THE DEDUCTION THEOREM IN THE COMBINATORY
THEORY OF RESTRICTED GENERALITY

HASKELL B. CURRY

1. Introduction. This paper contains a formulation of a system
of combinatory logic containing a notion of restricted generality, and
a detailed proof of one of its basic epitheorems. The paper is based
upon [CLg] ('), and acquaintance with that work is necessary in or-
der to follow all the details; but the explanations made in §§ 1-2 are
intended to make the main ideas clear without requiring such ac-
quaintance.

As explained in the introduction to [CLg], combinatory logic is di-
vided into two main parts, called pure and illative combinatory
logic respectively. The first of these deals with the combinators by
themselves; the main features are summarized below in § 2. Illative
combinatory logic, on the other hand, is concerned with combinators
in association with the more usual logical notions such as implica-
tion and quantification; it is formed by adjoining to pure combina-
tory logic one or more “illative primitives” expressing these notions.
Three stages of illative combinatory logic, called ¥,, #5, #3 were dis-
tinguished in [CLg]. The system %; was based on an illative primi-
tive F, in terms of which the fact that a notion is a function from
one category into another can be expressed; and consequently this
theory is called the theory of functionality. In %, the illative primi-
tive, &, can express the fact that a property holds for all members
of a given category; hence the theory is called the theory of res-
tricted generality. Finally, in %3 there are two illative primitives,
IT and P, expressing absolute generality and implication respectively;
the system is therefore called the theory of universal generality. On
the assumption that there is a universal category E, the three sys-
tems appear to be of increasing strength in the order named. We
shall use ‘#y’ to indicate the underlying pure combinatory logic on
which all of these are based.

The theories #, and #, were studied in detail in [CLg]. The pur-
pose of this paper is to record a new result concerning #,. This sys-
tem %, was not taken up in [CLg] for the reasons stated there on
p.274; but it was the subject of rather extensive research in the

(*) For the explanation of the letters in brackets see the Bibliography at the
end of the paper.
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early 1940s. The results of that research were never published in
full; but under the stress of war conditions only brief announce-
ments were made in [CFM] and [ACT]. The result stated here is
new in that it goes a little beyond those announced in those papers;
but, as compared with the whole sweep of problems considered
there, it is rather special in scope. It is presented here with detailed
proof; and it is intended to be understandable, without reference to
[ACT], provided the reader is acquainted with [CLg] in the sense
explained above.

The plan of the paper is as follows. In § 2 there is a summary of
the main features of the underlying theory #, Then the theory %,
and the result here proved concerning it, are discussed informally in
§ 3. The formal treatment begins with § 4, which is concerned with
definitions and their immediate consequences. The next two sections
(§§ 5-6) are concerned with side issues; viz., the relation of #, to
implication and to #;. The formulation of the axiom schemes for
%, is taken up in §7. This is followed, in §8, by a discussion of
the notion of canonicalness, which is necessary, as shown in § 3, in
order to avoid inconsistency. The final formulation and proof of the
deduction theorem occupies §9.

2. Resumé of underlying theory. All illative systems are based
upon pure combinatory logic as underlying system. This system will
be called here ;. It is treated in detail in [CLg] Chapters 5-7. How-
ever, since the details of the formulation and proof are irrelevant
for the illative theories, the principal features and notations will
be recapitulated here as follows:

a. The theory deals with certain objects called obs. Nothing is
said about the nature of these obs. They may, if one likes, be taken
as the wefs (well-formed expressions) of a suitable object lan-
guage (*); but no such object language is specified, nor do any sym-
bols of it appear. In interpretation the obs may stand for concepts
of an unrestricted nature, including functions of any kind; some of
them may be, intuitively speaking, meaningless, Block letters are
used exclusively for particular obs; italic capitals and some other
letters as variables ranging over obs.

b. The obs are generated from certain primitive ones, the atoms,

(®) For a way of doing this see the next footnote.
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by a single binary operation, called application. This is indicated by
juxtaposition. In interpretation, if X is an #n-variate function, XY is
the ob formed by giving the first argument the value Y; this will be
a mn-1-variate function, or, if » = 1, a constant; otherwise it is mean-
ingless. However it is understood that any combination of the atoms
formed by application is an ob; and that obs formed in distinct ways
are distinct as obs. Parentheses are thus necessary, and are used ac-
cording to the usual conventions, with association to the left (%

c. There is a single one-place predicate, symbolized by the Frege
prefix ‘’. The elementary statements are thus of the form

