ON FINITELY MANY-VALUED LOGICS

ROLF SCHOCK

Our language contains the following symbols:

(1) the logical constants II (‘is 2-valued’),  (‘assertion’), ~ (‘not’),
— (‘only if’), o, (‘and’), v (‘or’), <> (‘if and only if’), A (‘for all’),
V (‘for some’), 1 (‘the’), and I (‘is identical with'); we call the first
seven of these sentential connectives and all of the rest except I
variable binders;

(2) a denumerable infinity of distinct
(a) individual variables,
(b) individual constants, and
(c) predicates of any positive number of places among which I

is the first two-place predicate.

In the metalanguage, we use ‘{’, ‘)’ and ‘{’, ‘}’ to mark the
boundaries of non-empty finite sequences and sets respectively and
““ and ‘_;" as standing for the operations of concatenating two finite
sequences and of removing the first term of a non-empty finite
sequence respectively. Also, we use ‘n’ as a metalinguistic variable
ranging over all positive integers greater than 1. TF, terms, and
formulas will be understood as follows:

(1) TF = the intersection of all sets k such that
(a) for any variable or individual constant t, the pair t, (tIt) is
in k;
(b) for any positive integer m, m-place predicate p, and m-term
sequence of members of the domain of kt, the pair t(1),
((t(1)) " (p)) "ty is in k;
(c) for any variable v and for f and g in the range of k,
(i) the pair {(1vf), (vIv) is in k and
(i) for any h in {(IIf) (\f) (~f) (f>g)(fAg) (fv g)
(feag) (AVE) (VE)},
the pair v, h is in k;
(2) tis a term just in case t is in the domain of TF; and
(3) f is a formula just in case f is in the range of TF.

An atomic formula is, of course, an object occurring on the right
side of one of the pairs under (b) above.

In what follows, we omit sequence marks according to the usual
conventions for the omission of parentheses.
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1. n-VALUED SEMANTICS IN EMPTY AND NON-EMPTY UNI-
VERSES ()

If x is a set, a is an assigner in x just in case a is a function such

that
(1) the domain of a = the set of variables and
(2) for any v in the domain of a,

(a) if x is empty, then a(v) = the empty set, and

(b) if x is not empty, then, for some m in x, a(v) = {mj}.

If a is an assigner in x, v is a variable, and y is an object of any
kind, then a(¥y) = a with the pair v, a(v) removed and the pair v,
y added in its place.

By an n-interpreter, we mean a function i such that

(1) the domain of i = the set of all individual constants and predi-
cates and

(2) there is a set u such that

(a) for any individual constant c, either i(c) = the empty set or,

for some m in u, i(c) = {m};

(b) for any positive integer m and m-place predicate p, i(p) is an
(n—1)-term sequence of sets of m-term sequences of members of
u, and

(c) i(I) = the (n—1)-term sequence s such that, for any k in the
domain of s, s(k) = the set of all t such that, for some m in u,
t = (mm),

The interpetations given here to predicates, and particularly to I,
seem somewhat artificial, but the author has not been able to find
any more natural ones.

Given an n-interpreter i, Ui (the universe of i) is the u under (2)
above.

Given an n-interpreter i and an assigner in Uia, we understand
Intia (the interpretation with respect to i and a of...) as follows:

(1) for any variable v, Intia (v) = a(v);

(2) for any individual constant ¢, Intia(c) = i(c);

(3) for any positive integer m, m-place predicate p, and m-term se-
quence of terms t, Int ia (((t(1)) ° (p)) " t-1) = the z such that
either there is an m-term sequence u such that u(k) is in Int ia
(t(k)) for any k in the domain of u and z = the number of
members of the set of all k in the domain of i(p) such that u is
in (i(p))(k) divided by n-1 or not and z = O;

(4) for any variable v and formulas f and g,

(*) The adaptation of the definitions of this and the following sections to
non-empty universe semantics and logics is, of course, not.difficult.
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(a) (Intia (IIf) = the z such that either Intia (f) is in {O1} and
z = 1ornotand z = O;

(b) Intia (f) = the z such that either Intia (f) = 1 and z =
1 or not and z = O;

(c) Intia (~f) = 1—Intia (f);

(d) Intia (f—>g) = the smallest member of {1, (1—Intia (f)) +
Int ia (g)};

(e) Intia (f A g) = the smallest member of {Int ia (f) Int ia (g)};

(f) Int ia (fvg) = the greatest member of {Int ia (f) Int ia (g)};

(8) Intia (fe>g) = (1—the greatest member of {Intia (f) Int ia
(8)}) + the smallest member of {Intia (f) Intia (g)};

(h) Intia (wvf) = the z such that either Int ia ("{y}) (f) is in
{O1} for any m in Ui, there is a k in Ui such that, for any m in
Ui, Intia ("{m}) (f) = 1 just in case m = k, and z = {k}, or not
and z = the empty set;

(i) Int ia (Avf) = the z such that either Ui is empty and z = 1
or not and z = the smallest member of the set of all r such that,
for some m in Ui, Intia (*{,}) (ff = r; and

() Int ia (Vvf) = the z such that either Ui is empty and z =
O or not and z = the greatest member of the set of all r such that,
for some m in Ui, Int ia ("{u}) (f) = r.

