MODELS FOR LOGICAL ENTAILMENT

D. Paul SNYDER

In several recent articles, Jaakko Hintikka describes a method em-
ploying «model sets» for the study of interpretations of formal sy-
stems in general, and systems of modal logic in particular (*). A mo-
del set is a set of formulas satisfying certain conditions, e.g. if
K p g belongs to a model set, then p belongs to it, and ¢ does (?).

The approach is extended to modal logic by using certain sets of
model sets called «model systems». A model system is a set of
model sets on which an «alternativeness» relation is defined.
Model sets which are «realizable» alternatives to a given set may be
taken as descriptions of states of affairs which could have been
realized instead of the one described by that set. The possibility of
a statement is interpreted as the membership of that statement in
a model set which is a realizable alternative to a fixed model set
taken to be realized.

Thus a model set in Hintikka’s sense may be taken to be a
«world description». The fixed model set may be taken to contain
only true statements or, if you like, statements which describe the
real world. Alternative model sets to the set which describes the
real world may be taken in the ancient sense to be descriptions of
possible worlds.

In a forthcoming monograph, R.W. Binkley and R.L. Clark
have developed a convenient proof-detecting procedure of the
Gentzen type for the Feys-von Wright calculus M, and the Lewis

(1) Jaakko HINTIKKA «Modality and Quantification», Theoria (Lund) 27
(1961), pp. 119-128; «The Modes of Modality,» Acta Philosophica Fennica,
Fasc. 16 (Helsinki 1963), pp. 66-81; «Form and Content in Quantification
Theory,» Ibid., Fasc. 8 (Helsinki 1955), pp. 11-63.

() A modified of Polish notation is used throughout. The operators are 'K’
(conjunction), A’ (alternation), 'C’ (material conditional), 'L’ (necessity),
‘M’ (possibility). Negation is represented in this notation by a bar ("—’) writ-
ten over the left-most sign of the negated formula. The negation of ’Apq,’

for example, is written *Apq’.
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calculi S4 and S5, plus quantification. This procedure, called «can-
cellation», exploits formally the semantic notion of «alternative-
ness» set out by Hintikka.

It is the purpose of the present paper to sketch out modifications
of Hintikka’s model system method which reflect certain features
of logical entailment as conceived by von Wright, Anderson and
Belnap, and others. Corresponding modifications in the Binkley-
Clark cancellation systems will yield a manageable proof-detecting
device for entailment as interpreted here.

Entailment. We take entailment to be a relation between state-
ments which is independent of either the truth value or the modal
status of the statements taken individually. The minimal require-
ment for the truth of «p logically entails ¢» is that p be relevant to
¢ in some appropriate sense.

It should be pointed out that neither entailment thus understood
nor modality in general need be taken as «intensional» in the
Carnapian sense. We are not claiming that p entails ¢ if and only
if there is something about the «intension» or «meaning» of p —
or some «concept» in p — that «includes» the «intension» or
«meaning» of g or some «concept» in g. It is by now clear from
recent work of Kripke, Hintikka, Myhill and others that semantics
for standard systems of modal logic need not be done in terms of
intensions, individual concepts, and such. The interpretation of
formal systems of logical entailment need not in this sense be in-
tensional either. The relevance that we require in dealing with logi-
cal entailment is formal relevance, in the sense that the conjunction
of p and g is formally relevant to the alternation of p and 4.

Formal conditions for assuring this relevance have been devised
by others, and usually involve some restriction upon the prova-
bility of the material conditional. Von Wright, for example, offers
the following definition of entailment: p entails ¢ if, and only if,
Cp q is demonstrable independently of demonstrating either the
falsehood of p or the truth of g (3).

A criterion for entailment that meshes most naturally with the

(® ¢f. G.H.voN WrIGHT, Logical Studies, London 1958, p. 182. («The
Concept of Entailment»).
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formal aspects of this paper is suggested by R.W. Binkley. Like
those of von Wright and Anderson and Belnap, Binkley’s test for
the entailment of g by p requires that C p g be provable under
restricted conditions. The proof-detecting technique employed is a
Gentzen-like reduction calculus ().

(i) An axiom schema is a sequent of the form ‘o, o, A’.

(ii) A propositional formula is provable if and only if
it can be reduced entirely to axiom schemata.