X,

where X is an ob. We read this as saying ‘X is asserted’. The nota-
tion (*)

le Xz, P Xm = Y
is to mean that from the premises

(®) In view of the common insistence that the obs be explicitly represented
as wefs, it is pertinent to suggest the following way of doing this. Let the
object-alphabet consist of two letters ‘¢’ and ‘'. Let the atomic wefs be as
many as desired, perhaps all, of the following expressions

*CC,
#CHCC,
HCHC CC,
i.e. those formed by prefixing ‘#¢’ any number of times to a single ¢’. If X
and Y are wefs, then XY is the wef obtained by writing first %’ then X (i.e.
the wef named by the U-expression for which ‘X’ is a temporary abbrevia-
tion), then Y; e.g., if X and Y are the second and third atoms in the above
list respectively then XY is
€ R CCH Ok Ok CC.
A composite wef always starts with two stars; the first constituent (the X)
begins with the second star, and the second constituent (the Y) with the first
star following the end of the first constituent, It is then effectively decidable
whether an expression in the alphabet consisting of ‘¢’ and ‘¢’ is a wef, and
if so how it is to be constructed from the atoms by application; i.e. the sys-
tem of wefs is tectonic in the sense of [CFS]. A calculus (in the sense of [CFS])
for generating the wefs for the case of infinitely many atoms is as follows:
Ry (generates the atoms):
|- %CC
- %cx”,
R (generates the wefs):
x0 L at
x, 0t xy.
This representation is suggested by the notation of Chwistek. A similar sug-
gestion, but with %’ in the U-language, was made in [CLg] § 1E3, (q.v. for
references).
(*) Due to Rosser [MLV].
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l--Xl, = X?» sees "“Xm
we can derive
Y
by the rules of the system.
d. There is defined an equality relation, symbolized by infixed
‘=", such that for any obs X and Y
X=Y
is defined to be the same as
FQXY,

where Q is a particular ob. This equality has the usual properties;
in particular we have

Ruie E@. If X =Y, then X Y.

e. The system is combinatorially complete in the following sense.
Let #y(x),, be formed by adjoining to %, the indeterminates x;, ...,
Xm; Le. these are not already obs of %, and they are adjoined as
distinct obs without any further properties. Let ¥ be an ob of #y(x),,

(in general we shall use German letters as variables ranging over
obs of such extensions). Then there is an ob X of #, such that

Xz, ... %, = %

is derivable in F,(x),. A particular such X will be indicated by the
notation

[x ...y %] %
This is defined by an induction on m, so that

% Yo o0 ¥l X = [%] ( [y oo 0] B),
where the ob [y, ..., ¥,] ¥ is defined relative to an extension in
which x is treated as a constant.

f. Equality is such that an extensionality principle, called (),
holds. This means that if X and Y are obs of #, such that in
Fo(%)m, as above,

XXf oo X = ¥y oou 1%
then in ¥, itself we have

X =Y.
This applies also for any extension of %, so that it would be suf-
ficient to state the property for m=1.

g The [x;, ..., x,]% of (e) is a combination of the constants in
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% and the primitive combinators, |, K, S, where

(1) I = [x]x
(2) K = [x¥y]x
(3) S =[xy 2). x3(yz).

Other combinators of some importance are

4 B = [x . 2] x(y2),

(5) C =[xy, 2]. x2y,

(6) W = [x,5]. xyy,

7) O = [x,v, 3 u]. x(yu)(zu).

For further special combinators and notations reference must be
made to [CLg].

3. Informal Discussion. The ob =, whose adjunction to the theory
of combinators forms %, is associated with a rule, viz,

Ruie E. EXY, XU YU.

According to this rule, Z can be interpreted as a relation of inclusion,
or formal implication, between arbitrary obs, If we interpret X and Y
respectively as properties ¢, 4, then the ob EXY can be understood
as the proposition (expressed in the notation of the Principia Math-
ematica) @xD apx. Here, of course, X and Y are not restricted to
belong to specific types; and ZXY may not be interpretable as a prop-
osition; but the assertion of ZXY means that YU is asserted for every
ob for which XU is asserted, so that EX expresses generality over
the range X.