If i is an n-interpreter, then Ti (the truth values of i) = the set of
all r such that, for some formula f and assigner in Ui a, Int ia (f) =
r. By Tn (the truth values of n-valued semantics), we mean the set
of all r such that, for some n-interpreter i, r is in Ti. It can be shown
that

Theorem 1. Tn = the set of all r such that, for some natural number
smaller than nk, r = k divided by (n—1) (3.

Given a formula f, f is i-true just in case Int ia (f) = 1 for any as-
signer in Ui a, f is n-valid in case f is i-true for any n-interpreter i,
and f is valid just in case f is n-valid for any n. It follows that

Theorem 2. If 2 is smaller than n, then the set of all n-valid for-
mulas is a proper subset of the set of all 2-valid formulas.

For assume the antecedent. If f is n-valid, then, for any n-interpreter
i such that Ti = {O1}, f is i-true; also, for any 2-interpreter j, there is

(*) Thus, our n truth values are just those given in J. Lukasiewicz's and
A. Tarski's ‘Investigations into the sentential calculus’ (in Tarskr’s book Logic,
Semantics, Metamathematics, Oxford, 1956).
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an n-interpreter i such that Ui = Uj, Ti = {O1}, and g is i-true just
in case g is j-true for any formula g. Hence, f is also 2-valid. On the
other hand, if f is an atomic formula in which neither I nor 1 occurs,
then IIf is 2-valid, but not n-valid.

We say that a formula f is nonzero just in case there are no n, n-
interpeter i, and assigner in Ui a such that Int ia (f) = O. Hence,

Theorem 3. The set of all nonzero formulas is a proper subset of the
set of all 2-valid formulas.

For, if f is a formula and f is nonzero, then, for any 2-interpeter i
and assigner in Ui a, Int ia (f) #+ O and so Int ia (f) = 1; that is, f is
2-valid. On the other hand, if f is an atomic formula in which neither
I nor 1 occurs, then IIf is 2-valid, but not nonzero.

Theorem 4. If 2 is smaller than n, then there is a nonzero formula
which is not n-valid.

For example, fv~f where f is an atomic formula in which neither
I nor 1 occur.

Notice also that

Theorem 5. If f is a formula, i is an n-interpeter, and Ui is empty,
then f is i-true just in case, for any n and n-interpreter i, if Ui is
empty, then f is i-true.

This follows principally from the fact that atomic formulas are al-
ways assigned O by an n-interpreter with an empty universe.

We say that a formula f is an n-tautology just in case, for any v,
v(f) = 1 when v is a function, the domain of v is the set of all for-
mulas, the range of v is included in Tn, and, for any formulas f and
gl

(1) v(lIf) = the z such that either v(f) is in {O1} and z = 1 or not and
z = 0;

(2) v(~f) = the z such that either v(f) = 1 and z = 1 or not and
z = 0O;

(3) v(~1f) = 1—v(f);

(4) v(f—>g) = the smallest member of {1, (1—v(f))+v(g)};

(5) v(fag) = the smallest member of {v(f) v(g)};

(6) v(fvg) = the greatest member of {v(f) v(g)}; and

(7) v(fe>g) = (1—the greatest member of {v(f) v(g)}) + the smallest
member of {v(f) v(g)}.
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A formula is a tautology just in case it is an n-tautology for any n.

Given terms t and u and a term or formula f, we understand Af
(the atomic subformula assertion of f), freedom, and PStuf (the result
of properly substituting t for u in f) as follows:

(1) if u = {, then u is free in f and PStuf = t;
(2) if u = f{, then

(a) if f is a variable or an individual constant, then Af = f, u is
not free in f, and PStuf = f;

(b) for any positive integer m, m-place predicate p, and m-term
sequence of terms v, if f = ((v(1)) ° (p)) " v-1, then Af =
~({Av(1)) " (p}) " (the m-term sequence w such that w(k) =
Av(k) for any k in the domain of w)_4, u is free in f just in case
u is free in some member of the range of v, and PStuf = ({Pstu
v({1))"(p))" (the m-term sequence w such that w(k) = PStuv(k)
for any k in the domain of w) _1;

