THE EXTENSIONAL CLASSIFICATION OF
CATEGORICAL PROPOSITIONS
AND TRIVALENT LOGIC

Chr. Klixbiill JGRGENSEN

Recently, the 16 elementary propositions on two properties and
256 elementary propositions on three properties in divalent logic
were classified on a purely extensional basis (*) clarifying and solving
many problems in syllogistic theory. The expansion of this descrip-
tion to many-valued (polyvalent or, perhaps rather, multivalent)
logic was shortly mentioned. Before reporting below further results
of such research, it may be useful to consider certain aspects of the
divalent case. Four elementary propositions on one property are
conceivable :

ca: a exists and defines the universe of discourse U (this can
be written as the conjunction (Ea) (Eﬁ)).

Ba: a and a exist, (Ea) (Ea).

ya: @ exists but not a, (Ea) (Ea).

ta: nothing exists in U, (Ea) (Eé).

The sixteen elementary propositions on two properties oab are
given in Table 1 in a somewhat different order from that of ref. [1],
showing a close analogy to Table 1 of ref. [1]. The interpretation
ma, meb of each of the sixteen wab is given, but has no bi-unique
relation to the sixteen signs of quantity wab. On the other hand, the
conjunctions (w’a[b]) (o"’a[b]) taking in the case of w’ the universe
of discourse consisting of b and in the case of ®’ U consisting of b
form sixteen alternatives, each of which represents exactly one of
the wab. The same is true for the conjunctions (@'ba]) (w''b[a])
or in general, for any conjunction of the type (’a[b]) (@’’a[b]) or
(0'bla]) ('’b[a]). This rather surprising property comes from the
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fact that “immediate inferences” always are biunique for elemen-
tary propositions, e.g.

va = ya Ba = pa va = 0a Ta =14

Il

The propositions nos. 7, 8, 11, 12, 13, 14 and 15 of our Table 1
were called heterogeneous in ref. [1] because they represent situa-

tions where both a and &, as well as both b and b are non-empty.
We are here going to refine the classification of the other, nine,
homogeneous propositions. In the column ®;a, w:b, the heteroge-
neous propositions are all marked pp. We call the four propositions
nos. 5, 6, 9 and 10 homogeneous in one property, because one P is
combined with one a or y. We call the four propositions nos. 1, 2, 3
and 4 homogeneous in two properties, because both ®; and wg are
o or y. Finally, we call the proposition no. 0 hyperhomogeneous,
because w1 = w2 = 1. In Appendix I, we are going to extend these
remarks to the 256 elementary propositions on three properties in
divalent logic.
We write composite propositions on n properties

o+ owz+ ... + Om a;az...4an

as an exclusive disjunction of m different elementary propositions
(either “m1a1a2...an” Or “®a;az...ap” OT... OF “©ma;as...ay" and
only one of these propositions) and we introduced in ref. [1] special
signs of quantity for four of the composite propositions on two
properties :

cab =84+ e+ A+ mab
Pab=¢+n+4+ 064 o0ab
vab=14+ x4+ p+ pab

tab=v+4+ £+ 0+vab

(The similarity of notation is suggested by the fact that aab,
Pab, ... are ab, Bb, ... using [a] as universe of discourse). These
composite propositions and four of their combinations are par-
ticularly frequent :
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aab: all A are B, and A exist.
a + pab: some (or all) A are B.
o + tab: all A are B (without existential implication).
Bab: some, but not all, A are B.
B + yab: some A are not B.
vab: no A are B, and A exist.
Y 4+ tab: no A are B.
tab: A do not exist.

