of pa-
rentheses; and WIf is the set of wif built as usual (in the case
to be considered using bracket-free Polish rules) from ele-
ments of IWff and connectives in Imp. Where SL is finitary
we can suppose, without loss of generality, that Imp contains
zero or more distinct connectives of each number of places
from 1 to m for some finite m and that it has these connectives:

n, connectives of 1-place Ci, C‘2 { e C]:L ;
. 1

ny connectives of k-places C%, Ck, ..., Ck ;
1 2 n
. k

n, connectives of m-places C‘f, v C’;‘

m

The familiar formation rules are stated explicitly since the
argument requires inductions over the rules: —

1) Each element of IWIif is a wff, i.e. IWFF € WIf.
2,,1) If A is a wif then each C} Aisawifffor1<j<n,.

2.,.) If Ay, Ag ..., Ay are wif then each C‘j‘ Aj... Ay is a wif,
for 1 < j <.

.

2nm) If A;, A, ..., A, are wif then each C‘;‘ A;... A, is a wif,
for 1 < j < n,.
3) These are the only wiff.

To avoid heavy duplication of similar cases, already evid-
ent in the statement of formation rules, we work throughout
with a representative connective Ct,, the jth connective of i-

places. In this way too we can encompass infinitary sentential
languages; for neither i nor j need be assumed finite in what
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follows. That is, we consider also both sentential languages
with infinitely many connectives, and sentential languages
with infinitely long expressions. Some details will, however,
be sketchy.

A formal sentential logic L is represented as a triple <CSL,
Ax, R/ >, where SL is a sentential language, Ax is a set of
axioms or axiom schemes, and R / is a set of (primitive) trans-
formation rules. An axiom scheme Ax; = sm; (A4, ..., Ay) in
Ax is a formula scheme built up from wff A,, ..., A, accord-
ing to the formation rules (2n,)-2n,) in the finitary case); and
each rule R; in R is of the form
Ay ..., Ay — B, where A, ..., A, and B are formulae schemes.

Proof and theoremhood are defined in the standard way
(e.g. Church [3], p. 49), except that the restriction to finite se-
quences of wif is inessential. - A, often shortened to - A
where the logic L in question is obvious, abbreviates: A is a
theorem of L. Thus Ay, ..., A,—> B iff, where Ay oo - Ap,
then  B.

It is assumed that Ax = {Ax;} and R1 = {R/;} are both
indexed sets but the sets need not be finite or even recursive.
Indeed we impose no further restrictions on the class of
axioms or axiom schemes or rules that a formal sentential
logic may have. Although the central cases we have in view
in the way we develop the semantics are single-sorted sys-
tems formulated with axiom schemes and without rules of
substitution on (some) sentential parameters, systems with
axioms and (restricted) substitution rules can also be encom-
passed in the theory. For rules of such forms as A —» SEA| and

A, CB— 8t A| may of course be included in R/ (the substit-
ution notation is from [3]).

General semantical investigations turn in part on the equi-
valence relations a logic can furnish. When a sentential logic
includes an equivalence its semantical analysis can often be
improved upon (and in special cases even finitized) by the
familiar method of taking equivalence classes of old elements
as new elements. Where no equivalence is definable in a
logic, (type-) identity of wff can serve as the requisite, rock-
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bottom, equivalence used for the semantic theory. Those logics
which contain definable equivalence relations, structural
logics, are worth separate investigation (as Polish logicians
have emphasized). An important subclass (see [13]) of struct-
ural logics consists of those logics where a basic implication
C is definable in terms of which the equivalence E of a struct-
ural logic can in turn be defined.

A structural sentential language SSL is then a sentential
language such that Imp includes (or permits the definition of)
one or other of the two-place connectives E (abbreviating Cf

say) or C (abbreviating Ci]. A structural logic LS has langu-

age SSL. There are two (inclusive) classes of LS systems, LC
systems with implication connective C, and LE systems, with
equivalence E. It is convenient to define:

(A< B) = pt EAB; (A— B) = p; CAB. Some brackets are
omitted again and dots used in accordance with an obvious
modification of Church's conventions in [3].