As stated in [CLg] § 8D, the other illative concepts P (implication),
IT (universality), and F (functionality) can be defined in terms of =
thus:

P = [xy]. E(Kx)(Ky) (= WEK),
II = EE,
F = [x.y.2]. Ex(Byz).
From these definitions the associated rules follow, viz:

Ruie P. PXY, XY,
Ruie II. 11X, EY - XY.
Ruie F. FXYZ, XU X(ZU).

Here of course RuLe P is the ordinary rule of modus ponens.

The motivation for introducing = is the fact that most generaliza-
tions — some say, indeed, all generalizations — are valid only over
a restricted range; one can make this range explicit by the use of E.
In ordinary predicate calculus one has a fundamental, supposedly
very restricted, range of ‘individuals’, and what is there called ‘univer-
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sal quantification’ is really generality with respect to this restricted
range. In higher order functional calculuses many different ranges
enter; and a means of making them explicit is then useful.

When we wish to consider generalization with respect to two or
more variables, one thinks at first of the analog of the Principia’s
@xy D ,\pxy. This cannot be represented directly by E; one would
need an analog for E for functions of degree two. But if we regard x
as fixed for the moment, we can regard the y as varying over a range
which depends on the value of x; then we allow x to vary over a
certain range (°). This leads to a statement which, in Principia nota-
tion, would be

P1X D 5 exy D pxy. (%)

This can be expressed by E. In fact let X;, X,, Y correspond to g,
@2, 1 respectively; then the relation just written becomes

EX([x]2(Xex) (Yx)).

If we bring in the formalizing combinator @ from [CLg] Chapter 5,
(especially § 5E), this becomes

EX(PEX,Y).
In this way we can define a E,, viz.

Be = [%y, %5, ¥].Ex((DExqy),
which expresses a restricted generality relation for functions of two
variables. Continuing in this way, we can define by induction a E,,
expressing generality for m-variate functions, for any value of m.
The formal definitions will concern us in § 4.

The deduction theorem for restricted generality is now the fol-
lowing principle. Let #,(x),, be the system formed by adjoining xy,
v Xy as indeterminates (") to F,. Let &y, ..., E,, be obs of %, and
let #,(E; x),, be the extension formed by adjoining to %s(x),, the
following axioms

- E1%

- By Xy,
(1)
b EmiXg. .. Xy
Let X be a combination of constants and x,, ..., x,, such that

(%) Compare the situation in the theory of iterated integration when one
integrates over a plane region; the limits of the second integration depend
on the first variable.

(®) If @ is universal this reduces to the case previously considered.

(") When m=0, this F(x),, is to be the same as F,.
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@) X
holds in #5(E;x),,. Then we have in %,
(3) FEn€i-- - En([Xp -0 Xm] F).

This principle cannot be accepted for unrestricted &, ..., E,. For,
as we shall see in §4, this would entail the ordinary deduction
theorem for P (as implication). Hence, since modus ponens holds
for P, we could infer by the Gentzen method that (PW), viz.

(PW) - P(PX(PXY))(PXY),
or in ordinary notation

FX D> . X>oY: o.XoY,
would hold for all obs X, Y. This, however, is incompatible with the
combinatory completeness which characterizes the theory of com-
binators. For let Y be an arbitrary ob. By the use of the paradoxical
combinator we can find an ob X (viz. Y(SP(CPY))) such that
(4) X=X5X35Y.

Then we can argue as follows:

FX>XoY:o.X>Y (by (PW)).
FX>XoY (by (4)).

(5) X (Rule P).
XY (by (4)).
Y (by (5), Rule P).

Since Y is arbitrary, the system would then be inconsistent (%).

In order to avoid this contradiction we must impose restrictions
on the E,, ..., E,. Here we define a class of obs, called canonical obs,
and restrict &, ..., £, to be a sequence related (*) to that class. The
formulation of this class, which is here rather different from that
in the theory of functionality, will concern us in § 8. We shall use
lower case Greek letters for obs which are assumed to be canonical,
or to be in some way restricted in relation to other canonical obs.

Our objective will be to formulate axioms sufficient to give the
deduction theorem for the case where E;, ..., £, are so related to
canonical obs. Taking canonicalness informally, as we do, we shall
arrive at an infinite number of these axioms. The question of whether
canonicalness can be formalized so as to have a finite set- of axioms

(®) This contradiction differs from that in [CLg] in that it follows from (PW)
alone, The possibility of such a contradiction was indicated in [CLg] p. 258,
footnote 1.

