SOLE AXIOMS FOR PARTIALLY ORDERED SETS

Robert E. CLAY

This paper deals with an aspect of the aesthetics of logic and
mathematics which has barely been touched; namely, the con-
struction of sole axioms for mathematical systems. Everyone is
aware of sole axioms for certain propositional calculi, but beyond
this little has been done. Le$niewski has produced sole axioms
for group theory and commutative group theory. He, as well as
Sobocinski, Lejewski, and Grzegorczyk. has given sole axioms
for certain of his logical systems These, plus a few other scat-
tered results, constitute the totality of work done in the field of
sole axioms.

Of independent interest is the new short formulation of
supremum (see propcsition S).

Of course, if a system is axiomatized, one can construct a
sole axiom by conjoining the axioms, but this is hardly aestheti-
cal. Lesniewski therefore, set out certain criteria for a “good”
sole axiom. Some he terms “essential” and others “desirable”.
He also gives criteria for stating in a given system, that one sole
axiom is “better” than another (*). These are nicely set forth in
[3]. We shall state here the two “essential” criteria which we
we require for this paper:

I. The axiom shall contain only one term, necessarily primitive,
of the theory. (It will, of course, contain terms of the logic
and/or mathematics on which the theory is based.)

II. The axiom shall have the form of a definition of the primitive
term in the sense that the scope of the main quantifier possesses
the following properties:

1) The main connective is equivalence (=).

2) Only the primitive term and variables occur to the left of
the main connective.

(Y) The most basic is ‘“‘the shorter the better”.
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3 The variables which occur to the left of the main connective
are those which occur in the main quantifier.

4) No variable occurs more than once to the left of the main
connective.

A desirable property is organicity, that is, no sub-formula of
the axiom, when closed by quantification, is a thesis of the
system. The following are examples of sole axioms for the
theories of equivalence and partial ordering respectively. They
are both organic.

E. [AB]:. A~B.=:[C]:B~C.=.A~C.
P. [AB]:. AS<B.=:A.o5.A = B:[C]:B<C.5.A<LC.

As always in dealing with an axiom system, the question of
preaxiomatic assumptions arises. In the hope that some mathe-
maticians will also read this paper, | will make such assump-
tions as are natural to mathematicians.

a) Classical logic.

) Properties of identity.

We have given a set U so that

y) < (our primitive term) is a relation in U.

8) The quantifiers are restricted to range over U.

m) A fragment of set theory (Enough to make y and & mean-
ingful).

Since some logicans may find y and § distasteful, I will also
state some of the axioms without using them. Such axioms will
be designated by a prime, e.g.,

P [AB]:. ASB.=:A€UBeU:B<A.o.A = B:[C]:B<C.o A
<C.(»

Lastly, since I am of the Lesniewski school, I will give some
of the axioms based on his ontology, as opposed to a, B, and 1.
These will be designated by an asterisk, e.g.

P.* [AB]:. AS<B.=:AcA.BeB:B<A.5.AeB:[C]:B<C.o.A
<C(.

(*) & is the set-theoretic membership relation.

(* In axioms designated by an asterisk, ¢ refers to the primitive term
of Leéniewski’s ontology.
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P is inferentially equivalent to p1 through p3 ({P} < {pl,
P2, p3})
pl. [ALA<A.
p2. [ABLASBB<A.S.A = B.
p3. [ABC:A<BB<C.o.A<C.

{P} = {pl,p2,p3}

P1. [ALA<A
1) [ALASA=:A<A o . A = A:[CLALSC.o.ALC
[P,B|A]
2) [ALASA=ASAD A=A [1,p>p]
[ALA<A [2,A = A]
P2. [AB:A<BB<A.o.A = B.
Hypo:
3) B<A.o.A = B: [p,1]
A=B [3,2]
P3. [ABC:A<SBB<C.o.A<C
Hyp. oz
3) [D]:BLD.o.A<D: [p,1]
A<C [3D/C,2]
{p1, p2.p3} = {Pj}.
p4. [ABl:. A<B.o:B<A.H5. A =B [p2]
p5. [AB]:. A<B.o:[C]:B<C.o.A<C [p3]
p6. [AB]:.[CI:BSC.o. A<C:>.A<B [C/B,pl]
p7. P - [p4, p5, pb]