Logic LC has at least the postulates of austere implication,
namely: —

Al. A—> A (Identity)

Rl. A, A—->B—B (Modus Ponens)

R2. A—B, B>A—>C—D, where D results from C by
replacing one occurrence of A in C by B. (Leibnitz)

R3. A-»B B—»C—>A->C (Rule Syllogism)

The substitutivity rule R2 at once generalises to the replace-
ment of zero or more occurrences of A in C by B.

An LE logic has at least the postulates of austere equival-
ence, namely:

All, A < B, for some wif A and B — or else, what is de-
ductively equivalent:

Al A & A —

R11, A, A<~B—B

R21. A +B— C« D, where C and D are as in R2.

The analogue of R3 is derivable: for if A <» B and B < C, then
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BeCe. A+ C by R2!, and hence A< C by Rl. Austere
equivalence is plainly an identity-type connective. Plainly
also every LC logic is an LE logic, with ~A — B iff ~A — B
and ~B— A,

§ 2. General models.

A (basic) L model M is a structure M = <0,K, V,w>
where K is a set 0:K, V € P(K) (i.e. V is a subset of the
power set of K), and w is a function which assigns to each
connective CZ, of SL a relation on the (i + 1)-place Cartesian

product KX V X ... X V and to each initial wif or sentential
parameter p an element of II¥, where II = p; {T, F}. Further-
more V satisfies the conditions:

Vi) {aeK: w(p) (a) = T}e V, for each sentential parameter p;
Vii) if o;...,0;e V then {aeK: w[Cj‘)aal...ui}s V, for each i

such that 1 < i< m and corresponding j in 1 < j < n;. Thus
for aeK, w(p) (a) = T or = F. Where Sy, ..., S, are n sets, the
n-place Cartesian product $;X ... XS, = {<i, ... 1i,=>:

ipeS; & ;eS;... & i,£8,}. By counting sentential parameters
or initial wff as zero-place connectives, w may be viewed as
a function defined on the connectives of L.

It is sometimes illuminating to recast the model in alterna-
tive but equivalent ways. In particular, it sometimes pays to
separate out a model structure S = <0, K, V, > and a valu-
ation v in A, where f is a 1 -1 function which assigns to each
connective of SL a relation (just as w does for non-zero place
connectives) and v is a bivalent valuation function from ini-
tial wif and elements of K to truth-values in I, i.e. v g I[TTWIxK,
Secondly, 0 can be deleted, and defined as Ex(x¢K), i.e. as an
arbitrary element of K, where K is a non-null set. (By varying
the notion of validity, to truth at all elements of K, 0 can often
be dispensed with entirely in the way familiar from modal
logic semantics.) Thirdly, the functions f or w can be replaced
in models by their (sets of) values. So presented a model
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structure is a structure <<0,K, V, S,, ..., Sp=>, where slj = g
w {Cﬁ) [= f{C‘j)]. For the most part we shall work with basic

L models <0, K, V, S, ... Sp, v>.

L models which are not basic result by adding semantical
postulates to the L models. The form these postulates take will
be explained after basic LC and LE models have been defined
and further semantical notions introduced.

A (basic) LC model M is a (basic) L model, with R = p;
w(C) [or R = p; f(C)] and o < f = p; ROof for o, f e V, which
satisfies the following conditions: —

Ri) < is a quasi-order on V (i.e. for o,f8,vy¢ V, a < a, and if
o <P and p < vy then o < y) such that if « < then a S B.
Hence < is a partial order on V. Further V satisfies as well
as conditions Vi) and Vii) also

Viii) If @, f e V then {atK: Raof}e V

A (basic) LE model M is a (basic) L model which contains
a relation T, where T = p; w(E), which satisfies these condi-
tions: — Ti) For o, e V, TOop iff « = p. In short T is an iden-
tity at 0 on V. Vi) and Vii) are as before but Viii) is sup-
planted by
iiiY) If o, fe V then {acK:Taaf}e V.

An interpretation 1 associated with valuation v [function w]
is a function in IIWIXK [(I[¥)WH] satisfying the following con-
ditions, where applicable, for every parameter p and every
acsK;

) I(p,a) = v(p a)

Iii) I-(C‘jAl...Ai, a) = T iff S;_a[Al] ... [A;], where [A;] =pt
{aeK: I(A;a) = T}

Since E is taken as Cf , T, is Szl; hence

liii) I(EAB,a) = T iff Ta[A] [B]

follows from Iii). Similarly it follows from Iii},

liii) I(CAB, a) = T iff Ra[A] [B]

That I is well-defined will follow using lemma 1 below.