In ref. [1], it was emphasized that in many-valued logic, the num-
ber of elementary classes b produced by n properties may not ne-
cessarily have the same value for b as the number a of states of a
given class. The number of elementary propositions is afen); in
divalent logic, where the classes are empty or not-empty, a = 2 and
equal to b. Rosser and Turquette (*) describe many-valued logics
by two numbers, M truth-values corresponding to our b and S
which is so constituted that for S “designated” truth-values, propo-
sitions can be asserted, whereas for (M —S) ‘“undesignated”
truth-values, the propositions cannot be asserted. S is positive, but
smaller than M (for divalent logic, M = 2 and S = 1). The writer
hopes that he is excused to have a Peripatetic rather than a Stoic
mind; he would not consider sentential calculus and deductive theory
as much as the extensional classification discussed above. This clas-
sification presents a different existence-values. Hence, we have two
mixed forms and one pure form of trivalent logic :

1. Di-trivalent logic a = 3 and b = 2. Each of the classes a and

d have the existence-value E, E or E. Hence, there occurs 32 =9
alternative wa and 34 = 81 wab. They are the combinations of nine

wa[b] and nine wa[b]. The syllogistic theory is fairly complicated,
since 3® = 6561 wabc are possible.

IL. Tri-divalent logic a =2 and b = 3. Each of the classes a,

a and a have the existence-value E or E. Hence, we have 22 = 8
different wa, 2° = 512 diﬂ‘erent wab (each being the conjunctions

(w'a[b]) (m”a[b]) (co”'a[b]) of three different universes of discourse
consisting of b, b and b) and 27 different wabc.
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1. Pure trivalent logic a = 3 and b = 3. Each of the classes a,

a and 4 have the existence-value E, E or E. Hence, we have 3° = 27
different wa, 3° = 19683 different wab and 3?7 different wabc (as
compared to 256 in divalent logic).

In case II, one can introduce the notation for the eight propo-
sitions on one property :

wa = (Ea) (E3) (E4)
wea = (Ea) (E4) (Ea)
pia = (Ea) (Ea) (E3)
Pea = (Ea) (Ed) (E4)
yia = (Ea) (Ea) (Ed)
vea = (E3) (Ed) (Ea)
nua = (Ea) (Ea) (E4)

1a = (Ed) (Ea) (Ea)

If one neglects the class &, one obtains the four corresponding
oa, fa, ya and 7a.

Table 2 compares the 27 propositions on one property in the pure
trivalent case III with the cases I and II. Thus, the nine examples

involving the logical factor (Eﬁ) in case III can be directly compared
with the nine propositions in case I.

We have introduced a “realistic” interpretation where Ea indicates
the possible, but not certain, existence of the class a; where Ea
indicates the possible, but not certain, existence of the class a;
and where E4 and Ed indicate the possible, but not certain, existence
of both the classes a and a (but E4 being incompatible with a and a
both being empty). As seen from Table 2, ten among the fifteen
possible composite propositions formed from one, two, three or
all four w a in divalent logic are obtained by the “realistic” inter-
pretation. The tautology « + B + y + t a is obtained for the five
last of the 27 propositions in Table 2.

Naively, one might expect that E4d and Ea give the same results
in the ‘realistic” interpretation. However, there is one profound
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difference : Ea is compatible with ta whereas E4 prevents ta from
subsisting. In other words, the doubtful existence of well-defined
classes is not exactly equivalent with the certain existence of inde-
finite classes. This shows how important arguments based on the
theory of types (the properties of classes being of a higher type than
the properties of their members) can be in many-valued logics.

As expected, Table 2 is symmetric with respect to an exchange of
a and 3 and a concomitant exchange of « and y. A source of asym-
metry is the atomic proposition £4 which is “realistically’ compatible
with the existence or not of both a and 4. However, it cannot nullify
terms Ea or Ea already present, and hence, five of the nine propo-
sitions containing Ed escape the ‘realistic” interpretation as
tautologies.

It is indeed pertinent to ask with Rosser and Turquette () whether
trivalent logic has any application to the real world. In the writer’s
opinion, the obvious candidate is scientific observations, where the
existence of A can be confirmed, but where the absence of A fre-
quently leaves the possibility open of a later observation of A.
This line of thought may end with the di-trivalent case I showing
the least numerical expansion of mab and wabc. It is remarkable that
nine of the ten composite “realistic”” propositions in Table 1 are
represented once, and that a + B <~ y ais the only one absent in case
I. Colloquially speaking, the reason is the absence of Ed (as contrast-
ed to Ea and Ed) in case I.

