DOMAINLESS SEMANTICS FOR FREE, QUANTIFICATION,
AND SIGNIFICANCE LOGICS

R. RouTLEY

The standard semantics for quantification logics have serious
limitations; they are more complicated than they need be and
more set theoretical than they should be. In support of this
evaluation alternative simpler and less set-theoretical seman-
tics are provided for quantification and free quantification logics
both without and with identity, and for second-order signifi-
cance logic. These semantics, domainless semantics, are defen-
ded against objections as to their intelligibility and satisfacto-
riness, and appropriate consistency and completeness theorems
are proved in order to show the comparative adequacy of the
semantics. Domainless semantics, by assigning values en bloc
to atomic wiff, eliminates the otiose notion of a domain of inter-
pretation and n-place relations on this domain of entities, and
thereby eliminates the associated correspondance theory of
truth which is built into the reference selections and truth
evaluations of standard semantics. It does this without intro-
ducing names in the style of, what is similar, the substitution
interpretation of quantifiers, and so it avoids legitimate objec-
tions that have been made to substitution semantics (‘).

Domainless semantics shows, then, that quantification requi-
res neither reference nor individuation. Not surprisingly such
semantics have big advantages over standard semantics. The
standard semantics not only unnecessarily restricts the appli-
cation of quantification logic to suitably purified reference
domains, and accordingly, as it does not provide for all logical
uses of quantifiers, does not really give the meaning of quanti-
fiers; also it generates gratuitous philosophical problems like
the problem of treating non-singular terms such as mass terms

() For these objections, and for answers to many objections to substi-
tution semantics, see Dunn and BELNAP [3].
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quantificationnally and the problem of combining quantifiers
with modal and intensional factors. It is a fact that the logic cap-
tured by quantification theory outruns the standard semantics.
For the formal schemes of quantification logic apply (see e. g.
[11]) to reasoning about items which are not eligible for mem-
bership of reference domains just as well as to reasoning about
entities of reference domains, e. g. to quantified and unquanti-
fied assertions about clouds, sounds, shades of colour, and hills,
though the items concerned are often neither distinct nor defi-
nite and are certainly not always non-arbitrarily individuable
and countable; and to assertions about items( beyond the reach
of reference) like abracadabras, illusions, angels, future seabatt-
les and square circles which are often incomplete, indetermi-
nate and indistinct and likewise are frequently not individuable
or countable. Standard semantics, nailed down by the comple-
mentary requirements of the theory of sets and the theory of
reference, cannot easily admit any of these assertions. For theo-
ries of reference typically demand of referents definiteness,
distinctness, singularity, individuality, and, when massed, coun-
tability; and the theory of sets has always been understood,
from the time of Cantor's inaugural definition of a set as ‘a col-
lection into one whole of definite distinct objects...", as con-
cerned solely with domains consisting of items which are defi-
nite, distinct, individuable and countable. (Independence proofs
investigate the domains of distinct non standard theories). Nor
is the link with Cantor's definition completely flimsy: for
Ackermann, starting with this definition, argued his way to a
theory which proved equivalent to Zermelo-Fraenkel set theory
(less the dispensible axiom of regularity), and Zermelo-Fraenkel
set theory has become the standard theory of sets. Thus to obtain
an adequate semantics, filling out the formalism of the stan-
dard semantics, reference has to be replaced by a more liberal
relationship, aboutness say, and a non standard theory of do-
mains has to be forged. The theory of aboutness would concede
that subjects in sentences, such as ‘All the hills in this unmap-
ped mountain chain merge into one another’, may, in advance
of legislation or surveys, be about items which are not indivi-
duable or determinate, and not fit items for reference. The theo-
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ry of domains would have some unusual features also, e. g. it
could admit domains, like the bands of colour in a visible rain-
bow, which are Dedekind finite but which are not countable in
that a definite cardinal n cannot be assigned to the domain;
thus the theory of domains would reject the axiom of choice.
But though limitations of standard semantics can be overcome,
while keeping to the bare formalism of standard semantics,
by supplanting reference and sets (essentially the liberalisa-
tion adopted in [13]), the emancipated semantics too requires
neither reference nor individuation. Standard semantics, in
insisting on reference and individuation, try to foist off a par-
ticular, questionable, philosophical theory as a formal necessity
dictated by quantification logic.

In a sequel domainless semantics for quantified weak modal
logics will be studied. Use of domainless semantics for these
logics cuts through foundational difficulties (*) over the indivi-
duation of possible items and the identity of ideas in different
possible domains, by dispensing with domains. Though associa-
ted domains can be defined once the semantics have been set
up, they do not raise comparable interpretational problems.

1. Domainless semantics for quantification logic Q.

The standard semantics of quantification logic assumes a
modest amount of set theory. The domainless semantics offered
for Q has a background logic an extended predicate logic HQ,
with the symbols of Q, with truth values t and f introduced, and
containing sentence predicates. For definiteness Q is taken to
be formulated with primitive connections ‘~' and ‘o' and pri-
mitive universal quantifier 'A'. Such standard results for Q
as the deduction theorem and substitution for predicate varia-
bles are taken for granted.