{c) for any sentential connective ¢ and formulas g and h,

(i) if £ = cg, then Af = cAg, u is free in f just in case u is free
in g, and PStuf = cPStug and

(ii) if f = gch, then Af = AgcAh, u is free in f just in case u is
free in g or h, and PStuf = PStugcPStuh; and

(d) for any variable binder b, variable v, and formula g, if f =
bvg, then

(i) Af = bvAg;
(ii) u is free in f just in case u is free in g and v is not free in u;
and

(iii) PStuf = the z such that
(a) if u is not free in f, then z = f;
(b) if u is free in f and v is not free in t, then z = bvPStug;
(c) if u is free in f, v is free in t, and w = the first variable
not occurring in either f or t, then z = bwPStuPSwvg.
A sentence is, of course, a formula in which no variable is free.

Obviously,

Theorem 6. If £ is a formula, then f is 2-valid just in case Af is n-valid.
This follows principally from the fact that, for any atomic formula
f, n-interpreter i, and assigner in Ui a, Int ia (Af) is in {O1}.

Theorem 6 is of great importance; it establishes that, when 2 is
smaller than n, the 2-valid formulas have near duplicates among the
n-valid formulas even if the n-valid formulas make up just a frag-
ment of the 2-valid ones. Hence, a 2-valid argument of any kind has
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a near duplicate among the n-valid arguments which is obtainable
from it by just asserting its atomic formulas.

We now turn to the task of listing the most important of the valid
formulas.

Theorem 7. If t and u are terms, then IItlu is valid.
This follows from the way in which I is interpreted.

Theorem 8. If m is a positive integer, p is an m-place predicate,
t is an m-term sequence of terms, k is in the domain of t, and vis a
variable not free in t(k), then ({t(1)) ® (p)) " t_1—>V v vIt(k) is valid.

This follows from the way in which Int ia is defined for atomic
formulas.

Theorem 9. If v is a variable, t is a term, and v is not free in t,
then Vv vIt—tlt is valid.
This follows from the way in which I is interpreted.

Theorem 10. If v, w, and x are variables, w # x, and f is a formula,
then Vvi—Vw wix is valid.
This follows from the way in which assigners are defined.

Theorem 11. If f is a formula and f is an n-tautology, then f is n-
valid.

This follows from the fact that, given any n-interpreter i and as-
signer in Ui a, the function which assigns Int ia (f) to any formula £
is one of the kind which assigns 1 to all n-tautologies.

Theorem 12. If t is a term or a formula, v is a variable not free in
t, i is an n-interpeter, and both a and a("x) are assigners in Ui, then
Int ia("x) (t) = Int ia (t).

Theorem 13. If t is a term, v is a variable, f is a term or a formula,
i is an n-interpeter, a is an assigner in Ui, and Int ia (t) = {m}, then
Int ia (PStvf) = Int ia ("{u}) (f).

Theorem 14. If t and u are terms, f is a term or a formula, i is an
n-interpeter, a is an assigner in Ui, and Int ia (t) = Int ia (u), then
Int ia (PStuf) = Int ia (f).

The proofs of theorems 12 through 14 are by inductions among the
members of TF.

Theorem 15. If v and w are variables, f is a formula, t is a term,
and w is not free in t, then AvfAVw wlt—>PStvf is valid.
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Assume the antecedent, that i is an n-interpeter, and that a is an
assigner in Ui. If Int ia (Vw wlt) = O, then Int ia (Avf A Vw wit—
PStvf) = 1. Assume then that Int ia (Vw wIt) = O; hence, Int ia
(Vw wlt) = 1 and so, for some m in Ui, Int ia (t) = {m}.By theorem
13, Int ia (PStvf) = Int ia ("{u}) (f). Also, Int ia (A vf) is not greater
than Int ia ("{y}) (f) and the same as Int ia (Avf AV w wlt). Hence,
Intia (Avf AVw wlt— PStvf) = 1 again.

Theorem 16. If v is a variable, f and g are formulas, and v is not
free in f, then Av({f—g)—(f—>/Avg) is valid.