A wif A holds on a valuation v, or on the associated inter-
pretation I, in model structure S at an element a of K, just in
case I(A,a) = T; otherwise A fails on v, or I, in S at a. Wif
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is frue on v, or on associated I, in S just in case I(A,0) = T;
and otherwise A is false on v, oron I, in S, and v in S falsi-
fies A. Notions with respect to models are similarly defined.
A wif A is true in model M if A is true on the valuation v of
M in M; M is a countermodel to A iff A is falsified in M; etc.
'Wif A is valid in model structure S just in case A is verified in
all valuations therein, and otherwise is invalid in S. Finally
A is L-valid just in case A is true in all L models (or valid in
all L model structures); otherwise A is L-invalid.

For sentential logics which do not admit the rule of uniform
substitution (separated out as nonuniform logics) the defini-
tion of validity and ensuing details should be slightly modi-
fied, in the way explained at the end of the section.

In order to accommodate any and every axiom scheme we
give a recipe for writing down for each axiom scheme (and
hence for each axiom) of L a corresponding semantical postul-
ate. Let Ax; = sm;(Ay, ..., A;) be the j axiom scheme in the
given indexing of the schemes in Ax, Ax; which will serve
as paradigmatic, is built up from elements A, ..., A; accord-
ing to the formation rules of L. The semantical postulate Sp;
= sp;0(oy, ..., o;) corresponding to Ax; is specified by recur-
sion on the construction of Axj, thus:

1. Replace each Ay in Ax; by o, for 1 <k < i

2. Given that replacements f;, ..., ; have been made to the
operands of connective th of Ax; replace

Cl Bi... B; by {oeK: Sl a By ... B;} (where of course S = f(Cl)).
3. When no further replacements can be made, i.e. all con-
nectives have been replaced, with the schema y resulting, the
semantical postulate Sp; is Oe¥y.

Equivalently we can restrict step 2 to replacements for con-
nectives other than the main (i.e. initial) connective of Ax;,
and specify for the remaining case.

3. Where Cl is the initial connective (and letter) of Ax; and

replacements f;,...,; have been made for the operands of
Cl replace C! B, ... B; by th 0 By ... B

and this resulting scheme is the semantical postulate Sp; cor-
responding to Ax;. These recipes for generating semantical
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postulates are equivalent since Oe{a: S; afy ... By} iff S: 0B

e ﬁi-

In systems with uniform substitution there remains only the
degenerate case where a sentential parameter standing alone
is added as an axiom. The case is degenerate since the axiom
contains no connectives, and is of limited interest since any
such system is absolutely inconsistent, every wiff being a
theorem. The corresponding semantical postulate is of course
Oea, for any ae V.

Clauses 1 and 2 of the recipe for constructing a semantical
postulate corresponding to each axiom scheme in fact apply
more generally to deliver a semantical scheme correspond-
ing to each formula scheme. (The general recipe can be view-
ed, as in [10], as providing a translation procedure.) This we
use in specifying semantical postulates corresponding to rules.
Let the j™ rule in the given indexing of rules of L, rule Rj,
be of the form: A, ..., A, — B; and let q, ..., ay, B be respecti-
vely the semantical schemes corresponding to formulae sche-
mes Ay, ..., Ay, B (after exhaustive application of rules 1 and
2). Then the semantical postulate RSj corresponding to Rj is
as follows: If Oeaqy, ...,0¢a, then 0¢p. Except in degenerate
cases such semantic postulates can be reformulated by taking
account of the structure of each wff A;. As each A, is of the
form Ci B;...Bj, 0Oeo; can be supplanted by Sl'hOBI ... B; for
suitable @, ..., B;.

As a working example of the method consider a very weak
system S0 formulated and studied by Halldén [2]. SO derives
from Lewis's system S1 by simply omitting Lewis's definition
of strict implication in terms of logical possibility, and using
instead a primitive entailment relation. Thus for SO Imp is
the set {C, K, N}, with Halldén's connectives defined: (A—B)
=piCAB; (AB) =pKAB; ~ A =p; NA. We re-express Hall-
dén’'s axioms as schemata so as to eliminate the rule of uni-
form substitution in the usual way (already exploited).