On the other hand, quantum-mechanical measurements might
sometimes constitute an argument for case II, the certain existence
of something about which it cannot be decided whether it is a or a.

It is tempting to argue according to the severe of the two linear
combinations of the authors in the dialogue (ref. [2], p. 3) that all
many~valued logics give the impression of being combinations of
divalent propositions. For instance, our argument above in case I
would make (Ea) (E3) more or less equivalent to a non-exclusive
disjunction o + Pa. However, this distinction is slightly meta-
physical. Somebody asserting “a + pa” in the sense of ref. [1] is
convinced that either “aa” or “Ba”, but he does not know which;
somebody asserting “(Ea) (Ed)” in the “realistic “interpretation
implicitly means “‘a -+ pa” without stressing the point that one and
only one, must be true. It is even more striking that the four compo-
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site propositions (a + Ba), (¢ + ta,) (B + ya) and (y + 1a) are
exactly those commonly used by logicians in contrast to the two other
involving two signs of quantity (a + ya) and (B + ta) and the four
composite propositions involving three signs of quantity. Said in
other words, the information supplied by factors such as (Ea),
(Ea) and (Ea) produces the nine types of propositions found for
case L. In the cases where only the universes of discourse [b] and [b]
need to be considered, the combined propositions on two properties

are the products (w1 + w24 ... a[b]) (01 + @2+ ... a[tp;]) as
can easily be constructed from Table 1. For instance

(a + Pa[b]) (v + ra[b]) = & + A + & -+ nab

which, incidentally, is another way of writing aab.
Three similar cases occur :

il

(o + Ba[b]) (@ + Pa[b])
(v + wa[b]) (@ + Ba[b])
(y + ta[b]) (v + ta[b]) = tab

Bab
vab

- In a certain sense, aa and ya have equal levels of complication,

whereas Pa is distinctly more complicated, and ta is an outsider,
quite different, saying something about the universe of discourse
rather than about a. It may very well be that we have gone the long
way over di-trivalent logic of case I to find propositions such as
(a 4 Ba) (but not P + ta) which have a higher and comparable
level of complication in a purely divalent description.

Another plausible candidate for application of trivalent logic is
Aristotle’s modal syllogisms. Lukasiewicz (%) and McCall (¥) have
constructed formal models which to a smaller or larger extent re-
produce Aristotle’s results. It is, of course, very interesting to analyze
these, highly complex, structures, but one may be interested in
differing approaches as well. Thus, the extensional classification (1)
concords with Aristotle in neglecting singular terms which would
be represented by their corresponding one-member classes. On the
other hand, the extensional classification accepts negative terms.
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Lukasiewicz () emphasized that Aristotle formulated his syllogisms
as implications rather than as inferences. However, it may be a
dangerous dogma that, everything done by Medieval logicians was a
regression relative to Aristotle (cf. also Bochenski’s fascinating
book (*)). In other cases, one may not have understood Aristotle at
a certain time; when neglecting empty terms A, writing ,,All A are
B” as our “aab” rather than our “o + tab”, he has presumably

made a deliberate decision and not a confusion between the two
forms. '

In the modal syllogisms, one uses a stronger property of A being
necessarily B and a weaker property of A being possibly B. In the
trivalent description, one might try to compare necessity with b,
possibility with b -+ b, contingence (excluding necessity) with b
and impossibility with b. However, these distinctions are of inten-
sional character and not easy to make compatible with an extension-
al point of view, though it was discussed in ref. [1] why the inten-
sional properties to some extent can be represented by classes having
fewer or more properties defined. This is the reason why the singular
terms do not occur in ref. [1]; it is sometimes acceptableto consider

classes consisting only of other classes and not “modern”’ individuals
as members.

There is one sense where our di-trivalent logic case I corresponds
closely to one aspect of modal propositions. Lukasiewicz (*) dis-
cussed future events not yet known. If there occurs properties which
cannot be verified at the moment, but which under other (temporal
and spatial) conditions can be verified with certainty, the description
Ea and Ea seems satisfactory. It is worth emphasizing that these
two atomic propositions are different; Ea is the existence of some-
thing not having the property a and hence (in divalent logic) having
the property a, whereas Ea corresponds to a not existing at all in
the universe of discourse, and E is the corresponding possibility
of both E and E.