An interpretation ¥” is a relation ¥ of HQ which associates
uniformly with each atomic wff of Q exactly one of the truth

(*) Some of these difficulties are mentioned in Hintikka [?], where a solu-
tion within the framework of a thinly disguised reference theory is at-
tempted.
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values ¢ and f*. Where A is atomic, “¥” (A, 1)’ reads ‘A holds, or
A registers (under ¥")', and ¥ (A, )’ reads 'A does not hold, or
A does not register (under ¥7)'. In terms of interpretation ¥7, a
registering function is defined recursively for all wif of Q as
follows:

1. Where A is atomic, ¥'(A) =t =. ¥ (A, t) and ¥ (A) = =.
V(A1)

Therefore, where A is atomic, ¥ (A) =t =.¥%"(A) = [;

2 V(~A)=t=.7(A)#

3.V AoB)=t=. ¥ (A)=t>¥(B) =1

4. V((AX)B) = t = . (Ax) (¥(B) = 1.

In 4, the first quantifier is a quantifier of Q and also of QH,
the second quantifier is a quantifier just of HQ. Likewise for
connectives in 2. and 3. Key semantical notions are defined:

A is true under ¥~
A is false under ¥~
A is valid

A is satisfiable

. A is a closed wff & 77(A)
. A is a closed wif & ¥7(A)
L (AY) . Y(A) = 1

L (SY) . V(A) =t

Finally where I' is a property of wif, ¥’ (I') =t =. ¥’ (B) = t for
every wif B such that I'(B), and I' is satisfiable =. (S¥").¥"(I') = t.

t;
f;

mm
Il

The semantics can be reexpressed in terms of set ups. An ato-
mic set up is a class of atomic wff (). Consider the class H of
atomic wif B such that ¥7(B, ): then H is the atomic set up
defined by ¥". Conversely, the valuation function ¥ determined
by atomic set up H may be defined as a characteristic function
indicating membership of H, i. e. ¥’ (A) = t =.Ae H. The details
of this, equivalent, semantics are as follows: A Q-model is an

(*) Interpretations may be relativised to given wif or sets of wif. A rela-
tivised interpretation ¥°, for class A wff of Q is a relation which associates
with every atomic wff of A exactly one of values { and f.

() Were the interpretation defined only for atomic sentences, i. e. closed
atomic wif — as is done for the substitution interpretation discussed in
[3] — then use of the associated H would be tantamount to the use of a
state description Hs (as defined by Camnap ([l]), for given H, Hs
=H U {~B : B is an atomic sentence & B ¢ H}, and given Hs,
H={B € Hs : B is an atomic sentence}.
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atomic set up H. In terms of the modelling holding or being in
H is defined recursively for all wif of Q thus:

1'. Where A is atomic, AisinH=AeH
2, ~AisinH= .~ _.Aisin H

3. (A>B)isinH=.AisinH>BisinH
4'. (Ax)Bis in H = . (Ax). B is in H.

A setup H= {B: B is in H}; a set-up is an extended state des-
cription (in Hintikka's sense in [6]). Since it follows that

A is valid = . A is in H, for every Q-model H,

it suffices to show the adequacy of just one of the semantics.

Before proving the adequacy of the semantics it is worth ela-
borating the differences between the semantics and marketed
semantics. It differs from various standard semantics in being
domainless, in that the truth value of subject predicate senten-
ces is not assessed atomistically in terms of the items designated
by the subjects having the property designated by the predi-
cate, and in the interpretation of quantifiers. It differs from
state description semantics, and the equivalent substitution
semantics in that assignments are made to all wiff, not just closed
wif, and in the rules for quantifiers. It differs from the libera-
lised substitution semantics (mentioned in [3]) where assign-
ments are made to all atomic wff, and also from Hintikka's
model set semantics (as presented, most fully, in [5]) in rules 4
(and 4') for quantifiers. For in these semantics rule 4 is replaced
by 4A. ¥"((Ax) B(x)) = t iff #’(B(a)) =t for all names (closed
terms, constants a (of the logic), a deficient rule which causes
strong incompleteness. (see [3]).

It is however just on the basis of rule 4 (and 4') that domain-
less semantics is likely to encounter most opposition; for it will
be charged that the rule is meaningless, and unintelligible inso-
far as it differs from 4A. Consider for simplicity the paraphrase
of rule 4. into logicians’ English, along the levels of language
lines recommended by Tarski and others, in the case of a one
place predicate constant 'gy': it is: ‘for every x, go(x)’ is true iff
for every x 'gy(x)’ registers. Here however the variable symbol
on the right hand side occurs within quotation marks, and
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accordingly does not function as a variable and is not within
the scope of the right hand quantifier 'for every x'. Thus the
rule, were it meaningful, would be wrong since according to it,
on removing the vacuous quantifier, 'for every x, gy(x)’ is true
iff ‘go(x)" registers. But it is not meaningful. For it is nonsense
to say that a sentence concatenating predicate with the 23rd
letter of the alphabet registers, or express a truth. Only names
or constants with a definite designation can significantly oc-
cur in the place 'x’ holds.

Both my ways of meeting this common objection go beyond
the limitations of narrow levels-of-language "reconstructions”
of discourse., One need have no qualms about transgressing
these limits; for the narrow levels theory is not compulsory
and is a thoroughly rotten fabric. Of course my proposals can
be fitted into a more liberal levels theory which admits quota-
tion and statement functions.