.. {P} &= {p1, p2, p3}.
Note. {[AB]:.:A<B.=:B<A.o.A = B.} &= {pl,p2} and
{[AB]:.A<B.=:[Cl:B<C.5.A<C.} & {pl, p3)

P’ is inferentially equivalent to p’0 through p’3.
p'0. [AB]:A<B.o.AsUBeU.

p'l. [AlA€U.o . A<A.

p'2. [AB:ASB.B<A.o.A = B.

p’3. [ABC:ASBB<C.o.A<C.
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P* is inferentially equivalent to p*0 through p*3.
p*0. [AB]:A<B.>.AtA.BeB.

p*l. [Al:AeA. o . A<A.

p*2. [ABIASBB<A.> .A¢B.

p*3. [ABC:ASBB<C.o.A<C.

Note. Strict inequality may also be used as primitive in which
case P may be replaced by

[AB]:. A<<B.=:~(A = B):[C]:B<C.o.A<C:A<B.
or

[AB]:. A<B.=:~(B<{A):[C]:B<C.5 .A<C:A<B.

We now give a general method for constructing sole axioms
for partially ordered sets which have additional properties.

THEOREM: Let ¢ be a property of a partially ordered set stated
in terms of the primitive <, and using variables other than A
and B.
Let ® be given by
®. [AB]:. A<B.=:B<A.o.A = B.¢:[Cl:BEC.5.A<LC
then {P,qg} &= {®}.
Proof: {®} == {P,¢}.
®1. [AJLA<A
1) [ALASA=A<AS A = Aqg:ICLA<SC.o.A<C::

[®,B/A]
2) [ALASA.=:A<A o ¢ [1,pop; A = Al
[AlJLAA [2, Contradiction]

®2 and ®3. See P2 and P3

04, ¢

1) [AB].A<B.o:B<Aoy [®]
2) [ALLASA.o:A<ADyg [1,B/A]
¢ [2,01]

{P.g} = {®} follows immediately from P and Logic.

Note. If ¢ begins with a general quantifier, a variable may be
dropped from this quantifier and A (or B) substituted for the
dropped variable at all its free occurrences in the scope. Call
the resulting formula .
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Let @ be given by:
® [AB]:.ASB.=:B<A.o.A = B:®:[C]:BSC.o.A<C.
then {P,g} &= {0}.

Note. ®(®) is never organic, since ¢(¢p) occurs in it.

Using the above theorem, the task of finding sole axioms
reduces to stating the various properties in terms of < and
(possibly) condensing them. For some the statements are ob-
vious and we omit these. We do not pretend to be all-inclusive
in what follows.

THE EXISTENCE OF THE JOIN (SUPREMUM)
OF TWO ELEMENTS

Formally this is stated as:

s. [DEI[HdF]:. DEF.E<F:[G]:D<G.E.£G.o F<G
which we shall prove is inferentially equivalent in a partially
ordered set to

S. [DEI[EF][G1:DSG.ELG.=F<G
Proof of {P,s} =— {S}

[DE][HF]:.

1) D<F. l

2) E<F: [S]

3) [G1:D<G.E<G.5>.F<G: J

4) [G:F£G.o.D<G: [P3,1]

5) [G1:FLG.o.EXG: [P3,2]
[G1:DLGE<SG.=F<G [3;4,5]

Proof of {P,S} = {s}

[DEI[AF]:.

1) [G:D<G.E<G.=F<G: [S]

2) DSF.E<F.=F<F: [1,G/F]

3) DSF.EXF. [P1,2]

D<FE<F:[G]:D<GE<G.o F<G [3.1]
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THE EXISTENCE OF THE MEET (INFIMUM)
OF TWO ELEMENTS

I. [DEI[AF]:[G]:G<D.GLE.=.G<F. (Proof analogous to
that for S.)

For a lattice, we conjoin S and I to get

L. [DE]:[dF]:[G]:D<G.E<LG.= F<G:.[dH]:[C]:G<D.G<
E.=:G<H

THE DISTRIBUTIVE LAW

From [1], we know that in {P,L}, a lattice, the distributive
law an(bUc) = (anb) U (aNc) is equivalent to

d. [ABCDE:A<BB<CBND = ABNE = ABUD =
CBUE=CoD=E

which we shall prove is equivalent to

D. [ABC]:-:[G]: :G<A.2:G<B.=.G<C:.A<G.o:B<
G.=C<G::oB=C.

We give some preliminary lemmas.
P4.[BCl:.[Al:BSA.=C<A:oB=C

Hyp.o.