Axl. AB-—>BA, i.e. CKABKBA Spl. RoO{a:Saofi}{a:Safa}
Ax2, AB— A, ie. CKABA Sp2. {a:Sasfl}<a
Ax3. A— AA, ie. CAKAA Sp3. RO{a:Saca}
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Ax4. (AB)D— A(BD), i.e. Spd. {a:Sa{a:Saup}d}<
CKKABDKAKBD {a:Saca{a:Sapd}}
Ax5. A— ~~A, i.e. CANNA Sp5. ROo{a:Ta{a:Tao}}
Ax6. (A—>B) (B—D)— (A—D),
i.e. CKCABCBDCAD
Sp6. {a:Saf{a:Raof}{a:Rapd}} < {a:Raad}

Ax7. (A(A—B))—>B, ie. Sp?. {a:Saa{a:RaoB}}<p
CKACABB

S0 has as rules, as well as R1 and R2,

R4. A, B— AB RS4, Oea and O¢f then SOaf

Since R3 is a derived rule of SO (applying R4, Ax6 and R1),
S0 includes an austere implication C, and accordingly the
general theory for LC systems applies. To specify an SO
model it suffices to specify f (or w) and the semantical postul-
ates. To specify f it is enough to introduce two 3-place rela-
tions R and S on KXVXV and one 2-place relation T on
KXV, and set f(C) = R, f{(K) = S and {(N) = T. The special
semantical postulates for SO are those, Sp1-Sp8, RS4 displayed
above. We illustrate the procedure for obtaining the seman-
tical postulate corresponding to an axiom scheme in the
quite typical case of Ax7 and Sp7:

CKACABB; CKaCufp: CKa{a:Raof }p;
C{a:Sao{a:Raof }}8; 0 ¢{ a:Rafa:Saa{ a:Raaf } }f}, i.e.
ROa:Sac{a:Racf }}B, i.e. {a:Saof{a:Racf}} < B.

To accommodate neatly non-uniform logics and logics with
sentential constants, the modellings are varied (inessentially),
by assigning to each sentential parameter a property on
worlds, i.e. parameters are treated like zero-place connectives.
Then function w of L-models assigns to each sentential para-
meter or initial wff p not an element of II¥ but a property
SP = w(p) on K, and I(p,a) = T iff S? a. The construction of
semantical schemes corresponding to axioms is varied as
follows:

0. Replace a sentential parameter p in axiom Ax; by

{atK: Sra}.
For example, corresponding to the axiom (p—p) is the se-
mantical scheme R0{a:SPa}{a:SPa}. It is easy to see how this
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semantical postulate guarantees (p—> p) without guaranteeing
(g—=q) or (A— A).

§ 3. The soundness of sentential logics.

Lemma 1, [A]e V, for every wif A.

Proof is by induction on the length of wff A. The induction
basis is furnished by Vi), and the induction steps for each
connective by Vii), Vii’) and Viii). Suppose, to illustrate,
A is of the form C‘j B; ... Bi. Now [A] = {a:I(C]{ B;...B; a)

= T} = {aSla[By ... [Bj]}.

Since by induction hypothesis, [Bj]e V, ..., [B]e V,
{a:S‘]_a[Bl] ... [Bil} e V, by Viii).

Theorem 1. (i) For any structural sentential logic L, i.e. LC or
LE, and any wiff A, if A is a theorem of L then A is L-valid.
(i) For any sentential logic L and any wiff A, if LA then
A is L-valid.
Proof: (ii) is established in the course of proving the more
specific (i); for the restriction to structural logics is inessen-
tial. Proof of (i) is by induction over the length of the proof
of A. As usual it is shown that the axiom schemes are L-valid
and that the rules preserve L-validity. Consider first the pos-
tulates of the basic systems.
ad Al. Since [A]e V and < is reflexive on V, [A] < [A], ie.
RO[A] [A]. Thus I(A— A,0) = T, for an arbitrary model M.
ad R1. Suppose in arbitrary model M, I(A,0) = T = I(A—
B,0). Then RO[A][B], whence by Ri), [A] € [B]. Hence as
I(A,0) = T, I(B,0) = T.
ad R2. Suppose, again for arbitrary M, IA—B,0) = T =
I(B— A, 0) Then, by Ri), [A] = [B]. Then the semantic evalua-
tion of C and D as specified in R2 must coincide since they
differ only with respect to one replacement of A by B, i.e.
[C] = [D]. (The detailed verification of this point is by induc-
tion on the length of C.) Hence, as in the case of A1, I(C— D, 0)
=T
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ad R3. Suppose for arbitrary M, (A —B,0) = T = I(B— C,0).
Then [A] < [B] < [C], so by transitivity of < on V (from
Ri), [A] < [C], whence I(A—C,0) = T.