First, truth and falsity are primarily properties of statements
and assertions, not of linguistic items such as sentences of a
given language (). What Tarski really defines is not, what we
need, ‘that ... is true’, but ("...") expresses a truth’. To make
domainless semantics appropriately assertoric we simply read
“¥(...) =t as 'that... registers’ or, in case ‘...’ is closed, 'that...
is true’. The previously objectionable example of rule 4. beco-
mes on this, the intended interpretation, the innocuous:

that for every x, gy(x), is true iff for every x, that g(x) regis-

ters.

That-clauses, unlike quotation work phrases, are open to quan-
tification and because of this transparency, w-incompleteness
induced by quotation marks vanishes (see the discussion in
[4]) (°). Moreover it is much less trouble understanding and ope-
rating with that-clauses than handling quotation mark names.
The behaviour of ‘that...registers’, symbolised alternatively '§'
(after Kneale [8], p. 531), is logically trivial. The sole axiom
§p = p (the two-valued assertoric theory of truth), together

(*®) The reasons for this claim are well-known; some of the reasons are
marshalled by Strawson [14].
(*) Some of the standard defences of the theory are attacked in [4].
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with a substitution rule, immediately yields, and thereby pro-
vides an argument for, the valuation rules adopted, viz.

§~p=~§p.§p>qg =.§p> §q. and §(Ax)B =. (Ax) §B.

Alternatively, domainless semantics can be given a linguis-
tic interpretation by replacing 'that’ by the quotation function
‘qu’. " The example of rule 4. then becomes:

'qu (for every x, go(x))’ is true iff for every x qu (go(x)) registers.
Since variables within quotation functions, unlike those within
name-forming quotation marks, are accessible to quantification
the objections that the right hand quantification is vacuous
and that the whole specification is meaningless both fail. The
variables within quotation functions are neither further names
nor alphabetic constants; they maintain their usual role as
variables, and because they do w-incompleteness difficulties
and the Dunn-Belnap objections (3], p. 180 and p. 183) evapo-
rate. Since 'for every x, gy(x)' is a closed wif, the interpreta-
tion sentence reduces to:
‘for every x, go(x)’ is true iff for every x qu(ge(x)) registers.
But in the general case, where the wif B may contain free varia-
bles other than 'x' say, such a reduction is impermissible. Pro-
vided predicate parameters are taken as simply schematic let-
ters the interpretation scheme:
qu (for every x, B) registers iff, for every x, qu(B) registers
suffices. Otherwise a generalised quotation function 'qu,y, .. '
which as a function of the variables with which it is subscrip-
ted and name-forming on remaining variables is needed.

Proof of the adequacy of domainless semantics for Q makes
only minor, but nonetheless interesting, deviations from stan-
dard proofs.

Consistency Theorem If ~ QA then A is valid

Proof is, as usual, by induction over the length of the proof of A,
Consider to illustrate,

the Instantiation postulate: q(Ax) B o S"; Bl: the substitu-

() Quotation function are explained and defended against Tarski's objec-
tions in [4].



610 R. ROUTLEY

tion notation is that of [13]. If, for arbitrary ¥", ¥"((Ax)B) =t, by
4., (Ax) .7 (B) = t. Hence S¥'(B) = tl, and so 'V(S";B h =1t
by properties of substitution — properties which follow directly
from a recursive definition of substitution. A property I' of wiff
(of Q, FQ, Q =, FQ =) is (L-) inconsistent iff for some Ay, ...A,
such thatI'(Ay), ... I'(A,), and for some wif B, Ay, ..., Ay~ 1B
and Ay, ... A, ) ~ B; otherwise I" is (L-) consistent. A wif C
of Q is inconsistent iff the property of being C is inconsistent,
i. e, iff =g ~C. 'T" . B' abbreviates: for some wff A; ... A,
such that I" (Ay), A; ... A, 1 B.

Corollary

If property I' of wif of Q is satisfiable, I' is consistent.
Proof. Suppose I' is not consistent. Then for some Ay, ..., A,
having I', A;, ...,A,-B&~B; hence o~ (A; & ... A).
Therefore ~(A; & ... A)) is valid, A; & ... A, is not satisfiable,
and I' is not satisfiable.
A wff C is consistent with property I' of wff iff the property
of having I" or being C is consistent. A property I" of wff is maxi-
mal consistent iff every wif C which is consistent with T" has T

Lindenbaum Theorem

For every consistent property I' of wif of Q (FQ, Q =, FQ =)
there is a maximal consistent property T such that for every
wif B if B has I' B has T.
Using the definition, B ¢ I' = j,; I' (B), standard proofs can be
transcribed. 'B ¢ I" reads 'B has I".

Completeness Theorem

(i) If property I' of wif of Q is consistent then I" is satisfiable.
(ii) If A is valid then ~gA

Proof: Because when A is valid, ~ A is not satisfiable, and
accordingly by (i) not consistent; (ii) follows given (i).

As to (i), assuming I" is consistent let K be the quantification
logic got by adding to Q the subject constants, by, bs .... Let the
wif of K with a subject variable free be represented: A, (%i,)s
As (), ..
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where each wff is represented with respect to a given free var-
iable exactly once. Choose distinct constants b";‘ _b,-z, ... from

the new subject constants of K such that b; is not contained
in Ay (x3), .- Ak[x,-k).