(iii) p entails g if and only if C p g can be reduced to axiom

schemata of the form ’u,Tx, 2’ such that the element
‘e’ is derived from the antecedent of Cp g and the

element o’ from the consequent.

We superscribe ‘a’ or ¢’ to the results of each reduction step to
indicate whether they are derived from the antecedent or from the

consequent of the original formula. On this account K pE entailsp:

(*) The reduction calculus used here is that of R.L. CLARk and Paul WELsSH
Introduction to Logic, Princeton 1962, pp. 100ff, adapted to the present nota-
tion. In reduction we derive from a sequent containing a truth-functionally
complex member a sequent or pair of sequents which has precisely the same
truth conditions as the original, but which contains members that are less
complex. The rules for truth-functional reduction are as follows ('a’ and’p’
represent well-formed formulae, "X’ and 'Y’ represent any members of a se-
quent not involved in the application of a given rule) :

X, Aap, Y X,AaB, Y
X,a,B, Y XeoY XBY
X,Kap,Y X, Kap, Y
X,a, Y X,BY X,a,B, Y
X,CaB, Y X,CafB, Y
X,q,B, Y X,aY X, B,Y
X,0,Y
X, oY

The reductions may be viewed in the following way: the sequent above
the line has a true member if and only if the sequents below the line have a
true member.

346



CKppp
K p p?, p% p°®
%, p, p°

The sequent containing '—15&’ and 'p® is an axiom schema fulfilling
condition (iii). A similar reduction would show that K p p entails
p, but Kpp does not on this account entail every formula. The

formula C K p ; g reduces to the sequent '58, p®, q¢ which, although
an axiom schema, does not meet condition (iii).

But this means of determining whether or not we have an en-
tailment involves a test that can not be carried out wholly in the
object language. Our aim here is to seek an interpretation for an
object language which includes the entailment relation; moreover,
one in which provable entailments meet Binkleys’ test.

Entailment as a modal operator. The relational character of entail-
ment as here understood can not be emphasized too strongly. It
is because entailment is a relation demanding that the entailing sta-
tement be relevant to the entailed that we must reject material and
strict implication as giving adequate formal renderings of entailment.
Conceived as a modal relation, entailment might be characterized as
«necessitation» to underscore the difference between entailment
and strict implication, thus : «p necessitates g» as distinct from «It
is necessary that if p then g». This reflects the dyadic modal character
of entailment, which may be contrasted with the familiar monadic
modal notions of the Lewis calculi. Monadic modal operators
attach to single (simple or complex) statements, forming single
modal statements. Dyadic modal operators attach to pairs of state-
ments, forming single modal statements which express modal rela-
tions between their components (°).

Here I think we must make proper obeisance the use-mention dis-
tinction. It is often pointed out that when we say «p materially im-
plies g» we are mentioning p and g, whereas when we say «If p, then
g» we are using p and gq. It is further pointed out by those who are

(5) ¢f. voN WRIGHT, «A New System of Modal Logic,» in Logical Studies
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careful that the latter, not the former, is an appropriate reading of
the formula C p q.

The convenient locutions «p entails g» and «p necessitates g»
mention p and g without using them. To be perfectly correct in
reading entailment formulae, we should express these relations in
such a way that the constituent formulae are used. This might be
done by withholding the «if-then-» reading from material implica-
tion formulae, as has been suggested (%), and saving it for the stron-
ger formal relation. I think, however, that it would be less mis-
leading to read entailment formulae in the subjunctive mood; it is,
after all, such subjunctive structures as counterfactuals and theo-
retical conditionals that have motivated much of the work in modal
relations. If we mention two statements when we say that «Today
is Friday» entails «Tomorrow is Saturday,» we may use them when
we say «If today should be Friday than tomorrow would be Satur-
day» (the theoretical conditional). To avoid tampering with the
verb of the constituent statements (if this seems desirable) we may
become even more verbose and say «If it should be the case that
today is Friday, than it would be the case that tomorrow is Satur-
day».

Buf if there are no purists present, it is more convenient to sa-
crifice absolute correctness for the sake of brevity and use the
«entails» and «necessitates» readings; so long as we know that when
purists are present we can replace «p entails g» with the more res-
pectable «If it should be the case that p then it would be the case
that g.»