ad Al1". For [A] = [A] implies TO[A] [A], by Ti).

ad R1'. Suppose for any M, I(A,0) = T = I(A <> B, 0). Then,
by Ti) and the rule for «», [A] = [B], whence since I(A, 0)
= T, I(B,0) = T, which is sufficient for preservation of L-
validity.

ad R2'. Similar to R2.

In the case of the further axiom schemes we can establish
the general case if we can show, for arbitrary j, that Ax; is L-
valid given Sp; holds in all L models. Let Ax; be of the form
sm;(Ay, ..., A;) with elements Ay, ..., A;, and suppose Ax; is
the formula C*f1 Dy, ..., Dy for some connective C? and some

operands Dy, ..., Dy, Let Sp; be the corresponding derived se-
mantic scheme with form sp;0(oy, ..., 0y); and let f(C;‘] = SI;.

Since [Ay]e V for each k with 1 <k < i, sp;0([Aq], ..., [A;]).

We show by induction on the number n = 0 of connectives
in the semantic scheme, sp([A4], ..., [Aj]) say, corresponding by
recursion rules 1 and 2 to sm ([A{], ..., [A;]), that where C; is

the connective occurring at the nt" stage:
[ci] Bll vasy Bl] = {a-S:a [BI] [BI] } (6)'

The induction basis is provided by the equations [A,] = [Ay]
for each k such that 1 < k < i. We suppose the construction
has proceeded to the connective C; with Cij By ... B; replaced

by {::1:S‘j afy...B;}. Suppose further that the connective C]?
has the arguments B, ..., B; in Ax;. Then to complete the in-

duction it suffices to establish (8). But this is immediate from
the rule for evaluating I(C; B,...Bya) =T

It follows from the induction that {a:S?a [Dy] ... [Dyp]} =
[Cl‘f D;...Dy] = [Ax;]. Hence S?O[Dl] ... [Dy] iff Oe[Ax;], i.e.
Sp; iff I(Ax;, 0) = T; whence I(Ax;, 0) = T.

[An illustration more quickly clarifies the method. Suppose
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then Sp2 of Halldén's system holds, and it is required to verify
Ax2, Since [A], [B]e V, consider (what proves to suffice)
RO{a:Sa[A] [B]} [A]. By a first induction step since {a:Sa[A]
[B]} = [KAB] it follows:

RO[KAB] [A]. Since similarly {a:Ra[KAB][A]} = [CKABA],
RO[KABJ [A] iff I(Ax, 0) = T. Hence, since RO[KAB] [A] by Sp2
and the induction, I(Ax,0) = T.]

Finally, to show that the further rules preserve L-validity,
consider the j® rule R;, and suppose that all L models con-
form ito the semantical requirement RS;. Let R; be of the form
Ay ..., Ay — B. Let M be an arbitrary model for which I(A, 0)
=T, ... I(An 0) = T. To verify R; it suffices to show that
I(B,0) = T. But applying semantic postulate RS; and the in-
ductive argument employed in vindicating axiom schemes, if
Oe[Ay], ..., 0e [B]. Hence on the given assumptions I(B, 0) = T.

§ 4. The completeness of sentential logics.

There are three cases, LC logics, LE logics and general L
logics, and we proceed from special to more general.