Let I'y be I" and let I', be the property of having I',.; or being
S, where S, is the wff

An(b) D (AX;) A, (x;),

and let I'w be the property of having I'y; or being S; for every
i 2 1. The proof that I'n is (K-) consistent is only a minor modi-
fication of the usual proof. Let J be ['w, i.e. a maximal consistent
extension of I'w. J will have the expected features of maximal
consistent properties; in particular every theorem of Q has
property J, J is closed under material detachment and adjunc-
tion, and wif~B has J iff B does not have J.

Using, J, an interpretation w is speciﬁed for each atomic wff C,
as follows:

w(Ct)=CcJ ielJC;w(C )=~ (Cel.
By 1. this provides an induction basis for
() w(B) =t=.BelJ, for every wif B of K.
The induction steps for connectives follow from clauses 2.

and 3, properties of J and the induction hypothesis. The remain-

ing case is that where B is (Ax) C for some wff C. Where, first, x
is not free in C,

BeJ = C:J, since x is not free in C.

w (C) = t, by induction hypothesis

(Ax) - w(C) =1, since x is not free in C

w ((Ax) C) = t, by 4.

Where x is free in C, C is Ay(x) for some Ak(xik] in the enumera-
tion. The case follows using

1 (Ax) Ay (x)eJ =, (Ax) . Ax(x) £ J.

For (Ax) (Ax (x) € J) . A, (bj,) £J

= (A%, ) Ay (xi,) € J, by S

O . (Ax) Ax(x)'e J, by variable.change.

mmmm
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The converse follows by principles of quantification logic. Then,

w ((Ax) A (x)) =t = . (Ax).w(Ak(x)) = t, by 4.

. (Ax) . Ax(x) e J, by induction hypothesis.
(Ax) Ax(x) £ J, by (1)

/]

Finally, for any BeT', since Be J,
w (B) = t by (*). Hence I' is satisfiable.

A wiff A is a classical consequence of I' iff
AY)(¥D)=to. YA =1t.

Strong completeness Theorem

B is a classical consequence of
Niff ' - B

Proof: By preceding results,
() T is consistent iff I" is satisfiable.

B is a classical consequence of T’
iff ~ (S¥).7(I) =t&Y¥'(A) =t
iff ~(S¥).¥(CU{~A}h =1t
iffI" U {~A} is not consistent, by (%)
iff I' =~ A.

Given an interpretation ¥”, a domain d associated with ¥~
may be distilled, for example by identifying subjects with equi-
valent logical behaviour. Thus, where x = vy iiff, for every wff C,
Y(C(x)) = tiff ¥"(C(y)) = t,
equivalence class X = {y:y = x} is defined for each subject
x of Q. Then where D is the class of subjects (variables and
constants) of Q, d = {% : x ¢ D}.

An aboutness function I is defined as a mapping I: D—d,
which maps x to %. I may be extended to predicates in various
ways; for an "extensional” interpretation,

I(f®) = {({%y ... Zp): ¥ ((x1s ... X)) =1}

(I, d) is the neutral semantics defined on ¥". It follows that the
defined neutral semantics satisfies desired conditions: thus

1 Y (0 (xq ... X)) = tiff (I(Xq), ... I(%,)) ¢ I(f0).
2", and 3". are the same as 2. and 3.
4". ¥ ((Ax)B) =t iff ¥" (B) =t for every I(x) in d.
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I' is satisfiable in a domain of type t iff I" is satisfiable under
some interpretation ¥~ and the associated domain d of ¥ is of
type t.

Skolem Lowenheim Theorem

If I' is satisfiable then I' is satisfiable in an at most denumer-
able domain.
Proof: If I' is satisfiable then I'" is consistent (as in Church [2],
** 454), hence I' is satisfiable under interpretation w defined in
the Completeness Theorem. But the domain d associated with

w is at most denumerable since class D system K is denumer-
able.

§ 2. Domainless semantics for free quantification logic FQ.

The primitives of FQ differ from those of Q only in the follow-
ing respects: the universal quantifier ‘A’ is replaced by the
quantifier 'V’, read ‘for every existent’, and some one-place
predicate, say 'd’, of Q is omitted and (in its stead) the predicate
constant ‘E’, read ‘exists’, is introduced. FQ is characterised by
the following schemata (see, e. g. Meyer and Lambert [10]; it
was incompletely formulated in [11]):

Al. +pq A, where A is classical tautology.

A2, pq(¥x) (A D B) . A > (Vx) B, with x not free in A.
A3. rq(Vx) (A D B) o. (Vx) A o (Vx)B.

Ad. Fyq(VXx) A D . E(y) D S";A.

A5, o (Vx) E(x).

R1. Material detachment. R2. Generalisation.

The following results on FQ are needed.

Alphabetic change of bound variables principle: Where x does
not occur free in B and y does not occur in B and A! results

from A by replacing one or more occurrences of B in A by
S*B/|,
y

if ~ FQ A then FQ Al

Proof is given in [10], p. 25.



614 R. ROUTLEY

Principle of substitution for subject variables: Where x is a
subject variable and y is a subject term,

if - FQ A then FQ Sv; Al

Proof is by induction over the proof of A.
Principles of substitution for sentential and predicate variables:

If +pqA then S’ A |, where p is a sentential variable.
If FrqA then Sif%p %) Al where f is an n-place

predicate.
Proof and notation are as in Church [2], p. 193.