It is relatively easy to perform syllogistic calculations in case I.
If we denote the “realistic” interpretation by “=" (and not the
equivalence “="), it is for instance a valid rule of inference (the
specific universe of discourse each time being indicated in sharp
brackets) :
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(Ea[m]) (Ea[m]) (Ea[m]) (Ea[m]) = (« + Ba[m]) (B + ya[m])
B _ =3+ e+ €4 6am
(Em[b]) (Em[b]) (Em[b]) (Em[b]) =
(B + ym[b]) (o + pm[b])

[l

N+ 6+ 14+ xmb

d+e+L+n+04 14 xab

and the total conclusion (*), consisting of all seven heterogeneous
wab, is fairly typical for such cases. (cf. also AppendixII and Table
3, propositions no. 69 and no. 68). Technically, the example is a
syllogism of the fourth figure.

If we concentrate our attention on this di-trivalent case, one of the
three states of a class, E, has very much the same relation to E and

E as Pa has to aa and ya. This is one extreme of making trivalent
logic as similar to divalent logic as possible. By the same token,
quadrivalent logic has a nearly unsurmountable tendency to dis-
integrate into the combination of two divalent logics, four being two
times two. The opposite extreme is to consider all 27 propositions
of Table 2 on equal footing and to make no divalent-like distinction

between a, 3, 4 or E, E, E. The latter purely trivalent description
may indeed look much more like a formal game. The writer does
not intend to make appeal to great electronic computers, and hence,
he does not intend to make syllogistic theory for this, very volumi-
nous, case III. However, it is quite conceivable that this case may
be of similar importance to formal logic as complex numbers to
mathematics.

Appendix I. If the elementary propositions on more than one
property in divalent logic are interpreted as propositions of the
type aam, fam, Yam or Tam on each individual property, we may dis-
tinguish various possibilities :

Hyperhomogeneous proposition : if the universe of discourse is empty,
one (no. zero) of the 2(2%) elementary propositions on n properties
corresponds to tam forallam(m = 1,2, ..., n).

Homogeneous proposition in one property: In (n — 1) cases, the
interpretation is fam, and in one case, it is 0cam or yam.
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Homogeneous proposition in two properties: In (n — 2) cases, the
interpretation is fam, and in two cases it is aam or yam.

Homogeneous proposition in k properties: In (n — k) cases (non-
negative integer) the interpretation is fam, and for k values of m,
the interpretation is aam Or yam.

Heterogeneous proposition : In all n cases, the interpretation is pam.

If the 256 elementary propositions on three properties wabc in

Table 1 of ref. [1] are considered,

no. 0 is hyperhomogeneous,

nos. 1-8 are homogeneous in three properties,

among nos. 9-36, twelve (nos. 9, 10, 12, 17, 19, 22, 25, 30, 31, 32,
35 and 36) are homogeneous in two properties; twelve (nos. 11,
13, 14, 16, 18, 21, 23, 26, 28, 29, 33 and 34) are homogeneous in
one property; and four (nos. 15, 20, 24 and 27) are heterogeneous.

among nos. 37-92, twenty-four (nos. 37, 38, 39, 40, 43, 44, 46,
52, 53, 58, 64, 66, 67, 71, 75, 76, 78, 82, 87, 88, 89, 90, 91, 92) are
homogeneous in one property and the remaining thirty-two
heterogeneous.

among nos. 93-162, six (nos. 93, 102, 113, 142, 153 and 162) are
homogeneous in one property and the sixty-four others are
heterogeneous.

the nos. 163-255 are all heterogeneous.

If the interpretation of wamb as m;am, wamb, wsab is considered,
the cases homogeneous in two or three properties have all three
o1, ©2, w3 homogeneous, whereas the cases homogeneous in one
property have two of the three ox homogeneous.