In proving completeness of LC logics we appeal to sets of
LC-theories. An LC-theory a is a class of wff of L closed under
C,ie. if Aea and ~1cA — B, then Bea. Then a canonical LC
model M = <L, K, V,f v> is defined as follows: L is the set
of theorems of LC, K is the set of LC-theories; V is the set of
elements o of the power set of K such that, for some wif B,
Bec iff cea for every ceK,

ie. V = {aePK): (PB)(ceK)(cea=Bec)};
foraeK and o, f ¢ V, Raap iff for some wif B,C, B—> C¢a and
{ceK:Bec} = o and {ceK:Cec} = f, i.e. Raof iff (PB,QC)
B—>Cea&|B| = a&|C| =8, where |B|] = p {ceK:
Bec}; for acK and aj ..., 08 V, S;a o ... iff (PBy, ..., By
{CijBl...Bisa& |Bi] = o4 &...& |B;] = a;); where R and S‘j
are as defined as before, f(C‘j) = S;; and for every sentential

parameter p and each acK, v(p,a) = T iff pea, or, for non-
uniform logics, SPa iff w(p)a iff pea.
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For LE logics we define an LE-theory a as a class of wiff
closed under E, ie. if Aca and ;5 A< B then Bea. A ca-
nonical LE model M = <L, K, V, {, v> differs from a canoni-
cal LC model only in taking L as the set of theorems of LE, K as
the class of LE-theories, and in defining Taaf as (PB) (PC)
B<«<>Cea& |B| = a&|C| = B). V and v are defined as be-
fore, though relative to the new characterisation of K.

A canonical L model M = <L, K, V,f, v> for a general
sentential logic L differs in definition from canonical LC and
LE models only in taking L as the set of theorems of L and K
as the class of all sets of wif of L, i.e. an L-theory is a set of
wif of L.

Lemma 2. (1) If A — B is not a theorem of LC (an LC logic) then
for some atK, A¢a and Bea.

(2) If A«<B is not a theorem of LE then for some atK,
Acea and Bea.
Proof. (1) Suppose ~|— A —B, and define d = {D:|~A—
D}. Since ~|—A —B, Bed, and since | —A — A, Aed. Fur-
ther d is an LC-theory; for suppose Bed and |—B — C. Then
| —A —B, so by R3, | —A—C, ie. Ced as required.

(2) Vary (1) redefining d = {D: |— A «<>D}. The proof that
d is an LE-theory applies R2!.

Lemma 3. Where I is the interpretation associated with valua-
tion v of the canonical LC or LE or L. model M,

I(A,a) = T iff Aca,
for every ae K and every wif A.
Proof. The induction, on the length of A, is based on the de-
finition of v in M. There are induction steps for each con-
nective.
ad — (for LC). A is of the form B—C. If B—>Cea then B—
Cea&[B] = |B| &[C] = |C|. For the induction hypothesis
ensures that I(B,a) = T iff Bea, and hence that [B] = |B].
Hence, by particularization, (PB,C) B—>C:a & [B] = |B| &
[C] = |C|), whence Ra[B] [C], by definition of R; and so I(B
—>C,a) = T. Conversely, suppose I[(B—C,a) = T, that is
Ra[B] [C]. Then for some wff D and E, D—>Eea, |D| = [B]
and |E| = [C]. Hence for every ceK, Dec iff I(B,c) = T, i.e.
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by induction hypothesis B e c; and E¢ c iff Ce c. Therefore, by
contraposing the previous lemma, | —D<«C and |—E<C.
Hence, by R2, | —D—-E—. B—>C; and so as D—>Ee¢a, B—>
C cga.

ad Cij (for LC and LE). A is of the form C;Bl ... Bi. If Aea then

ClBi..Biea&[B] = [B|&..&[B] = [B]; so (PB;...B)
(CijBl...Biea&[Bil = |By| &...[B] = |B;|), whence S;a[Bl]
... [B;], and I(Ct_Bl ... B, a) = T. Conversely, suppose I{C;Bl
B,a) = T. Then for some Dy, ..., D C;Dl...Disa, |D,| =

[By], ..., and |D;| = [Bj]. Hence, by the previous lemma |— D,
¢ By, ..., |—D;«B;. Thus, by R2 [or R21], |—C;D1...Di—>

theory, CijBl ...B;ea.

ad C‘j (for L). Only the converse argument differs from the
previous case. Suppose I(C}Bl ... Bj,a) = T. Then, as before,
for some wiff Dy, ..., D;, C‘]_Dl...Disa, |Ds|] = [Bi],..., and
|Di| = [Bj]. Consider |Dy| = [By] for arbitrary k, 1 < k < i,
By induction hypothesis, for every class a of wif of L, D ea

iff B, ¢ a. Hence Dy, is the same wff as By, othewise some class
of wff would distinguish them. Therefore C;Bl ...Biea, as re-

quired.