2) C<B. [1,A/B,P1]

3) B<C. [1,A/CP1]
B=C [P2,3,2]

P5.[ABDE]: :[G:DSGE<G.=.A<G:[G]:D<G.E<G.=B
<G:.o.A =B.

Hyp o:
3) [G:ALG.=B<G: [1,2]
A=B [P4,3]

P5 assures us that in a partially ordered set we may use the
following definitional form to define join.

DP1. [ABC]:.A = BUC.=:[G]:B<G.CLG.=.A<G.
Note. The pre-axiomatic assumption & assures that A U.
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We now work in {P,L} (*)
L1. [ABG:ASGB<G.=.AUB<G [DP1 A/BUC,L]
Note. L is required because pre-axiomatic assumption d requires
that only objects in U be substituted for variables. Since A and
B occur in the quantifier, they are in U, L then assures us that
A UBeU.
L2. [ABC]::AUC = BUC.=:.[G]:.C<G.0:A<LG.=.B<G.
1) AUC =BUC.=:[G]:B<G.C<G.=.AUCKLG:
[DP1]
2) =:[Gl:B<G.CLG.=.A<G.CLG.:.
(1,L1 B/C]
=:[G]:.C<G.o:BLG.=A<SG  [2]
Similarly we may define meet
DP2. [ABC]:.A = BN C.=:[G]:G<B.G<C.=.G<A.
and arrive at
L3. [ABCl::ANC =BNC.=:[G]<C.o:GLKA.=.G<B.
L4. d=D
1) [ABCDE]:A<SBB<CBND = ABNE = ABUD =
CBUE = C.o.D =E:.=..

2) [BDE]:[HAC]J.A<BB<CBND = ABNE = ABUD =
CBUE = C.o.D = E:..=: [1]

BE——

3) [BDE]:BND = BNEBUD = BUE.o.D = E:.=:"

[2,L,A/BND,C/BUD;2]
4) [BDE]::[G):.G<B.o:G<D.=.GLE:[Gl: BLG.o:D

£G.=E<LG::oD=E::=:" [3,L2,L3]
[BDE]::[G]::G<B.o:G<D.=.G<E:B<G.o:D<G.=.
E<G::o.D =E. [4]

Thus in a lattice, D is equivalent to the distributive law-
However, D is meaningful in any partially ordered set so that it
enables us to speak of distributive partially ordered sets (%) if
we so desire.

(¥) We shall use basic lattice properties without proof and refer to
any of them by L.

(5) This is more general than the concept of distributive latticoid in
the sense that “oid” is used in [2].
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THE MODULAR LAW

From [1], we know that in a lattice the modular law,
a<c.D.aU(bNc) = (aUb)Nc, is equivalent to
m. [ABCl:ANB = ANCAUB = AUC.>.~B<{C which, by
means of L2 and L3, is easily proved to equivalent to,
M. [ABC]::[G]::G<A.o:G<L<B.=G<C:.A<G.o:BLG.=.C
£G::B<C::oB=C.
As in the case of D, M enables us to speak of modular par-
tially ordered sets.

THE SEMI-MODULAR LAW

The semi-modular law in [1],

sm. [xya]: x covers a.y covers a.~(x = y).o.xUycovers x.xUy
covers y, is trivially equivalent to,

[xyzal:.z = xvz = y.D.z covers a:~(x = y):>.[dblb
covers X. b covers y, which translates directly into,

SM. ([ABCIL::[G]:G = BvG = C.oA<G.~(G = A).[Z].
~(ZZ2G.~(G = Z2)ASZ.~(Z = A)):..~B = 0):.D:
[AD]:[G]:G = BvG = C.o.GL<D.~(G = D).[Z]~(Z
<D.~(D = 2Z).GLZ~(Z = Q)).