Deduction Theorem: If Ay, ... A, ~prq B then Ay, ... Ay_{ Frq
A, DB

Proof and notation are as in Church [2], pp. 196-198, except that
the notation "... g ..." is used in place of '... i~ ---" to stress

that the axioms used in a proof from hypotheses are those of
FQ.

An interpretation p of FQ is a pair
w=(v,d),
where v is a binary sentence predicate of HQ which associates
with every atomic of FQ exactly one of t and f, and d is a
predicate of HQ not in FQ. Thus with its first place restricted
to atomic wiff and its second place to truth-values, v is a map-
ping. On this basis a related mapping is defined recursively
for all wif of FQ, as follows:
la. Where A is atomic and not of the form E(x) for some x,
viA)=t=.v(A, t)andv(A)=f=.v (A {).
1b. Where A is of the form E(x), v (E(x)) =t =. d(x), i. e. xed.
2.v(~A)=t=.v(A) =t
3 v(ASDB) =t=.v(A)#=tvv(B)=t
4, v((Vx)B)=t=. (Axed).v(By =t
B is (FQ-) valid = . (Ap) .v(B) =t~
B is (FQ-) satisfiable =. (Su).v (B) =t
Hence B is FQ-valid =. ~ B is not FQ-satisfiable.
I' is FQ-satisfiable = . (Sp).v (") =t
B is an FQ-consequence of I'=. (Ap).v(I) =t > .v(B) =t.



FREE, QUANTIFICATION, AND SIGNIFICANCE LOGICS 615

Consistency and inconsistency of free quantificational systems
is defined analogously to that for Q.

Consistency Theorem Ifi-py B then B is FQ-valid.

Completeness Theorem
(i) If property I' of wif of FQ is consistent then I' is FQ-satis-
fiable
(ii) If A is (FQ-) valid then pq A.

Proof: Assuming I" is consistent, let K be the free logic obtained
by adding to FQ the constant subjects by, by.... Let A;(Xil).

Ag(xil). ... be an enumeration of wff of K such that each wiff

occurs n + 1 times, where n is the number of distinct free varia-
bles in the wif, and each wif is represented with respect to
each free variable exactly once, variable X being displayed

just in case the wiff is represented with respect to that free
variable. Choose a sequence b;,, bj,... of distinct constants

from the adjoined subject constants such that b,-kis not contained
in Al(X51) Ak(xik).

Let Kq be I' and let K, be the property of having K,,_; or being
T, where T, is the wff

E(b;,) © Aa(b;,) 2 . (Vx;) A, (x1,)

and Let K,, be the property union of K,, for each n = 0. Apart
from the induction step, showing that if K, ., is consistent K, is
consistent, the proof that K. is consistent is quite standard.
Suppose, for the induction step, that K, is not consistent. Then
for some wif B, K,_y, T, ~rq B & ~B hence K,_ rq ~ (Vx;n)
Ag(x;,) and K, _1+pqE(b; ) © Ay(b;; ). Choose a new variable
‘X' not occurring in the last proof sequence: it follows by induc-
tion over the sequence, since ‘b,-n' does not occur in T; for
J S n—1, K, 1 ~rq E (xx) D A, (Xi). Generalising, and then dis-
tributing, K, .1 +rq (Vxi) E (xx) D (Vxy) A, (x)). Hence detaching
and changing the bound variables K, _; g (in“] A, (Xiu)' con-
tradicting the consistency of K, ;. Let J be the maximal consis-

tent extension of K.. An interpretation p = (v, d) is defined
as follows: ;
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v({C, t) =CeJ; v(C, f) =~CeJ;
d(x) = E(x)eJ
As before
() v(B) =t =.J(B), for every wif B of K, holds; only the in-
duction step for 'V’ is new.
Where B is of the form (Vx) C, there are these cases:

(Vx) Ced D.EBix) o Ced.
D .d(x) o v (C) = t, by induction hypothesis etc.
S . (Ax) (d(x) o v (C) = 1), by HQ.
D.v((Vx)C) =t , by 4.

Conversely, since C is Ay(x) for some element of the enumera-
tion of wff, with x the place-holder for the free variable (if any)
with respeot to which it is represented,

v((VX)C) =t D . (Ax) .d(x) D v (Ax(x)) = t, by 4.
S .d(b;) > v(Ax(b;)) =t by HQ
D .E[bjk] D Ax(b; ) eJ, by induction hypothe-
sis.
o (VX ) Ak (x ) € J, by T
5 .(Vx) Ce J, by change of bound variables.

The translation theorem of Meyer and Lambert [10] is an easy
consequence of the preceding theorems. Let ‘d," be a one-place
predicate of Q which does not occur in FQ. Where A is a wif
of FQ let A* be recursively defined in Q as follows:

(1) Where A is atomic, if A is of the form E(x), A* is d,(x), and
otherwise A* is A,

(2) If A is ~B (B o C for some B and C) then
A*is ~(B*) (B* ©C")

(3) If Ais (Vx) B, A* is (Ax) (d;(x) © BY).

Translation Theorem
FroA Iff FgA*

Proof applies the following lemma,
() For every interpretation p = (v, d) of FQ, there is an inter-
pretation ¥” of Q, and conversely, such that
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v(A) =t iff (A" =t.

For
~ Fpo A iff A is not FQ-valid
iff (Su).v(A) =t
iff (Sv). 7 (A*) #t, by -~
iff A* is not Q-valid iff ~ ~q A.