Corollaries. 1. For at K, B— Ce a iff Ra[B] [C], in the case of
LC. 2. For ae K, B - C¢ a iff Ta[B] [C], in the case of LE logics.
3. For atK, C; B;...Bjea iff S‘ja[Bﬂ ... [Bi].

Lemma 4.
(1) The canonical LC model is a LC model.
(2) The canonical LE model is a LE model.
(3) The canonical L model is an L model.

Proof. In virtue of R1, or R1!, L K. It is immediate that V <
P(K), that R is a relation on KXV XV, that each Sij is a rela-

tion on KXVX...XV, and that f and v are well-defined.
ad Vi). By definition of V, ae V iff (PB) (« = |B|). Hence
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|p| € V, and so {aeK: v(p,a) = T}e V, by definition of v.
More generally, |B| ¢ V for every wif B.

ad Vii). Suppose aeV and e V. Let A and B be wif such
that « = |A| and B = |B|. Since for arbitrary ce¢K, Rcaf iff
iff A— Bec by the previous corollary,

(ceK) (ce{asK: Ragf} =. A— Bec), whence

{aeK: Raafi} ¢ V follows.

ad Viii), Suppose oy, ..., ;€ V. Let Ay, ..., A; be wif such that
|Ay| = @, ..., |Ai] = «. Since for every ceK, C;Al LoAjec

iff Sijc[Al] v [Bi]s C;Al oAy ff S;cal ...0;. Hence ce{aeK:
S'; a oy ... o) ifff C; A ... A;ec for every ce K. Therefore, by
definition of V, {a:sK: Sij ao..oteV, in every case,

ad Ri (for (1)). Suppose o < . Then for some wif B, C say,
B—>CeL, |B| = a and |C| = B. Suppose for arbitrary beK,
bea. To prove a € f}, it suffices to show that bef. Given
bea, Beb. Hence, as I—LC B— C, Ceb. Accordingly, since
|C| = B, bep. It follows at once that < is anti-symmetric.
For each ae V there is some wff A such that a = [A].
Further by A1, A — A sL; hence ROaa by definition of R. Thus
< is reflexive. For transitivity suppose that « < f§ and § < v.
Then for some wff By, C;, By, Cy B;—>CieL, |By| = 0o, |Cel
= y and |G| = B = |By|. Since for every deK, C,ed iff
Byed, | —C;<>B,. Hence by R2, - B, —C,—.B,—>B; so
B;—>B;eL; and thus as Bo—>C,eL by R3 B;—> C;e L. Hence
by the definition of R, o < ¥.
ad Ti) (for (2)). Suppose for «, f ¢ V, TOuf. Then for some wif
B and C, | —B<«C, |B| = a and |C| = B. Suppose further
bea; then Beb, hence Ceb by « -closure, so be . Similarly
supposing bef, bea, for arbitrary be K. Hence o = f. Con-
versely suppose a = f. Let C be a wff such that |C| = a = f.
Then since |— C <« C, T0aB.

Lemma 5. For each of the axiom schemes or rule schemes which
extend LC or LE or L beyond the basic system the correspond-
ing semantical postulates holds.

Proof. Consider first the j axiom scheme sm;j(A;, ..., A;) =
Ax;. To show sp;O(wy, ..., o;), we shall appeal back to the in-
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ductive definition of the semantical postulate., Suppose that
Ax; is of the form C‘]fl C; ... Cy and so Sp; is of the correspond-

ing form .S;Bl ... 8¢ in virtue of its definition, with the form of

9; determined by C;. (In the degenerate case with uniform
substitution where a sentential parameter alone is a thesis,
let p be the wif such that |p| = a. Then, since psL, Lea.) To
establish Sp; it is enough to show, since Ax; ¢ L by the assump-
tion that Ax; extends the basic system, that |C;| = §; & ... &
|Cx| = 8; for then the result follows by the definition of S‘;.

That |C;| = §; for 1 < j < k we establish by induction on the

construction of Sp; from Ax;. The basis is provided by Vi)
according to which for some Ay ..., A; |Aj] = ..., |A{]
= ;.