COMPLEMENT

The existence of complement can be given by.

EXC. [A][HE]::[C]:C<LA.C<E.o.[D].CLKD:[Cl:A<C.EZC.
o.[D]1.DLC.

Note. This is meaningful even if there is no zero or one.
The existence and uniqueness of complement can be given by

C. [AB]::A = B.=::[4E]::[C]:.C<E:C<AvC<B:o.[D].
C<D:[C]:. EELC:A<SCVvB<(C:o.[D]l.D<C.
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If we wish to speak of complete lattices we may alter our pre-
axiomatic assumptions as follows:

d') Upper case letters in quantifiers are restricted to range over U.
Lower case letters in quantifiers are restricted to range over
subsets of U.

n') Enough set theory tc make y and & meaningful.

Then analogous to the supremum and infimum for two ele-
ments we have:

SA. [a][dF][G]:.[D]:D€a.o.D<G:=.F<G and
A. [a][HF][G]:.[D]:D€a.o>.G<D:=.G<F.

This concludes the section dealing with construction of state-
ments for use in the THEOREM.

*
&k

We now give a sole axiom for complete boolean algebra, B.
In the study of the relation of Lesniewski’s mereology to boolean
algebra (°) one needs the notion of a “complete boolean algebra
with zero deleted”, BD. To this end we introduce a “complete
boolean algebra with or without zero deleted”, W. To be specific
{B} &= {W, [A][B].A<B}. If one deletes the zero from a
boolean algebra the resulting system is without a minimum ele-
ment except in the case of a boolean algebra with exactly two
elements. To allow for this exceptional case we must use the
non-existence of zero under the hypothesis of the existence of
at least two elements in the deleted system, i.e., {DB} &
{W,[HAB].~A = B: > .[C][AD].~C<D}.

According to Tarski, [4] p. 330, Theorem 2, the following is
an axiom system for complete boolean algebra (7).

T1. [ABCLASBB<C.o.A<C.

T2. [a][HA]::[D]:Dea.o.D<A::[D]::D<A:[EF]:Eea.F<
D.F<E.o .[GlFLG:.o.[HIL.D<LH.

(*) A relation is noted in [4] p. 333, footnote. The statement there is
inexact in the sense that it ignores the logical base which Lesniewski
specifically constructed for his mereology.

(") This includes the boolean algebra consisting of a single element.
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T3. [ABa]:::[D]:Dea.o.D<A::[D]::D<A:[EF]:Eca.F<D.F
£G.o . [GlF<G:.o.[HL.D<H::[D]:D€a.o .D<B::[D]::
D<B:[EF:E€aF<DF<E.O.[G]F<G:.o.[H1.D<H::
>A=B |

We shall prove this system is equivalent to

B. [AB:::A<B.=::[K]:B<K.o.A<K:::B<B.o::[ab]::
Ceb.=:[D]:Dea>.DLC:[DH]:D<SC.~D<H.o.
[dEFGl.E€aF<DF<E.~F<::>.[dL]b = {L}.

First we give a formula depending only on the pre-axiomatic

assumptions:

F. [D]::D<A:[EF:E€aF<DF<E.o.[GLF<G:.o.[H].
D<H::=:[DH]:D<A.~D<H.o.[JEFG].Eca.F<DF

<E.~F<G.
Bl. [A]A<A [B,B/A]
B2. [ABCl:A<BB<C.o.A<C. (T1) [B,KI|C]

DB1. [Aa]:.Ae sup(a).=:[D]:Dea.o.D<A:[DH]:D<KA.~D<
H.o .[dEFGl.E€a.F<DF<E.~F<G

B3. [al[2A]. sup (@) = {A} [B,B/A,b/sup(a),B1,B1,DB1]

B4. [a][HAl.A€ sup (a) [B3]
B5. T2 [B4,F,DB1]
B6. [ABal:Ae sup (a).Be sup (a).D.A = B [B3]
B7. T3 [B6, DB1, F]
.. {B}=—> {T1,T2,T3}

T4. [KI:BKK.D.A<K:>.A =B [K/B,P1]
DT1. DBI

T5. [al[HAl. A€ sup (a) [T2,F,DT1]
T6. [ABal:Ae sup (a).Be sup (a).>.A =B [T3,F,DT1]
T7. [al[HA] sup (a) = {A} [T5,T6]

T8. [ab::[C]:.Ceb.=:[D]:Dea.o.D<LC:[DH]:D<SC.~D<
H.5> [HEFGl.E€a F<D.FE.~G::o.[AL]l.b = {L}
Hyp.o.