Assume the antecedent, that i is an n-interpeter, and that a is an
assigner in Ui. Let r = Int ia (Av(f—g)) and s = Int ia (f>Avg).
To establish the theorem, it is sufficient to show that r is not greater
than s. If Ui is empty, this is obvious. Assume then that Ui is not
empty and, for some real number greater than O, p,r = s+p.If r = 1,
then, for any m in Ui, Intia (*{,}) (f) is not greater than Intia
("{u}) (8) and so, since Int ia (f) = Intia (*{,}) (f) by theorem 12, Int
ia (f) is not greater than Int ia ("{,}) (g). But thens = 1 = s + p.
This is impossible and so r is smaller than 1. Tt follows that,
for some m in Ui, (1—Intia ("{,}) (f)) + Intia ("{z}) (g) =s + pand
there is no k in Ui such that (1—Int ia (*{x}) (f))+Intia("{x} (g) is
smaller than s+ p. Also, it follows that (1—Intia (f)) +Intia (Avg) =
s. By theorem 12, Intia ("{,}) (f) = Intia (f) and so p = Intia
("{m}) (8) — Intia (Avg); but then, for some k in Ui, Int ia (Avg) =
Int ia (“{x}) (g) and is smaller than Int ia (*{n}) (g). But, by theorem
12, Int ia (*{x}) (f) = Intia (f) and so (1—Int ia ("{x}) (f)) + Intia
(*{x}) (g) is smaller than s+p. This is impossible and so r is again
not greater than s.

Theorem 17. If 2 is smaller than n, then there are a variable v and
formulas f and g such that v is not free in f and Av(f—>g) A f>Avg
is not n-valid.

Assume the antecedent and let v be a variable, ¢ be an individual
constant, p and q be distinct 1-place predicates, and i be an n-inter-
preter such that Ui is i(c) and not empty, Int ia (cp) = 1 divided by
(n—1), and Int ia (vq) = O for any assigner in Ui a. Obviously,
Av{cp—>vq) A cp—>/vvq is not i-true.

Theorem 18. If v is a variable and f is a formula, then Vvfer
~ Av~{f is valid.

Assume the antecedent, that i is an n-interpreter, and that a is an
assigner in Ui. To establish the theorem, it is sufficient to show that
Int ia (Vvf) = Intia (~ Av~f{). If Ui is empty, this is obviously so.
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Assume then that Ui is not empty. By our definitions, Int ia (Vvf) =
the greatest member of the set of all r such that, for some m in Ui,
Intia ("{m}) (f) = r and so 1—Intia (Vvf) = (the smallest member
of the set of all r such that, for some m in Ui, 1—Int ia(*{u}) (f) = 1)
= Int ia (Av~{). Hence, Int ia (~ Av~f) = 1—Intia (Av~f) =
1—(1—Intia (Vvf)) = Int ia (Vvf) and the theorem holds.

Theorem 19. If t and u are terms and f is a formula, then tIu A
PStuf—f is valid.

Assume the antecedent, that i is an n-interpreter, and that a is an
assigner in Ui. If Int ia (tlu) = O, then Int ia (tlu A PStuf—f) = 1.
Assume then that Int ia (tIu) * O. Hence, Int ia (tlu) = 1 and so
Int ia (tlu A PStuf) = Int ia (PStuf) and Intia (tf) = Intia (u); but then
Intia (PStuf) = Int ia (f) by theorem 14 and so Int ia (tIu A PStuf—f)
is again 1.

Theorem 20. If v and w are distinct variables, f is a formula, and
w is not free in f, then VwwlwfeAvIIf A VwAv(feviw) is
valid.

Assume the antecedent, that i is an n-interpreter, and that a is an
assigner in Ui. It is sufficient to show that Int ia (Vw wI 1vf) = Int
ia (AVIIf A VWAV({fesviw)), If Ui is empty, this is obviously so.
Assume then that Ui is not empty. Assume in addition that Int ia
(Vwwlavf) = O, If Intia (AvIIlf) = O, then there is no problem.
On the other hand, if Intia (AvIIf) = O and so is 1, then, for any
m in Ui, Intia (*{u}) (f) is in {O1}. Also, by theorem 12, there is no
k in Ui such that, for any m in Ui, Inti(a(*{x})) ("{n}) (fe>vIw) =
1; that is, since Inti(a("{x})) ("{.}) (f) and Inti(a(*{x})) ("{u}) (vIW)
are both in {O1} for any k and m in Ui, Intia (VwAv(feviw)) =
O = Int ia (A vIIf A VWAvV{feviw)) = Int ia (Vwwl ). As-
sume finally that Int ia (Vw wlavf) # O and so is 1. Then, for any
m in Ui, Intia ("{n}) (IIff = 1 and, by theorem 12, there is a k in
Ui such that, for any m in Ui, Int i (a("{x})) ("{u}) (fevIw) = 1;
that is, Int ia (VwAv(fesviw)) = 1 = Intia (AVIIf o VWAV(fe
viw) = Int ia (Vw wl avf) again.

Theorem 21. If v and w are distinct variables, f is a formula, and
w is not free in f, then AVIIf A VwAv({feviw) — PS(wvf)vf is
valid.