Suppose the construction of Sp; has reached the stage where
Cij By... Bi is replaced by {a:S;a[il ... Bi}. By induction hypo-
thesis there are wif Dy, ..., D; such that |D;| = By, ..., |Dj| =
B;. It suffices to show that

|C;D1DI| = {a:S;aﬁl...[Si} (ﬁ)

Suppose first C; Di...Djew. Then (strictly) C‘le ...Diea &
|ID| = B &...& |D;| = B; whence S;aﬁl ... Bi by definition
of S}. For the converse, suppose that for some wif B, ..., B,
CDi...Dica&|By| = Bi&...&|B;| = B;. Since then |D;| =
= |Byl, ..., |Di] = |Bi], for LC and LE systems, |—D; <> By,
...r | —D; © B;. Hence ]—Cile...Di-—>C;'B1...Bi by R2 (or
- CijD; Di<—>C:B1 ... B; by R2!). Thus C;Bl ...Bjea. For L
logics it follows that By is the same wff as Dy for each k,
1 € k < i. Hence again C}Bl ... Biea. Thus (f) is established.

Consider next the j™ rule scheme, R;: A, ..., A, = B. Then
RS;is: if O€ 0y, ..., 0 € oy then 0 e where qy, ..., oy, B correspond
to Ay, ..., Ay, B. Then the proof of (8) above establishes that
s = |Aq],....0n = |Au], B = |B|; and generally that for
each formula scheme E(A;, ..., Ay) with components Ay, ..., Ay,
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if |Aj|] = o for 1 <1i < k and semantical scheme sp(ay, ..., &)
corresponds to E, then sp = |E|. Now suppose Oeay, ...,
0& oy Then O¢ [A], ... O¢ [Au], 50 I(A,0) = T, ..., I(Ap, 0) =
T, i.e. |~ Ay, ..., | Apn. Hence by R; |— B, whence I(B,0) = T;
so O¢ |B|. Hence 0 ¢ B as required.

Theorem 2. (i) For any structural logic L, i.e. LC or LE, and
any wif A of L, if A is L-valid then A is a theorem of L.

(ii) For any sentential logic L and any wif A, if A is L-

valid then - A.
Proof. Suppose A is not a theorem of L. Then A ¢L. Hence in
the canonical L. model M, I(A, L) # T. Hence A is not L-valid.
Corollaries. 1. A is L-valid iff A is a theorem of L. Thus every
sentential logic is semantically complete; but not every such
logic will be consistent,

2. There is an effective procedure for writing down a se-
mantics for any effectively given sentential logic.

Conversely, for any semantical system which can be trans-
formed to an effectively given canonical form (that of an L
model), there is an effective method of specifying an axioma-
tisation of L.

3. Every many-valued sentential logic can be reexpressed
as a two-valued intensional logic. (This proves a conjecture
of Scott [12].)

4. The thesis of extensionality holds, at least at the sen-
tential level, in the following form: every intensional logic has
a strong translation (in the sense explicated, e.qg., by Bressan
[9]) into an extensional logic.

Completeness can be proved alternatively by algebraic
means, along the following lines: Suppose A is not a theorem
of sentential logic L. Then A is falsified in a Lindenbaum al-
gebra K = <WI{f, 0,h>, with wff as values, with the class
of theorems 0 of L as designated elements, and with h a func-
tion which maps each connective of L onto the corresponding
operation on the elements of the algebra. Define a model struc-
ture K+ on K, e.g. with 0 as 0, K € P(Wff), and V that subset
of P(K) determined by L; prove a general representation theo-
rem; and finally define a valuation v in K+ which falsifies A.
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The details of this construction, which we reserve for another
occasion, are a fairly direct generalisation of the standard
methods, applied, e.g. by Lemmon [4] for a class of modal lo-
gics, and by Meyer and Routley [5] for a band of entailment
logics.

The main result reveals, very clearly, that there are various
general theories awaiting investigation, one of the more im-
portant being the necessary and/or sufficient (syntactical and
semantical) conditions for the transformation of the uniform
semantics for a sentential logic into some simpler or familiar
canonical form, e.g. for the elimination of V from the model
structure, for the recovery of classical connectives, for the
replacement of a relation R on KX V X V by a relation R
defined on KX K XK as in Kripke-style semantics for modal
logics, and so on. But what little we do know about this ge-
neral theory of semantics we also reserve for another oc-
casion.

University of Australian Richard Routley
Robert K. Meyer
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