The «paradoxes». An operator that purports to give a sense of im-
plication or entailment or a strong sense of «if-then-» we will call an
arrow operator. The so-called «paradoxes of implication» are of
course not paradoxes in the literal sense of that term. They are
paradoxical, if at all, only if we give the strong «if-then-» reading
to the operators that are subject to them; i.e. if we take those
operators to be arrow operators. If the «conditionality» operator of
truth-functional logic is interpreted weakly, or interpreted merely

() ¢f. R.B. ANGELL, «A Propositional Logic with Subjunctive Condi-
tionals,» Journal of Symboelic Logic 27 (1962), p. 327.
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as an abbreviation for expressions containing «and» and «not» or
of expressions containing «or» and «not», as it has been by some
logicians, then there are no paradoxes (7). The sense of entailment
that we are after is intended to be paradox-free. We therefore take
stock of the «paradoxes» associated with other operators that have
been interpreted as arrow operators.

(i) We say that an arrow operator in a given formal system is
subject to the paradoxes of material implication if the following
are provable for that operator in that formal system. ("p’ and 'q’
represent any well-formed-formulae of the system in question.)

Antecedent paradox p > (p >q)
Consequent paradox q~(p ~9
Other paradoxical forms Alp->q(Qq—~>p)

AP~ -9
(Kpq) > (p<+>q)

(i) We say that an arrow operator in a given formal system is
subject to the paradoxes of strict implication if the following are
provable for that operator in that formal system. (°p’ and ’q’ as
above; ‘M’ is a monadic modal operator interpreted «It is possible
that :...»)

Antecedent paradox Mp - (p - q)
Mq ~>(p > q)

(iii) We say that an arrow operator in a given formal system is
subject to the paradox of relative necessity if the following is pro-
vable for that operator in that formal system (®).

(KMpMgq) > (p ~q)

We say that a formal system is paradox-ridden if its strongest

() ¢f. Alan Ross ANDERsSON and Nuel D. BELNAP, Jr., Journal of Symbolic,
Logic 27 (1962), especially pp. 20-21. ¢f. also Angell, op. cit.
(®) ¢f. voNn WRIGHT, op. cit., pp. 89-126.
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arrow operator is subject to any of the paradoxes above for every p
and q.

There is an additional «paradox» of implication that is considered
by some to be less objectionable than those just described.
(iv) We say that an arrow operator in a given system is subject to
the paradoxes of consistency if the following are provable for that
operator in that formal system.

Antecedent paradox (Kpp) >q
Consequent paradox p -~ (Aqq)

Arrow operators which are subject to any of the four groups of
«paradoxes» will yield theorems which, it may be argued, commit a
fallacy of relevance. On the present view of entailment, a satis-
factory formal rendering of logical entailment must yield an arrow
operator which is free of at least the paradoxes of material and
strict implication and the paradox of relative necessity. It is viewed
as desirable also that the paradox of consistency be eliminated.
The model systems for entailment offered below provide interpreta-
tions for two alternative calculi (although others can be construc-
ted): one in which all the mentioned paradoxes are eliminated
except for the paradoxes of consistency, and another in which all
are eliminated, but at a price.

Von Wright has suggested that the study of modalities (in-
cluding entailment) is the study of a genus of which the logical,
physical and causal modalities are species. It is by now common-
place that physical entailment (under whatever name) must be
construed in such a way as to «support» the counterfactual con-
ditional. The same is of course true of other species of entailment,
and of any arrow operator that purports to carry law-like force.

In this connection, it is helpful to look at the paradoxes of ma-
terial and strict implication as cases where the counterfactual (or
«counterpossible») cases allow us to derive the arrow formula

trivially. p - ¢ can be derived from the assumption'l_p if the arrow

represents material implication, and from the assumption Mp if
the arrow represents strict implication.
Model sets and model systems. The model set-model system
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method of interpreting formal systems has the distinct advantage
that formal systems of progressive degrees of complexity can be
interpreted by adding progressively more conditions on the same
relatively simple model, beginning with truth-functional statement
logic and progressing through uniform quantification, mixed,
multiple quantification, identity, elementary modal logic, dyadic
modal logic, and finally formal systems of modal logic with quan-
tification.

It is helpful to our present purpose to consider, in terms of such
a progression of models, how the various «paradoxes» are provable
in the successive formal systems. We need not concern ourselves
with quantification conditions here, but rather with statement
logic with modal operators. Our aim will be to eliminate those
features of the model by virtue of which the «paradoxes» are truths
of logic.