A comparison of n = 1, 2, 3 does not reveal very conspicuous
regularities :

n=1 n=2 n=3
heterogeneous 1 7 193
homogeneous in 1 property 2 4 42
homogeneous in 2 properties — 4 12
homogeneous in 3 properties — — 8
hyperhomogeneous 1 1 1

The only obvious general rules are that 2@ of the elementary
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propositions on n properties are homogeneous in n properties; and
that 2°(n/2) propositions are homogeneous in (n — 1) properties.

Appendix II. Table 3 gives the 81 elementary propositions wab
on two properties in the di-trivalent case I with “realistic” interpre-
tation. The arrangement is not exactly the same as in Table 1; the
propositions nos. 0-15 are the wab in divalent logic; then, the exist-
ing elementary classes (+) in the propositions nos. 1-15 are
systematically replaced first by one, then by two, then by three, and
finally by four (~).

It may be noted that the interpretation is symmetric in the sense
that each of the sixteen wab in divalent logic is represented an equal
number of times, i.e. one among the propositions nos. 0-15, four
among nos. 16-47, six among nos. 48-71, four among nos. 72-79 and
once for proposition no. 80. This binomial coefficient structure
(1, 4, 6, 4, 1) is similar to several other results discussed in ref. [1].
Hence, the 81 propositions are interpreted by disjunctions of alto-
gether 256 wab from divalent logic.

It is remarkable that proposition no. 62 represents aab, no. 71
Bab, no. 65 yab, no. 53 tab, no. 79 o -+ Bab, no. 74 « + tab,
no. 78 p -+ yab and no. 75 y 4 tab. This illustrates once more the
relation between these particular composite propositions in divalent
logic and a few of the elementary propositions in di-trivalent logic.
One can form (16.15.14.13)/(2.3.4) = 1820 composite propositions
from four elementary wab in divalent logic; the four special pro-
positions aab, ... are hence unexpectedly frequent in Table 3.
This “unstatistical” distribution can be connected with another
fact: Table 4 gives the sixteen interpretations of the conjunctions
(01 + ©a[b]) (@s+ maa[b]) which are abbreviated (o1 + @2]
[0s + @], and the eight interpretations of the conjunctions
(wialb]) (o + B+ 7+ tab) and (a+ B+ + talb) (wsaib)
which are abbreviated [@1] [y] and [y] [w2], respectively, introducing
the notation for the tautology

va=a+pB+y+ra
These twenty-four propositions are represented each once among
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the propositions nos. 48-71 in Table 3. By the same token, the
propositions nos. 16-47 correspond each either to one of the con-
junctions [@1 + ®s] [ws] or to one of the [wa] [ws + we], taken
from the four composite propositions having the signs of quantity
a+ B,B -+ v,y + tand a 4 7. Finally, the propositions nos. 72-79
in Table 3 correspond to the eight possible conjunctions of this
kind [o1 + 2] [¥] and [y] [ws + ©4]. They are also included in
Table 4. In an extensional treatment, one is asserting nothing new
by forming a conjunction with the tautology y and one might as
well write [y] [0s + 4] as (03 + @sa[b]).
Hence, a system consisting of the nine signs of quantity

ox:oByLet+BB+v,Y+ et 1T,y

| is complete in the sense that each of the 81 propositions in Table 3
has the “realistic” interpretation (o'xa[b]) (wxa[b]) written
[wx'] [0x"'] in Table 4.

Appendix III. Errata to ref. [1].

The writer did not have the opportunity to correct the proofs of
the otherwise very carefully printed article. It may be useful here
to correct a few distinct errors :

p. 235. The paragraph below the first two columns of equivalencies
should read :

and all the other “immediate inferences” e.g. of the form wab =

w2db or mab = wdb, are also biunique. These operations

transform the signs of quantity within six closed groups:

@) (EEnx) () (ApvE)(onpo)(v).

p. 250. Proposition no. 126 should read:
frepee Tl i ee——
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TABLE 1

Systematic classification of elementary propositions wab on two
properties in divalent logic arranged according to the existence of

non-empty classes, +-+ denoting ab; 4+— aB'; —-+ ab; and ——
ab. The interpretation wia, web, and the biunique representation
(o'a[b]) (o"'a[b]) are discussed in the text. The converted proposi-

tions w*ba are given for convenient comparison.