Lemma () is proved by induction, starting from these prescrip-
tions:
Given p = (v, d) define ¥ = v, and

given ¥ definev = ¥ and d(x) = . 7% (di(x)) = t.

(1) Where A is atomic, if it is of the form E(x),

v (A) =t iff v (E(x)) =t iff ¥7(di(x)) =t iff ¥ (A*) =t
Otherwise since A =A* v (A) = ¥ (A*) = t.
(2) Where A is ~ B (B o C) the case follows from the induc-
tion hypothesis and the valuation rules for ~(>).
(3) Where A is (Vx) B,

v(A) =t iff (Ax).d(x) > v(B) =t
iff (Ax). Y (dy(x) =1t) > ¥(B") =t
iff (Ax).¥(di(x) D B") =t
iff ¥'((Ax) (di(x) D B*Y) =t iff ¥(A") =t.

Where Q* is a neutral quantification logic containing the
predicate 'E’ (e. g. the system R* of [11]), and A + ... the wif
obtained by replacing each occurrence of (¥x) B in a wff of FQ
by (Ax) (E(x) o B). (in order from smallest to largest scope),
then

Corollary
l—FQA iff I-Q‘ A+

Strong Completeness Theorem. B is an FQ-consequence of T
iff I't-pgB.
Proof is as for Q.
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§ 3. Domainless semantics for first order logics Q = and FQ =,

The preceding results are extended to quantification and
free quantification logics with identity, where (extensional)
identity, symbolised '=', satisfies the usual postulates, e. g.
=1, x=x,
= 2. x =y D .A D B, where B is obtained from A by replacing
an occurrence of subject x by subject y, this occurrence of x
not being within the scope of quantifiers binding x or y. Call
the system obtained by adding '="and =1 and = 2to Q, Q =,
and that obtained by a similar addition to FQ, FQ=. As is well-
known, the predicate ‘E’ is eliminable in FQ= using the defini-
tion E(x) =p¢ (2y) (x = y). Results such as the deduction theo-
rem and substitution principles extend to Q= and FQ=.

Interpretations of Q= and FQ= are defined precisely as for
Q and FQ; and the extensions made of the valuation functions
differ only where A is atomic. In the case of Q=, ¥  is extended
as follows:

la. Where A is atomic and not of the form x = vy,
YA =t=.7(At)and ¥V(A) =f=.7(A, ).
1c. Where A is of the form x = vy,
Yx=y)=t=.7%(AX) =7 (Aly)), for every atomic

wif of type 1a, i. e. where R is the class of atomic sentence
forms which are not identities,

Yx =y) =t=.(AfeR)Y(f(x)) = ¥V(i(y)).

As before ¥'(A) = t = . ¥"(B) =t is abbreviated: ¥"(A) = ¥(B).
The extension of v in the case of FQ= is amended in a similar
fashion, viz.

la. Where A is atomic and not of the form E(x) or x = vy,
v(A) =t =.v(At) and v(A) =f = .v(A, ).

1b. Where A is of the form E(x), v(E(x)) = t = . d(x).

lc. Where A is of the form x = v,
vix =y) =t=.(Afe R)v(f(x)) = v(f(y)).
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Validity and satisfiability are defined as before. Consistency
and completeness theorems are simplified by the following
result.

Theorem. Where two place predicate = of Q or FQ is an equi-
valence relation which satisfies =2 where A is atomic and
not an identity, then = is an identity, i.e. = 2 holds generally.
Proof, the same for both Q and FQ, is by induction over the
number of occurrences of connectives and quantifier. The details
are like those given in Mendelson [9], Proposition 2.25.

Logic L is an extension of L' iff, for every formula B, B is a wiff
of L iff B is a wff of L! and B is a theorem of L if B is a theorem
of L1,

Consislency Theorems:

(1) If ~q- B then B is Q=-valid.

(2) If ~pg. B then B is FQ=-valid

Proof adds to the proofs for Q and FQ verification that the
equivalence postulates and reduced =2 are valid.

Completeness Theorems (1) (i) If set I' of wff of Q= is consis-
tent, then I' is Q=-satisfiable.
(ii) If A is Q=-valid, then . A.

(2) (i) If set I' of wif of FQ= 1is consistent, then T is
FQ=-satisfiable.

(ii) If A is FQ=-valid, then ~yq. A.
Proofs vary those given for Q and FQ, replacing ‘Q’ by '‘Q="
and 'FQ' by 'FQ='. The salient differences are these: For
(1) (i) let L be the extension of Q= by I'; let L, be the exten-
sion of L obtained by adding the denumerable set of subject
constants {by, bs ...} and the one-place predicate ‘f," toL,; and
let K be the extension of L, got by adding:

L fox) = foly) > .x =y.

A routine proof shows that L; is consistent. Suppose K is not
consistent. Then FrL,~ (X =y) and g fo(x) = fo(y). Choose a

new one-place predicate variable ‘g’ not occurring in this last
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proof sequence; then L, 9(%) = g(y). Hence by the rule of
predicate substitution for Q=, since g is not free in the hypo-
theses of the proof, X =X = X =y. But, since FL, X = X,
2, X1 contradicting the consistency of L, Hence K is
consistent. Extend it, as before, to a maximal consistent set J,
and define interpretation w as before. The further step,
w(x =y) =t=.~;x =17y is proved as follows:
F;X=V 2. ix) =1y) forfe Rby =2
D.yfx) =+ f(y), forfeR.
o . w(f(x)) = w(f(y)), for f e R, by induction hypothe-
sis.
o .w(x=1y) by lc.
Conversely, w(x = v) o .w{f(x)) = w(fy(y)), since fy ¢ R
D .+ sfo(x) = fy(y), reversing steps above
D.+H3X =Y, byl

A similar strategy works in the case of FQ=.