(I) The model set for truth-functional logic may be constructed
according to the following conditions (°) :

Condition —. [plepif and only if ~ ([p]y).
Condition K. [KpqJep if and only if [plep and [q]ep.
Condition A. [Apq]epif and only if [plep or [g]ep.

Additional conditions for the remaining truth-functional operators
and for negated truth-functors may be derived in obvious ways.
For our present purpose, we will give only one derived condition.

Condition C. [Cpqlep if and only if [Apg]ep.

All of the paradoxes of material implication are truths of logic
in the usual sense with respect to such a model set. We show here

(°) 'p’ and ’q’ represent any well-formed formulae of the object language.
'[p]’ represents the formula of the model assigned to the object language
formula p. ’€’ is used to signify the membership of a formula in a model set;
'~(...£...)" to signify non-membership;’p’ is used to designate any model set.
These conditions are variants of Hintikka’s. Conditions for quantifiers are
omitted,although they may be introduced here or in many of the following
modifications of the model with little difficulty.
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only the antecedent paradox of material implication; for con-
venience we show it in the following form : that Cpgq can be derived

form the assumption p.

(1) Tplew Assumption
(2) [Apqlep Condition A
(3) [Cpqlen Condition C

(IT) For conventional (monadic) modal calculi of the Lewis type,
a model system is employed. The model system is a set of model
sets, Q, containing the fixed model set, ®, and perhaps others.
A series of model systems for conventional modal calculi may be
constructed according to the following conditions (°).

Conditions —, K, and A above are taken to apply to every
pin Q.

Condition M. [MplepeQ if and only if for some model set
A such that Hip, [plep.

Condition L. [LplepeQ if and only if for every model set
A such that Hip, [pleh.

These conditions yield a model system for the modal calculi
Mn of von Wright, in which all basic subformulas in a given formula
fall under the same number of modal operators (1!). Modifications,
consisting of certain assumptions about the H-relation, yield model
systems for the calculi M, S4, and S5. Since the «paradoxical»
theorems involving strict implication occur in all the monadic
modal calculi mentioned, we will consider the model system in its
simplest form.

The strict implication formula L C p ¢ may be derived from the

assumption L;; in the followin g way.

(1) We adopt the following further vocabulary for describing the model.
(¥ designates the model system.
'ey designates the fixed model set («the set of true statements»).
‘u’ and '\’ are variables ranging over model sets.
H? is the alternativeness relation defined on Q. "HAp’ is read «\ is
an H-alternative to p (and A& and peQ)».
(') G.H. vox WRIGHT, An Essay in Modal Logic, Amsterdam 1951, p. 61.
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(1) [LE]sm Assumption

(2) [p]en for every p such that Hpw Condition L
(3) [Apq]ep for every psuch that Hpw. Condition A
(4) [Cpq]ep for every p such that Hpo. Condition C
(5) [LCpqlew. Condition L.

A more informal approach: «Supposition» in M, S4, S5. We have
mentioned the theoretical conditional and other subjunctive forms
of ordinary English which carry the force of entailment. In cases
where the entailing statement is known to be false, we sometimes
use yet another construction : «Suppose p were the case...» and con-
sider what else would be the case under such a supposition, as a
consequence of p.

The model for truth-functional logic may be regarded as the set
of true statements. On such a model, the supposition of something
which is false is permitted only at the price of trivializing any con-
sideration of consequences.

The models for monadic modal systems, on the other hand, allow
us to suppose something which is false by conjuring up model sets
which are reasonable (i.e. possible) alternatives to the set which
contains only true statements. But we are not permitted to suppose
anything impossible and consider its consequences. To use an
example of von Wright’s, we would not be permitted in these sys-
tems to suppose that there are 26 prime numbers under 100, and
to consider the genuine consequences of such a supposition.

The following model systems will allow us to «suppose» that p
is the case when in fact p is impossible or, in the final modification,
when p is self-contradictory.

(IIT) The first entailment calculus, YS. We introduce into the object
language the dyadic modal operator 'Y’, intended as an arrow

(*3) A model system for von Wright’s calculus M is obtained by adding the
following condition to the model system for Mn:
Condition Ref. For every p such that peQ, Hup.
A model system for S4 is obtained by adding to the model system for M the
condition that the H-relation is transitive, and a model system for S5 by
adding the further condition that the H-relation is symmetrical.
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operator in the sense described above. The result of prefixing "Y’
to a pair of well-formed formulae of the object language is a well-
formed formula of the object language.