Element-
ary
Proposi- Non-empty oab |o¥bajma wb| w'a[b] w©"a[b]
tion Classes (= o'ba) | (= o"b:
No.
0 none v v T T T T
1 44 A A ¢« a o T
2 +— i v o ¥ T o
3 —i v By « Y T
4 — g E |y v T Y
5 ++ 4— 0 n|a P o a
6 +4-—+ T o | B «a B T
7 ++— 8 5 | B B o Y
8 +——+ 1 vt | B B Y o
o | 4—— p|lolB 1| = p
10 e R c | p|v B Y Y
11 ++ +——+ n|n|B B p a
2 | +4+ +—— ¢l |8 B o B
13 i e € g B B B Y
14 Ty —— K k | B B : p
15 | +++——+—f 0 |0 [p B[ B B
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TABLE 2

Elementary propositions @a on one property in trivalent logic
in the di-trivalent case I, tri-divalent case II, and purely trivalent
case III. The “realistic” interpretation in terms of composite propo-
sitions on one property in divalent logic is discussed in the text.

“Realistic”
interpretation I I 1

0a (Ea) (E3) 012 (Ea) (Ea) (E3)
Ba (Ea) (E3) Bia (Ea) (Ea) (Ed)
- Boa (Ea) (Ea) (E3)
— — (Ea) (E3) (Ea)

Ta (Ea) (Ea) Tia (Ea) (E3) (E3)

1a (Ea) (Ea) Tia (Ea) (E)a (E4)

@+ Ba — 22 (Ea) (Ea) (E&)

— (Ea) (Ea) (Ed)
(Ea) (Ea) (E&)
(Ba) (Ea) (E3)
(Ea) (Ea) (Ea)
Y22 (Ea) (Ea) (Ed)
(Ea) (Ea) (Ed)
(Ea) (Ea) (Ed)
(Ea) (Ea) (E4)
(Ea) (Ea) (Ea)
Y+ 1a (Ea) (E3) (Ea) (Ed) (E3)
o+ 1a (Ea) (Ea) (Ea) (E3) (E8)

a+p+ya

2

(Ea)_(Ea)

B+ va

B
g
11

a
©

(Ea) (Ea) (E4)
(Ea) (Ea) (Ea)
(Ea) (Ea) (E8)
(Ea) (Ea) (E3)

(Ea) (E3) (E)
(Ea) (E3) (E8)
(Ea) (Ea) (Ea)
(Ea) (E2) (E2)
(Ea) (Ea) (Ea)

2

a+B+y+ral (Ea)(Ea)
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TABLE 3

Elementary propositions wab on two properties in the di-trivalent
case I interpreted “realistically” as discussed in the text. The four
symbols 4, —, ~ in the parentheses such as (4 -++-) indicate

the existence-values E, E, £ of the four elementary classes ab,

ab, ab, 51?respective1y.

No. No.

0 ( v 41 (—~++) kto

1 (+—) 2 42 (—+~+)x+p

2 (—+—)n 43 (—++~) 14k

3 (—+—>)v 44 (~+++) 6+«

4 (——+) & 45 (+~+-+)e+86
5(++—)o 46 (++~+)(+0

6 (+—+—)n 47 (+++~)n+6

7 (+—+) 86 48 (~~——) Ao+
8 (—++—)t 49 (~—n~—) A+v4ntv
9 (—+—+)p 50 (~——~) 8+A+E+v
10 (—++)o 51 (—~~—=)14+p+v+o
11 (+++—)n 52 (—~—~) p+E+p+v
12 (+4+—4+) ¢ 53 (—~~)v+itotu=t
13 (+—++)¢e 54 (~~+—) N+14+v+in
14 (—+++)x 55 (~v+~—) n+1+pto
15 (F+++)8 56 (4+~~—) n+At+o+n
16 (~———) A+v 57 (~~—+) 8+L+E+p