Assume the antecedent, that is is an n-interpreter, and that a is an
assigner in Ui. If Int ia (AvVIIf) = O, then the theorem obviously
holds. Assume then that Int ia (AvIIf) #= O and so is 1. Hence, Int
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ia (VwAv (fesvliw)) is in {O1}. If it is O, then the theorem again
holds; hence, assume that it is 1 and so, by theorem 12, that there is
a k in Ui such that, for any m in Ui, Int ia ("{n}) (f) = 1 just in case
m = k; hence, Int ia (1wvf) = {k} and so, by theorem 13, Int ia
(PS(wf)vf) = 1 = Int ia (AVIIf A VwAv(feviw)) and the
theorem holds.

Theorem 22. If f and g are formulas, i is an n-interpreter, and both
f and f—g are i-true, then g is i-true.

Assume the antecedent. It follows that, if a is an assigner in Ui,
then Int ia (f) = Int ia (f—>g) = 1 = the smallest member of {1,
(1—Intia(f)) +Intia(g)}; hence, Intia (g) = 1 and the theorem holds.

Theorem 23. If f is a formula, i is an n-interpreter, and f is i-true,
then |-f is i-true.
This is obvious.

Theorem 24. If v is a variable, f is a formula, i is an n-interpreter,
and f is i-true, then Avf is i-true.

Assume the antecedent. If Ui is empty, then Int ia (Avf) = 1 for
any assigner in Ui a and so Avf is i-true. On the other hand, if Ui
is not empty, then, for any assigner in Ui a, there is an m in Ui such
that Int ia (*{u}) (f) = 1 and there is no k in Ui such that Int ia
{k}) (f) is smaller than 1 by our assumption. Hence, Avf is again
i-true.

Among the valid formulas, the tautologies are of particular interest.
Some of them are listed in the next theorem.

Theorem 25. 1f {, g, and h are formulas, then the following formulas
are tautologies and so valid (%):

(1) f—(g—f) (10) ~f—~{(fag)
(2) (f>g)—>((g—>h)—>(f—>h)) (11) ~g—>~(fA8)
(3) (~f>~g)—>(g—f) (12) (f—=g)—>((g—f)—>(feg))

(4) ((f>g) > g)=>((g>f)>f)  (13) ~ (fog)—>~ (fe3g)
5) ((f—=g)—>[g—-f))—>(g—f) (14) ~ (g—f)—>~ (fog)

(6) f—>fvg (15) +f=>(+ (f>g)—>+g)
(7) g—fvg (16) f—f

(8 ~f=(~pga>~{(fvg)) (17) = 1

(9) f—>(g—>fag) (18) -fv ~ =f
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(19) fes (fv ~f) (37) fp ~f>(fe>~f)
(20) (f—>(g—>h))—>(g—>(f—h))  (38) - (fv ~f) © IV - ~f

(21) f—((f—>g)—>g) (39) -~ (fa~f) e (-fer~ - ~f)
(22) f>~ ~f (40) ~ (fp - ~f)

(23) ~ ~fof (41) ~ = (f5 ~1)

(24) f>f \42) frrger (fa8)

(25) (f—g)—>(~g—>~1) 43) Ilferp ~ (fo ~1)

(26) f—>(~g—>~ (f—g)) (44) Ilfe |- ( - fef)

27) ~f—>(f>g) (45) IIf—>( - (fe>g)—>1Ig)

(28) fvg—((f—h)—((g—h)—>h)) (46) Ili—((f— (f—h))—>(f—h))
(29) fvg—(~fog) (47) IIf—>( (f— (g—>h))—>(f Ag—h))
(30) fvge((f>g)—g) (48) IIf—((f—g)—>((f—>(g—h))—>
(31) (fag—h)—(f—(g—h)) (f—=h)))

(32) (f—>g)a(g—h)—>(f—h) (49) IIf—(( ~f—>g)—>fVv g)

(33) (f—>g)—>((f>h)—>(f—>ga h)) (50) II\-f

(34) fager~(~fv ~g) (51) II~feIIf

(35) (feg)e{f—g) A (g—f) (52) IIIIf.

(36) fv ~ferm (fp~T)

The proofs are by cases with the aid of the fact that, for any real
numbers r and s, either r = s or r is smaller than s or s is smaller
than r.

Certain of the formulas which are not tautologies are also of in-
terest.

Theorem 26. If 2 is smaller than n, then there are formulas f, g, and
h such that the following formulas are 2-tautologies and so 2-valid,
but neither n-tautologies nor n-valid:

(1) (f=>(f—>g))—>(f-g) (6) (f—>(g—h))—>(f Ag—h)
(2) (f>g)—>((f—>{g—>h))—(f=h)) (7) ~(fa~f)

(3) (~fog)—>fvg 8 (~foga~g)—>f

4) fv~f 9) (~faf)—f

(5) fa{fog)>g (10) (fe~f)—f A ~f.