2) b = sup(a). [DT1,1]
[dL].b = {L} [T7,2]
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T9. B [T1,T8,T4]
. {TLT2T3) = (B} : (B} {T1,T2,T3}.

Next we consider the following two statements

W. [AB]:::A<B.=:::B<B.>::[ab]:-:B=a:[C]:.Ceb.=:[Dl:
Dea.o.D<C:[DH]:DC.~D<H.D.[HEFGl.E€aF<
DF<E.~F<G::o.[HL]b = {L}.A<L. (°)

Z. [dA]:[BlL.A<B.
We shall show that {W,Z} &———= {B}.

B10. [ABab]:-:A<B.B=a:.[C]:.Ceb.=:[D]:Dea.o.DLC;
[DH]:DSC.~D<H.o [HEFGl.EcaF<D.F<E.~F<
G::o.[dL].b = {L}. A<L.

Hyp.>::[HL]::

4) b = {L}:. [B,1,3]

5) , [Cl:.Ce{L}.o:[D]:Dea.o.D<LC:. [34]

6) [D]:Dea.o.DLL: [5,C/L]

7) B<L [6,2]

8) A<L. [B2,1,7]
[AL].b = {L}.A<L. [4,8]

B11. [AB]:::[ab]:-:Bea:.[C]:.Ceb.=:[D]:Dea.o> .D<C:[DH]:
D<C.~D<H.D.[dJEFGl.Eca.F<D.F<KE.~F<G::D.
[AL].b = {L}.A<L::>.A<B.

Hyp.D>::
2) [C]:.C = B.=:[D]:D = B.o.D<C:[DH]:D<C.~D<
H.D .[HFG]L.F<D.F<B.~F<G::o.A<B::
(1 al{B},bl{B},E[B]
A<B [2 C|B,FID,G|H,B1]
B12. W [B10,B11,B1]

Since B is an axiom for complete boolean algebra, Z must
follow from it. Therefore {B} —> {W,Z}.

Wi1. [ALA<A. [W,B/A]

(®) This formula is based on Sobocinski’s single axiom for Leéniews-
ki’s mereology.
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[AB]..[K]:B<K.o.A<K:D>.A<B (W1l
DB1

[ABal:A<BBeca.>.[dL]:sup(a) = {L}.A<L.
[W,blsup(a), W1, DWI1]

[Aa]:A=a..[dL].sup(a) {L} [W,B/A;WT1]

[ABl:A=1b(B).=.A=.A<B

[A].LA€ sup(1b(A)) [DW1,a|1b(a),C/AE|D,F|D,

GHDW2,W1]

[A].{A} = sup(1b(A))

1) Aelb(A). [(DW2,W1]
[dL].

2) sup(1b(A)) = {L}. [(W4,1]

3 Ael{L). [W5,2]
sup(1b(A)) = {A} [2,3]

[ABC:A<B.B<C.o.A<C.

Hyp.D.

3) Bel1b(C). [DW1,2]
[L].

4) sup(1b(C)) = {L} [W3,1,3]

5) A<L

6) L=C [We,4]
A<C [5,6]

[ABLA<BB<A.D.A=B

Hyp O:

3) [DI:-D<LA.=.D<B: [W7,1;,W7,2]

4) 1b(A) = 1b(B). [DW2,3]

5) {A} = {B} [W6,4]
A=B [5]

[AB]:[CLA<C.[D]B<D:>.A =B [C/B,D/A, W8]
Therefore the following definitional form is valid:
[A]:A = O.=[B].A<B.