We make the following addition to the vocabulary for describing
the model system : S? is a second alternativeness relation defined on
Q. ’SpX’ is read «p is an S-alternative to A (and peQ and AeQ).»

The model for the first calculus involving the Y-operator is
obtained by adding the following conditions to the conditions for
the systems Mn (13) :

Condition Y. [YpqlepeQ if and only if for every model set
A such that Sip, [Apg]eh.
Condition S. If H\y, then Shp.

The various paradoxes of strict implication are not truths of
logic with respect to such a model if they are rewritten substituting
the 'Y’ operator for the arrow (e.g. "YLpYpq’). The conditions on
the model do not warrant the derivation in the proof in (IT) above
of :

4) [Ypqleo.

This could be derived using Condition Y only if [Apg]ep for every
psuch that Spw, which is not the case.

For the calculus YS, dyadic modal formulae are interpreted
by means of an alternativeness relation that allows for model
sets which contain impossible statements. «Supposing» that there
are 26 prime numbers under 100 is analogous, I suggest, to con-
structing such a model set and considering what else must be in-

(13) The conditions which yield models for Y-calculi which are extensions
of M, S4, and S5 may easily be constructed. For M, we add the following con-
ditions :

Condition Ref. S. For every [ such that pe€, Spy.
Condition Ref. ®. How.
Condition Ref. H. For every p and ) such that pe€?, and Ae€2, if Huh,
then Hpp.
For the S4 extension, transitivity of the S- and H-relations is assumed, and for
the S5 extension, symmetry of the two relations is assumed.
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cluded in the model set as a non-trivial consequence of the inclusion
of the impossible statement (not as a trivial consequence of the
statement’s impossibility).

The progression of model systems thus far may be summarized
as follows :

Model Set. A single set of statements, which contains only true
statements.

H-model system. A set of model sets, of which one () contains
only true statements, while others may contain statements which
are contingently false (but neither impossible nor self-contradic-
tory). With respect to such a model system, the «supposition» of
a contingently false statement is permissible.

S-model system. A set of model sets, containing all the ingredients
of an H-model system, with additional model sets permitted (those
which are S-alternatives to @ but not H-alternatives) which may
contain statements that are necessarily false (but not self-contradic-
tory). In such a model system, the «supposition» of a necessarily
false statement is permissible.

The following «desirable» logical entailments are truths of logic
with respect to an S-model system :

1. Ypq and Ygp, where p and g are truth-functionally
equivalent by De Morgan’s laws, double negation, or
associativity, commutativity or distribution of truth-
functional operators.

YKpqgp and YKpqq

YpApg and YqApq

YYpgYMpMq

YYpqYLpLg

Although the «paradoxes» of strict implication are not truths
of logic with respect to an S-model system, the «paradoxes» of
consistency, YKppg and YpAqq are truths of logic with respect
to such a model system.

The characteristic of the remaining model system in the progres-
sion is obvious, then :

ok w
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S’-model system. A set of model sets containing all the ingredients
of an H-model system, with additional model sets permitted (those
which are S’-alternatives to o but not H-alternatives) which may
contain at least one contradictory pair of statements, but which do
thereby contain all statements.

(IV) The second entailment calculus, YS'. The model for the se-
cond calculus containing the Y-operator is obtained by making
the following changes and additions in the model for the system
Mn:

(The relation S? of the previous system is replaced by the

relation S'2.)

Condition — is replaced by the following condition :

Condition H—. If for some %, Hp), then [p]ep if and only
if ~([plen).

Conditions 4, K, M, L, and C remain as before.

The following two conditions are added :

Condition Y'. [YpqlepeQ if and only if for every model
set A such that S"Ap, either ~ ([p]ep) or [q]eA.

Condition §', If H\p, then S'Ap

The «price» that must be paid in constructing this last model
system is the giving up of the «disjunctive syllogism». Consider,
for example, an S’ model set that contains both of p and p. By
condition 4 on model sets, such a model set would contain Apgq if
it contains p. If ¢ could be derived from Apg and p, then it could
be demonstrated that such a model set contains every formula.