(%) Of these formulas, (1) through (5) are Lukasiewicz’s axioms of the
denumerably many-valued logic of —» and ~ from the paper cited in note 2.
Also, (6) through (11), (22), (26), and (27) are formulas which Tarski noted
held in all of Lukasiewicz's many-valued sentential logics as well as in
A. Heyting's intuitionistic one in ‘On extensions of incomplete systems of
the sentential caleulus’ (in the book mentioned in note 1).
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Assume that 2 is smaller than n and that f, g, and h are atomic
sentences whose predicates are distinct and in which neither I nor 1
occurs. If i is an n-interpreter, a is an assigner in Ui, and v is the
function which assigns Int ia (e) to any formula e, then v assigns 1
to all formulas which are either n-tautologies or n-valid; but, for any
e of (1) through (10), v(f), v(g), and v(h) can be such that v(e) is
smaller than 1. Hence, none of (1) through (10) is either an n-tauto-
logy or n-valid whereas each one is obviously a 2-tautology and so
2-valid.

2. n-VALUED LOGICS
We say that
(1) r is an inference rule just in case r is a function such that
(a) there is a positive integer m such that the domain of r = the
set of all m-term sequences of formulas and
(b) the range of r is included in the set of all sets of formulas;
(2) d is a deductive system just in case, for some s and r, d = (sr},
s is a set of formulas, and r is a set of inference rules; and
(3) if f is a formula and d is a deductive system, then f is d-provable
just in case f is in every set k such that d(1) is included in k and,
for any r in d(2) and s in the domain of r, if the range of s is
included in k, then r(s) is included in k.

By an n-valued logic, we mean a deductive system d such that the
set of all d-provable formulas = the set of all n-valid formulas.
Obviously, (the set of all n-valid formulas the empty set) is an n-
valued logic. A higher-valued logic is an n-valued logic for some n

greater than 2 and a finitely many-valued logic is an n-valued logic
for some n.

We understand MP, AS, UG, and Ln as follows:

(1) MP, AS, and UG are inference rules and, for any s.

(a) if s is in the domain of MP, then s is a 2-term sequence and
either s(2) = s(1)-—>g and MP(s) = {g} for some formula g or
not and MP(s) is empty;

(b) if s is in the domain of either AS or UG, then s is a 1-term se-
quence, AS(s) = {}s(1)}, and UG(s) = the set of all u such
that, for some variable v, u = Awvs(1); and

(2) Ln is the deductive system d such that d(2) = {MP AS UG} and
d(1) = the set of all e such that, for some distinct variables v and
w, terms t and u such that w is not free in t, positive integer m,
m-place predicate p, m-term sequence of terms s, k in the domain
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of s such that w is not free in s(k), and formulas f and g such that w
is not free in f, e is one of the following (*):

(1) Itlu (7 Aw(fog)—>(f>Awg)
@) ((s(1))"(p)) s-r=>Vwwis(k)(8) Vvier~ Av~if

(3) Vwwlt—tlt (9) tlu A PStuf—f

4) VvisVwwly (10) Vw wlhivie AvIIfp

(5) an n-tautology VwAv(feviw)

(6) Vvias Vwwit—PStuf
(11)  AvIE A VwAvV(fe>vIw)—PS (avf) vi.

We say that a formula f is n-provable just in case f is Ln-provable
and that f is provable just in case f is n-provable for any n. From
theorems 7 through 11, 15, 16, and 18 though 24, it follows that

Theorem 27. If f is a formula, then f is n-provable only if f is n-
valid for any n and so f is provable only if f is valid.

It is not difficult to prove the following theorems:

Theorem 28. If v and w are distinct variables and t is a term in
which w is not free, then the following formulas are provable and so
valid:

(1) Vwwltestlt
(2) Vvvivewvly
(3) IVvvlv.

Theorem 29. If v and w are distinct variables, t is a term in which
w is not free, and f is a formula, then the following formulas are
provable and so valid:

(1) Vwwlt 5 PStvf—\V/vf
(2) Vvviva Avi—of

(3) Vvvlv Af>Vvf

4) (VvvivaAvi)— Avi

Theorem 30. If v is a variable, f and g are formulas, v is not free in
f, and f—»g is n-provable, then f— /A vg is n-provable.

Theorem 31.1f f, g, h, and i are formulas, f—(g—h) is n-provable,
and f—>(h—»i) is n-provable, then f—(g—>i) is n-provable.