The translation theorem may be extended at once; for it fol-
lows from clause (1) of the specification of A* in terms of wif
(now) of FQ=, that if A is of the form x = y then A*is x = y.

Translation Theorem.
ro- A iff q. A*.
Proof is precisely as before.

Corollary. yq- A iff —¢*. A+,
where A is defined as before.

Strong Completeness Theorems. (1) B is a Q=-—consequence
of I' iff 't~ . B. (2) B is a FQ=-—consequence of I iff I' - pq- B.

§ 4. Domainless semantics for a second-order significance logic

The second-order significance logic 2QS; has primitive con-
nective set {—, —, B}, primitive quantifier ‘A’, and satisfies
the following postulates (see also [12]):
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1. The posulates of its sentential sublogic S, viz.

6.1 B—.C—B 62 A—(B—C)— . A—=B—.A—C

63 —B——C—.C—B

6.4 S(B—B), where the significance connective ‘S’ is defined
thus: SB :Df'_IDB.

6.5 SC—=5(B—CQ) 6.6 S(B—C)— .B—SC
6.7 S—B 6.8 B—DDB
6.9 DDB—B

R1. Detachment for ‘—’

2. These quantificational schemes:
6.10 (Au)(B—C)— .B—(Au)C, where u is a variable (subject,
predicate, or sentence) which is not free in B.

6.11 {Au)B—“SuN B!, where (i) u is a subject variable and N is
a subject term, or (ii) u is an n-phrase predicate variable and
N is a predicate term, or (iii) u is a sentential variable and N is
a wif.

A term of a given sort (subject or predicate) includes at least
variables and constants of that sort. But the completeness of
the logic is insensitive as to further extent of terms, especially
predicate terms: for it makes no difference to completeness
whether predicate terms include all sentence-frames, as in stan-
dard formulations of second order logic or some or none. For
the present, then, the extent of predicate terms is left open.

6.12 (Au)SB—S(Au)B  6.13 S(Au)B— (Au)SB.
R2. Generalisation for quantifier ‘A’,

Several results on 2QS; are now stated, without proof.

1. Where TB =p— 1B, t =p(Ap)p—p,
f =p—t n = p,Bt,
2QS8; SPTA'—.S'TA|— SPTA|—(Ap)TA, where sen-
tential variable p is not bound in A.

2. The principle of change of bound variable holds. The state-
ment differs from that for FQ above only in that the variables
concerned are required to be of the same sort.

3. A rule of substitution for variables follows from R2 and 6.11.
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4, A deduction theorem — if Ay ... A,—B then A;... A _
—A,—B — holds, where a proof from hypothesis is so defined
as to admit derivation by R1, R2 (with the usual restriction),
2, and 3.

Where T is a set or property of wif, I'-B iff for some Ay,
DA el AL A =B, TN is —-inconsistent iff for some wif B,
['B and I'—B; otherwise I' is —-consistent. Maximal
—-consistent sets are defined in the expected way; and Lin-
denbaum's lemma can be proved in almost standard ways.

An interpretation ¥ of 2QS; is a mapping ¥ from atomic wif
to value set {t, f, n}, where ‘n’ symbolises the value nonsense.
The valuation function ¥” is extended inductively to all wff as
follows:

1. ¥(—B) =t =. ¥(B) #t
¥ (—B) = f =. Y(B)=t
2. ¥(B=C)=t =. ¥(B)=tv¥(C) =t
¥YB—=C)=f =. ¥(B)=t&¥(C)="1
¥Y(B—C)=n =. ¥(B)=t&¥(C)=n
3. ¥ (BB)=t =. ¥(B)=n
¥ (BB) = =, ¥(B)=f1
¥ (DB) = =. ¥V(B)=t
4. Y ((AuyB)=t =. (Au).¥(B)=t
¥((AuB)=n =. (Zu).¥(B)=n,
where the particular quantifier ‘Z’ is defined: (Zu)B =p;
DB(Au)PB

¥ ((AwB) = f = . (Zu)(¥'(B) = f) & (Aw)(¥'(B) # n).

It is assumed that certain sentences of the background logic
are two-valued, in particular valuation sentences like “¥"(B) =
n’ and membership statements like ‘B ¢ J' are always significant
where well-formed. If C is such a significant sentence, (Su)C =
(Zu)C, where (Su)C =p;~ (Au) ~C. The main semantical notions
are defined as before:

Bis 2QS¢-valid = (A¥).¥(B) =t
B is 2QS¢-satisfiable = (Z¥") .7 (B) =t
I' is 2QSg-satisfiable = (Z¥) . 7(I) = t
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Consistency Theorem. If SGE A, then A is 2QS;-valid.
G
Corollary 1. 2QS; is —-consistent, i.e. for no wif B are both B
and —B theorems.
Since it is essential that the background logic included 2QS;
this proof is not as decisive as a syntactical proof which maps
2Q¥S; into extended sentential logic,

Completeness Theorem. (i) If set I" of wif of 2QS; is —-con-
sistent then I' is 2QS¢-satisfiable. (ii) If A is 2QS;-valid then

A.
" 2qs,

Proof: (ii) follows from (i), since if A is valid, — A is not
satisfiable. Proof of (i) is like the analogous result for Q. Let K
be the logic obtained by adding to 2QS; the constant symbols,

by, by, ...; b, bs ... ...; bE by, ...i ..., where by ... by ... are de-
numerably many subject constants, and, for each positive k,

bf, bg ... are denumerably many k-place predicate constants.
Now let the denumerable set of wff of K with a subject or
predicate variable free be represented.