(*) The &’s in this paper are actually canonical, but certain generalizations
seem possible. These are left for later study.
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is not investigated. This and some related questions are left for later
study.

4. Formal preliminaries., We shall now make formal definitions
of the sequence of obs E, and some related notions, and shall derive
some properties which are immediate consequences of the definitions
and Rule Z. The work has thus a notational, technical character. It
may be considered an addition to [CLg] § 8E.

The combinator ®”,, which appears here, was defined in [CLg]
§ 5E. Its properties may, however, be obtained by ({) (§2F) from
the ‘“reduction rule”.

(1) Q" XY - YZie B = XY 131820 B} (YoB1o o By) oor (ViBiew B
When m is not given it is supposed to be 1; when # is not given it
is supposed to be 2.

DEerinITION 1.

2) By =1,
3) Enet = [0V 0 ¥ 2L EX( D@y Enyy--Ya2). (1)
Tueorem 1. E; = E.

Proof. Putting n =0 in (3), we have

—E; = [x 3] Ex (0Ep2).
By [CLg] § 5ES8,
—E; = [x 2]E2x(Blz) = [x, 2]Exz = &, qe.d
Tueorem 2. If X, &, ..., E,, Uy, ..., u, are such that
(4) —EREp - B X,
(5) - Ekufug cen Uy, B = 1, 2, R
then
(6) - Xuy ..U, .

Proof. For n =0, (6) follows from (4) by Rule Eq.
To complete an induction on # it suffices to show that (6) follows
from (4), (5) on the supposition that the theorem has been proved

(1) Note that (3) is the case m=1 of Theorem 3. We could equally well
have taken the case n=1. The latter was, essentially, what was done in de-
fining the F-sequence in [CLg] § 8E. It now seems better to state all such de-
finitions so the functional part ([CLg] § 5C) of the definiens in the induction
step is simple, the complication being in the argument component. This re-
quires a change in the definition of the F-sequence, but this is a pure tech-
nicality.
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with # — 1 in the place of n. By (3), if # > 1, we conclude from (4)
that

= EEI((DnEn- 1E2- O Eux)
By (5), for =1, and Rule E we conclude from this that

@8, 182 EnXuy

= b= B 1(Eety) . (Entty) (K1) (by (1)).
From this we have (6) by the theorem with #—1 for #, and Esu,,
-+.s Eny, Xuy, respectively for &, ..., E,_, X.

Tueorem 3. For all m, n=0,1,2, ...,
(7) Em+n = [xl""Jxm'yll""ymz]'smxl“'xan(q)mn+15r1y1"'ynz)-

Proof. For m = 0 this follows from (2), in view of the fact
X0 = T for any X. To complete an induction on m it suffices to
prove, on the assumption that (7) holds, an analogous statement with
m + 1 in the place of m.

By (3) we have

(8) Eminst = [ Xy X Yo oon, ¥ E0U,
where

U Dy s 18m s n¥eees XY 1 VoS
= [U] B (). (%20) (y120) ... (Y 20) (310) (by (1)).

By the hypothesis of the induction we have

U = [u] E,(x)...x,u) (@™ E,(y120)... (v,) (31))
(9) == (I).m+1me1---me (bY 1))'
where

V = [u]®”, (B, (yi#)...(v,u) (zu)

= @, 1(0™,41E,) ¥y.-.Yn3
= q)m.}-t n+ IEnyl ce¥Yn2.
Returning to (9) we have
BuU = Eu(D, , 18,%...x,V)
Sl UKy X,V
Ep1ux . x (@0n+ By y,3).

If we put this (8) we have the desired analog of (7). This completes
the proof.

Tueorem 4. If &y, ..., Ep My wooy My X, wy, .0, are such that
(10) |_Em+n§1“-Em7h oo ‘r],,,x,
(11) I'—gku'i"'uk k o 1, 2; 1 m;
then

b Ep(Mitdy - 2y ... (aley. o 0) (Xuy. o tty,).
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Proof. This, in view of (7), is a combination of Theorems 2 and 3.

The next definition gives an adaptation for our purposes of the
formal implication notation of the Principia mathematica (already
used in § 3).