(Y) Actually, (3) follows from (9). We include it here since, given any
variable w, term t, and existence predicate e, if we replace the occurrences of

\/wwlt in (1) through (11) with te, then the resulting (3) seems to be needed.
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Theorem 32. If f is a formula and v is a variable not free in {, then
f—Avf and Vvf—f are provable and so valid.

A slighly more difficult theorem is

Theorem 33. If v is a variable and f and g are formulas, then
Av(f—g)—( Avi—>Avg) is provable and so valid.

Assume the antecedent. By theorem 29, Vvvlv AAv{f—og)—
(f—>g) and Vv vlva Avi—>f are provable and so Vv viv—( Avi—>
f) is; but VvvIvAa Av(f—g)—=Vvvlv is and so, by theorem 31,
Vv viva Av(f—g)—({ Avi—>g) is. Hence, by theorem 30, Vvvlv
v Av(f>g) = Av(Avi—g) is and so Vvvlv A Av(f—>g)—>(Avf
—/Avg) is. Hence, by theorem 29, A v (f—g)— (Avi—=>Avg) is
provable and so valid,

From theorem 33, it follows that
Theorem 34. If v is a variable and f and g are formulas, then the
following formulas are provable and so valid:
(1) Av(feg)=>(AvieAvg)
(2) Av{f—g)—=(Vvi=>Vvg)
(3) Av{feg)—=(VvieVvg).
In addition, we have

Theorem 35. If f and g are formulas and v is a variable not free in
f, then (f—=>Avg)—>Av(f—g) is provable and so valid.

Assume the antecedent. By theorem 29, Vvviva Avg—og is
provable and so Vv vIv—(Avg—>g) is; hence, by theorem 31, Vv
vIv A (f>Avg) = (f—>g) is and so, by theorem 30, Vvvlv A (f—
Avg)=> Av{f—g) is. Hence, by theorem 29, (f>Avg)>Av(fog) is
provable and so valid.

Theorem 36. If v and w are variables, f is a formula, and w is not

free in f, then Avfe AwPSwvyvf and VvieVwPSwvf are provable
and so valid.

Theorem 37. If t, u, and v are terms, then tlu—uli and tIu A ulv—
tlv are provable and so valid.

Theorem 38. If w is a variable, t and u are terms in which w is not
free, and f is a formula, then ~ Vw wlt A ~Vw wlua PStuf—f is
provable and so valid.

The proof is by an induction among the members of TF. Hence,

Theorem 39. If w is a variable, t and u are terms in which w is not
free, and f is a formula, then {(~VwwltA ~Vwwlu)vtlu—
(PStufe>f) is provable and so valid.
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Hence,

Theorem 40. If v and w are distinct variables, f and g are formulas,
and w is not free in f or g, then the following formulas are provable
and so valid:

(1) ~Vwwlvi—(PS(1vf)vge>PS (v~ vIv)vg)

(2) wlhvf—(PS{1vf)vgePSwvg)

(3) Vwwhvf—(PS(1wf)vge>Vw(wlvia PSwvg))

(4) PS(wi)vgeVw(whiviAPSwvg) v ( ~ Vw wlwfAPS (1v ~vIv)vg).

If x is a set of formulas, then c is a conjunction from x just in case

either x is empty and ¢ = IIVvvlv or x is not empty and c¢ is in
every set k such that x is included in k and, for any f and g in k,
fagis in k. Also,
(1) if f is a formula, then x n-implies f just in case there is a conjunc-
tion from x ¢ such that c—f is n-provable and (2) x is n-consistent
just in case there is a formula f such that x does not n-imply f.

From these definitions, we have

Theorem 41. If f is a formula, then f is n-provable just in case

every set of formulas n-implies f.
Theorem 42. If x is a set of formulas, f and g are formulas, and
the union of x and {f} n-implies g, then x n-implies f—>g.

Theorem 43. If x is a set of formulas, f is a formula, and f is n-
provable, then x is n-consistent just in case x does not n-imply ~f.

On the other hand, we also have

Theorem 44. If 2 is smaller than n, then there are a set of formulas
x and formulas f and g such that x n-implies f and f—g, but not g.

Assume the antecedent. By (7) of theorem 26, there is a formula h
such that ~ (h A ~h) is not n-provable. Let x={ha ~h} , f = h,
and g = ~ (h—>h). Obviously, x n-implies both f and f—g. Also, if
x n-implies g, then x n-implies ~ (h—>h) and so ~(h A ~h) is n-
provable, then x is n-consistent just in case x does not n-imply ~f.

Theorem 45. If 2 is smaller than n, then there are a set of formulas
x and formulas f and g such that x n-implies f—>g, but the union of
x and {f} does not n-imply g.

This can be shown by letting h be as for theorem 44, letting x =
{~h}, letting f = h, and letting g = ~ (h—>h).