17 (—=——) p0
18 (——~—) v+v
19 (——~) &§+v
20 (~+—) pto
21 (+~——) A+o
22 (~—+—) Vi1
23 (+—~—) A+=
2 (~——ot) 848
25 (+——~) 6+A
26 (—~+—) 1+4v
27 (—+~—)1+pu
28 (—~—+)E+p
29 (—+—~) ptp
30 (—~+)é&é+o
31 (——+~)v+to
32 (~++—=)n+1
3 (+~+—=)n+=w
34 (++~—)n+o
35 (~+—+)E+p
36 (+~—+) d+L
37 (++—~)C+o
38 (~—++) eto
39 (+—~+) 3+e
40 (+——+~) e+m

58 (~+—~)G+pto+p

59 (+~—~)8+L+A+0

60 (~—~+)8+ett+o

61 (~—+~)e+t+vinto

62 (+—~~) 8+e+Atn=0a

63 (—~~+) k+&+p+o

64 (—~+~)1+xk+v+o

65 (—+ ~ ~) 1+K+p+p=y

66 (~~-++) e+0+x-+o

67 (~+~+) {+0+x+p

68 (~-+-+~) N4-0+1+x

69 (4~ ~+) 8+e+L+0

70 (+~+~) e+n+0+n

71 (++~~) L+n+6+0=p

72 (~ ~ ~—) n+1+A+p+v+o+ntv

73 (~ ~—n~) 8+L+A+p+E+o+p+u

74 (~—n~ ~) d+et+A+v+E+nTt+otu=atrt
75 (=~~~} 1txtptvtEtptotu=y+e
76 (~~~+) 8+e4+L+0+k+E+p+o

17 (~ ~+~) e+n+0+1+x+v+n+to

78 (~+~~) L+n+0+1+x+pto+p=p+y
79 (+~~~)8+e+L+n+0+A+o+n=atp
80 (~ ~ ~ ~) tautology a+B-+v-+7




TABLE 4

The conjunctions (wx'a[b]) (wx""a[b]) discussed in Appendix II.
ya is the tautology a + B + y + ta. The universe of discourse
considered in each atomic proposition is indicated by sharp brackets
[b] or [b], and the resulting @; + wz + ... ab are given. In some
cases, other composite propositions are given in round parentheses.

[a+B] [@+B] C+n+0+0=p [e][y]  3+&+A+o (=aba)

[a+B] [B+7v] 8-+e+E+0 Bl [v] e+n+0+n (=pba)
[a+B] [y+1] 8+e+A+rn=a [vl1lvl  v+x+v+o(=yba)
[a+B] [e+1] n+A+o+n [t1 [v] u+E+p+v(=1ba)
[B+7v] [@+B] n+6+14x [vl[e] n+1+p+o(=aba)
[B+7v] [B+7v] e+0+x+o (=pab) [w][B]  {+0+x+p (=pba)
[B+7] [y+1] e+v+n+to [vlly] 8+e+E&+o (=yba)

[B+v] [e+1] n+i+v+n (=0ddb) [yl [t]  A+v4ntv(=1ba)
[y+1] [a+B] t+x+pt+p=y [o+B][v] 8+e+L+n+0+A+otn=a+p

[y+1] [B+7] x+E+p+o [B+v] [v] e+n+0+1+x+v+nto
[y+7] [y+1] vi+&+otv=r  [y+7] [v] i+x+ptv+E+ptoto=y+e
[y+1] [a+7] v+ptv+o [e+7] [¥] 84-C4+A4-p+E4o0+p+v
[a+1] [a+B] E+pu+o+p [v]l[o+B] C4+n+0-+14k+pto+p=B+y
[at+r] [B+v] 8+C+E+p (=vab) [v] [B+7y] d+e+L+0+k+E+p+o
lo+7] [y+7] 8+A+E+v [v] [vy+7] 8+e+rtv+E+ntoto=atr

[a+1] [e+1] A+pto+v (=1ab) [v] [e+1] n4+14+-A4p4v4o+nto
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