{0} = sup(@)

1) [C]Ce& sup(@).=.[DH].~(D<SC.~D<H): [DWI1]
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2) [C]:.Ce sup(@).=:[D]l:D<C.o.[HL.D<H.:. [1]
3) [C]:.Ce sup(@).=:[D]:D<C.o.D = O: [DW3,2]
4) [Cl:.Ce sup(@¥).=.C = O: [3,W1;W8,DW3]

{0} = sup(@) [5,Z]

Note. Z is required for the last step, since due to d’, we may
not substitute O for C until we know O U.

Wi1. [al[HL]sup(a) = {L} [BW4,BW10]
Wi12. B [W7;W1,DWI,WI11,W2]
Therefore {B} &<—— {BW.Z}.

Next we wish to prove that {BW,ZD} &<— {BD} for
DB. [AB]:::A<B.=:::B<B.o::[ab]::B=a:[C]:.Ceb.=:
[D]:Dea.o . D<LC:[D]:DSC.o[dFl.E€aF<DF<
E::o.[dL].b = {L}.A<L and
ZD. [dAB]l.~A = B:2:[Cl.[EAD].~C<D
Using only the pre-axiomatic assumptions we have
X: [LLL<L.o.Le{L} LSL.L<LL

P6. [AB]J.A = B:o:[CDE]:.C<C.=.D<E. [P1]
P7.  [ABLA = B:5:[Cal:[D]:D<C.> [AEFlE€aF<
D.FLE. [D6,X]
P8. [ABL.A = B: > .[DH].D<H. [P1]
P9. [AB].A = B:o:[Ca]:[DH]:D<C.~D<H.>.[HEFGI.
E€aF<DF<E. ~F<G [P8]
P10. [ABJ.A = B:o>:W.=.BD. [P7,P9]
P11. [AB]JA =B:2.ZD
P12. [AB]JLA = B:>:W.ZD.==BD [P10,P11]
BD1. [A]lA <A [BD,B/A]

DBD1. [Aa]:. A€ sup(a).=:[D]:Dea.o.D<A:[D];D<A.D.
[dEF]l.Eca.F<D.F<E

BD2. [Aa]:A=a.D [dL].supla) = {L}. [BD,B/A,b|sup(a),
BD1,DBD1]

BD3. [Al:Ae sup({A}) DBD,al{A},E/A,FD,BD1]
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BD4. [ACI:.[G].C<G:D.Ae sup ({C}) [DBD1,a|{C}E|C,FIC]
BD5. [ABCL:[G].C<G:o.A =B
Hypo.
2)  Ae sup({C)). [BD4,1]
3)  Besup({C)). [BD4,1]
4)  [dL]sup({C}) = {L}. [BD2,a/{C}]
A=B [4,2,3]
BD6. [ABD].~A = B.o.[9C].~D<C [BD5]
BD7. ZD [BD6]

Note now that in both {W,ZD} and {BD}, if we are under
the hypothesis [HAB].~A = B, the statements [AH]~D<H
and [dG].~F<G are true, so that as conjuncts their insertion
or removal yields equivalent statements. Thus in both systems
we have DBD1 = DW1 and W = BD. Therefore

[AAB].~A = B:>:W.ZD.= BD.

From this and P12 we have {W,ZD} &<— {BD}. That is,

BD is a sole axiom for a complete boolean algebra with zero
deleted.

BD’. [AB]:::A<B.=:::AeUBeU:::B<B.>::[ab]::ac
UbcUBea:[C]:.Ceb.=:[D]:Dea.o.DLC:[D]:D<
C.o.[dEFlE€aF<D.F<E::>.[dL]b = {L}.A<L.

BD*. [AB]:::A<B.=:::A¢A.BeB:::B<B.>::[ab]::Bea:[C]:
LCeb.=:[D]:D€a>.DLC:[D]:D<C.o.[HEFl.E€a.F<
DF<E::2.A<bh.

It is of interest to note that organicity is a function of the
pre-axiomatic assumptions, since BD is not organic, but BD’
and BD* are.

We close with a result due to V. F. Rickey, namely, that the
following is a sole axiom for a totally ordered set.

[AB]::A<B.=:B<A.o.A = B::A<B.o:[C]:B<
C.o.AZLC.
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