Theorem 46. If 2 is smaller than n, then there are a set of formulas
x and a formula f such that x n-implies f, x n-implies ~f, and x is
n-consistent.
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Assume the antecedent. By (7) of theorem 26, there is a formula f
such that ~ (fA~f) is not n-provable. Let x = {fA~{f}. Obviously, x
n-implies both f and ~f. Also, if x is not n-consistent, then x n-im-
plies ~ (f—f) by theorems 25 and 43 and so ~ (fA ~f) is n-
provable. Hence, x is also n-consistent.

Because of theorems 32 through 40, it seems likely that every n-
valid formula is n-provable and so that Ln is an n-valued logic.
Nevertheless, unless n = 2, this is not provable in quite the usual
way (*) because, among other things,

Theorem 47. If 2 is smaller than n, then there is a 1-membered set
of sentences x such that x is n-consistent and there is no n-interpreter
i such that, for any s in x, s is i-true.

Assume the antecedent and let f be as for (7) of theorem (26); this
f is, of course, a sentence, Also, let s = f A ~f and let x = {s).
Obviously, x is n-consistent; yet, there is no n-interpreter i such that
s is i-true.

3. HIGHER-VALUED LOGICS VERSUS 2-VALUED LOGICS

We now turn to the question of the relative adequacies of higher-
valued and 2-valued logics.

It is difficult to find any sense in which higher-valued logics are
more adequate than 2-valued ones. The higher-valued ones do pre-
serve truth with respect to interpreters which determine more than
2 truth values whereas the 2-valued ones do not. This could be under-
stood as meaning that higher-valued logics allow us to express our-
selves in a more carefree manner than 2-valued logics do; if, for
instance, we use a 3-valued logic, then we can interpret our sentences
in a way which changes some of our falsehoods into mere half-truths.
But then the negations of these sentences plus a vast array of logical
principles sink to the level of half-truths. Moreover, if we want to
speak only truths, we can speak half-truths no more than we can
falsehoods and so have not gained much and lost a great deal by
admitting half-truths. Besides, how many truth values should we
settle for ? The more the merrier ? Or just 3 ? Finally, of what impor-
tance is such a reinterpretation to our deductions anyhow ? For, by
theorem 2, any n-valid argument is 2-valid and, by theorem 6, any

(%) For an instance of this way, the reader is referred to the author's ‘Con-
tributions to syntax, semantics, and the philosophy of science’ (in the Notre
Dame Journal of Formal Logic, vol. 4, 1963).
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2-valid argument can be translated into an n-valid one by prefixing
each of the atomic formulas occurring in it with |-.

Although it is hard to find any sense in which higher-valued logics
are more adequate than 2-valued ones, there are many in which
2-valued logics are more adequate than higher-valued ones. For
example (°):

(1) There is no finitely many-valued logic which is less than 2-valued;
thus, 2-valued logics are in a sense the most economical of the finitely
many-valued logics.

(2) Every higher-valued logic is just a fragment of every 2-valued
logic in the sense of theorem 2.

(3) Every nonzero formula is provable in a 2-valued logic by theorem
3; on the other hand, no higher-valued logic has this kind of univer-
sality by theorem 4.

(4) By theorem 26, many of the most plausible and important prin-
ciples of reasoning are not provable in higher-valued logics although
they are in 2-valued logics. In particular, many forms of indirect
reasoning, the principle of excluded middle, and even the principle
of non-contradiction are not provable in any higher-valued logic.
(5) The 2-valued logics are the only finitely many-valued logics whose
sentential portions are syntactically complete in the sense that they
have no extensions by addition of purely sentential axiom schemata
which add some, but not all formulas to their theorems (7).

(6) The metamathematics of any higher-valued logic is artificial and
weak in the sense of theorems 44 through 47 (°).

Thus, higher-valued logics do not seem to have enough to offer to
be good alternatives to 2-valued ones. Nevertheless, they are of great
philosophical interest and their study gives us a better understanding
of both the logical constants and of 2-valued logics themselves.

Stockholm Rolf Scrock

(%) It should be noted that analogues to most of the clauses listed here are
applicable to intuitionistic logics.

(") We content ourselves with just making this vague assertion here since
its elaboration would lead us far afield. Related results which are in certain
respects stronger were given by Tarski inm the second of his papers mentioned
in note 3.

(®) This inadequacy is not just an accidental result of the syntactic and
semantic definitions given here since no plausible substitutes for them can
lead to the validity of such sentences as ~ (f Awf) for all sentences f. Notice,
however, that theorems 44 through 47 have to do with the systems Ln
(although analogues to these theorems for n-valued logics can be established
by the same methods).
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