In the Anderson-Belnap «Pure Calculus of Entailment,» KApgp
- g 1s not a theorem, and this purported entailment does not meet

Binkley’s test described above. YKquEq is not a truth of logic with
respect to an S’ model system. Anderson and Belnap offer an «in-
dependent proof» that the disjunctive syllogism commits a fallacy
of relevance, primarily because it depends upon the entailment
Kpg — g (which is not fallacious) and the purported entailement

Kpp - q(which, on this account, is fallacious) (14).

(14) Alan Ross ANDERSON and Nuel D. BELNAP, Jr., «Tautological Entail-
ments,» Philosophical Studies, X111 (1962), p. 19.
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As was the case with the preceding model systems, the S’ model
system may be modified to produce models for extensions of the
monadic modal calculi M, 54, and S5 (**). YS'M, the dyadic ex-
tension of the Feys- von Wright calculus M, is of particular interest
The model system is constructed by adding the following conditions
to those for the S’ model system :

Condition Ref. S'. For every p such that peQ, S'up.
Condition Ref. 0. Hoo.
Condition Ref. H. If for some A, HuA, then Hup.

YS’M as a calculus of logical entailment. The dyadic modal calculus
YS’M, whose model we have just described, is not wholly paradox-
free. Certain intuitively undesirable formulae involving iterations
of modal operators are truths of logic with respect to the S’ model
system. However, it is paradox-free within the limitations described
below, and has the following features :

1. Where p and ¢ do not themselves contain modal
operators, none of the «paradox» formulae are truths of
logic with respect to the S’ model system if they are written
with ’Y” as the arrow operator (°).

2. Where p and g do not themselves contain modal
operators, Ypg is a truth of logic with respect to the S’
model system if and only if p entails g according to Bin-
kley’s test.

(15) It should be noted that there are a number of alternative ways of com-
bining quantification with the various monadic and dyadic modal calculi.
Such quantified modal logics are outside the scope of the present paper,
however.

(1) Some «second-generation» paradoxes are provable, however. Although

YKqu is not a truth of logic with respect to the S’ model system for every p

and g, YKLpLpq is a truth of logic with respect to the 8’ model system. We
may therefore view the model as only partially satisfactory, or else do one of
the following (the author favors the first) : (a) We may eliminate the monadic
operators from the vocabulary of the system and limit the number of iterations
of the 'Y’ operator to avoid other higher-order paradoxes. Since the original
purpose for the (Lewis) monadic modal systems was to give a formal rendering
of entailment, we might properly view these operators as superseded by Y’.
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3. The five «desirable» logical entailments listed above in
the discussion of S-model systems are truths of logic
with respect to the S model system.

4. The Y-relation interpreted on the S’ model system has
in addition the following features which are viewed as
desirable in a formal rendering of logical entailment.

(a) Limited «Contraposition. Yququ is not a truth of
logic, but YKKMquququ is a truth of logic: «If p
and g are both possible and p entails g, then ¢ g entails p» (7).
(b) Reflexivity. Ypp is a truth of logic.

(c) Restriction on Angell’s Axiom ('®). YYpqYpq is not
a truth of logic, but YKMpYpqYpq is a truth of logic : «If
P is possible and p entails g, then p does not entail g.»

(d) Entailment of tautology by contradiction. YKp;;Aqa is
not a truth of logic ,but YKpEA p;is a truth of logic.

(e) Link between entailment and necessity. YYppLp is a
truth of logic. «A statement entailed by its own negation
is a necessary statement» (1°).

(f) Modus Ponens. YKpCpqq is not a truth of logic (be-
cause of the «paradoxes» surrounding 'C’; see the discus-
sion of the disjunctive syllogism above), but YKpYpqq is a

truth of logic (?°).
() Transitivity of entailment. YKYpqYqrYpr is a truth of
logic.

Temple University, Philadelphia D. Paul SNYDER

(b) We may regard the monadic and dyadic modalities as independent, and
drop Condition S on the model. (¢) We may accept the paradoxes, and even
try to justify them as reasonable, as has been done at one time or another with
respect to each of the paradoxes of implication mentioned in this paper.

(17) ¢f. voN WRIGHT, «A New System of Modal Logic,» Theorem 25; Ander-
son and Belnap, «The Pure Calculus of Entailment,» Axiom E-13.

(1#) ¢f. R.B. ANGELL, «A Propositional Logic with Subjunctive Conditionals,»
Axiom 10.

(*%) ¢f. voN WRIGHT, op. cit., Theorem 21.

() This feature is shared with Anderson-Belnap «Pure Calculus of En-
tailment.»
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