A1(ui1), Ag(uio) An(uin) san b

where, though a given wff may occur finitely many times,

each wiff is represented with respect to a given free variable

exactly one. Choose a sequence, bj! ---bj ..., of new con-

stants such that b; is n-place iff u;, is n-place. such that
b;_is not contained in Ay(ui,) ... Ag(u;), and such that b;, is
distinct from each of by, ...b; . Let V, be the system ob-
tained by adding to V, { the wff S,

An(bj “) - (Auin) An(kin) i

and let V., be the system obtained by adding S,, for every
n=1, to V,, i.e. I. By much the usual argument it follows that
A, is maximal —l-consistent; hence it has a maximal —-con-
sistent extension J say.

A canonical interpretation w of 2QS; is defined thus: For each
atomic wiff C; '
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w(C) =t=.CeJ ie. = TCeJ, where TC =p; ——C;
w(C) = f = .FCeJ, where FC =5 —(—C——DBC);
w(C) =n= .DPCsJ ie = —SCelJ.

It follows, by induction on this basis, that
(¥) For every wif C of K,
w(C) =t =.CeJ; w(C)=f=.FCelJ;
and w(C) =n= .DPCelJ.

The induction steps for connectives '—', '—' and I}’ follow
straightforwardly using theorems of S; and features of maximal
—-consistent set J. It suffices to establish the cases for values
t and n, since that for f then follows.

Case 4, where C is (Au)B divides into these subcases:

4.1 B is closed. Then
(AuBeJ = BeJ = w(B)
=1
D(Au) BelJ
= w((Au)B)

t = (Au)(w(B) =1) = w((Au)B)

(Zu)PeJ
n

w(B)= n = (Zu)(w(B) = n)

4.2 C is (Au)B(u). where u is a subject or predicate variable
free in B(u). Then

(@). (Au)B(u)eJ = . (Au).B(u)eJ.

For first B(u) is Ax(u) for some member Ai(u;k) of the enu-
meration. Hence (Au)B(u) e J = (Ay; )Ax(u; ) e J, by change of
variable. Thus

(Au)(B(uw) e J) o. Ag(b;, ) e J, by instantiation
O . (Au JAg(ui ) e J, by Sy

Conversely, for every u, (Au)B(u)¢J > .B(u)eJ, whence
generalising and distributing, (Au)B(u) ¢J o . (Au).B(u) ¢ J.
Next: (Au)B(u)eJ = . (Au).B(u)¢J, by (a)

. (Au) . w(B(u)) = t, by induction hypoth-
esis
= ., w((Au)B(u)) = t, by 4.
Also, D(Auw)B(a)eJ = .S(Au)B(u) ¢ J

= . (Au)SB(u) ¢ J, by 6.12, 6.13
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]

. ~(Au).Sb(u) e J, by ()

. (Zu) . —SB(u) e J

. (Zu) . w(B(u)) = n, by induction hypoth-
esis

= .7 ((Au)B(u)) = n, by 4.

4.3 C is (Au)B(u), where u is a sentence variable free in B(u).
The desired result follows as in 4.2 given

(B). (Au)B(u)eJ =.(Au).B(u)eJ.

That (Au).B(u) e J o (Au).B(u) & J follows as in (o). Conversely

(Au)B(u) e J o . TB(t) eJ & TB(f) ¢ J & TB(n) e J
> . TB(t) & TB(f) & TB(n) £ J
. (Ap)TB(p) ¢ J, with p not bound in B(p)
- T(Ap)B(p) & J
. (Au)B(u) £ J, by change of bound variable.

uuu

Strong Completeness Theorem. I'-B iff B is a classical con-
sequence of I', i.e. iff (A¥)(¥'(I") = t— . ¥"(A) = t). Proof uses
the fact that I' is —-consistent iff I" is 2QS;-satisfiable.
Similar results can be similarly established for higher-order
predicate logics and for second and higher-order many-valued
logics which contain the Rosser-Turquette J-functions. As
validity coincides with theoremhood for domainless semantics
for second-order logic, domainless semantics takes as (primary)
validity what is only secondary validity under the standard
semantics.
R. RoutLEY (%)

Added in proof: (1) The no-entity-without-identity thesis is falsified by
such items as clouds, hills and colour surfaces; and theoretical notions
are not destroyed by lack of sharp identification.

(2) Corollaries of the Skolem paradox do not undermine domainless
semantics; for clause 4. of the semantics is not restricted by countability
requirements.

(*) Since this paper was written independent and more extensive investi-
gations of these semantics have been published: see H. LeEsLanc. Three
generalisations of a theorem of Beth's, Logique et Analyse, No. 47, (Septem-
ber 1969), pp. 205-220, and references cited there.
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