Derinrrion 2. If X and 9) are combinations of constants and the
variable x, then

¥5,9). = . E (({R)([x]9).

TueoreMm 5. For each k = 1,2, ..., n, let %, be a combination
of constants and the variables x, ..., x;; and let Y be a combination
of constants and x, ..., x,. Let

Xy =[x, x%6)%Ep Y=[xn...%] 9.
Then

(12) %1 Dx]_.%gD---Dxn_p%n:).xnsn. = .E,in...XﬂY.

Proof. Let the 3; be defined inductively from 3, backward thus:
(13) 3 = X229 = E([xna]Xn) ([x]D)),
(14) 3 = X2kt = E([xp]Xr) ([x2]Z5+1).
Then we have from (13)
(15) 3r = E(X, 2y .2, ) (Y. X0 1),
Suppose that, for a definite %,

a1 = Zpw(Xpu 12y 20 (X2 xk) (Y. %),
Then

(*:]Bk+1 = Cp_p 18y 2Kk 1% X5 1) 0
(X2 —q) (Vg2 _y).
From (14) we should then have, by Definition 1,
(16) 8k = Ep_py 1 XXy Xr_1) oo (Xpyen X ) (Yoq. .20k 1)

Since (16) holds for # = n by (15), we have an inductive proof that
(16) holds for all # = 1,2,...,n. For &k =1 we have (12), q.e.d.

TuEOREM 6. Under the hypotheses of Theorem 1, let

(17) % Da1- % Do - Dagoye Xp 22,9

Let ay, ..., a; be constants, and let ¥'; (%)) be obtained from %; (7))
by substitution of a,, ..., a;, respectively for xi, ..., xy; the remaining

variables xyy, ..., %, if any, being left unchanged. Let the a, ..., a;
be such that

(18) % i =120k
Then
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%’k.'.]DI[‘-+[-{’J'£+2:)Z!;+2- csDap - -?:\-’nDIn SI]’

Proof. This follows from Theorem 5 and Theorem 4.
For purposes where extreme abbreviation is necessary the following
is useful.

DeriniTion 3. Let &, ..., &, be obs; and let X be a combination
of constants and the variables x,, ..., x,,. Then
(E;x)m% = Elxijiﬂl D-'Fm-l--'xm:)zmg-

5. Relations to implication. An ob P representing implication
was mentioned in § 3. We consider here some formal matters con-
nected with the relations of this P to E. To give the matter organiza-
tion, the study is directed toward substantiating the statement, made
in § 3, that the ordinary deduction theorem, using P, follows from
that stated in § 3; but the intermediate theorems are useful for other
purposes, and may be more important than the end result.

DerniTION 4. XD Y=PXY.
This definition allows us to use the ordinary implication infix ‘>’
and to translate ordinary formulas about implication into combinatory
notation and vice versa. Note that in view of Definition 2 of § 4 and
the definition of P in § 3 we have

(1) XoY = XY,
where X is any indeterminate not appearing in X or Y. Thus the

notation is not in conflict with Definition 2 of § 4.
To represent chain implications of the form

Xy D KXo/ wen Xy 3 Y
we need an ob P, defined as follows (*).
DEeFINITION 2.
Po= 1|,
Poot = (Y1 Y08 Px(Py..y,3).
It is then clear that

1)) X; 5 .X; . ... 0. X,0Y =P, X,..X,Y.
The deduction theorem for P is the following: If
(3) Xy Xp Y,

then

(4) ~PaX; ... XY,
(1) Essentially the same as in [CLg] § 9E (7) and (8), p. 315.
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Assuming the deduction theorem for =, we shall establish this.

The proof will show that the theorem holds for canonical X, ...,
X,,» provided that for such X; the g, ..., §,, where
(5) E =KX r=12..,m

form a sequence satisfying the canonicalness restrictions of the
deduction theorem for E.

Tueorem 7. K(E,Y,...Y,Z) = @, En(KY))...(KY,)(KZ).

Proof. By (C) (§2f) and §2g(2),
K(EmYl 1 'sz) = [x] EmYl- Ynl
= [KIEn(KY)...(KY,%)(KZ2)
= @y, 1En(KYy)...(KY,) (KZ), q.e.d.

Traeorem 8. PX(E,Y,...Y,Z) = E,,, (KX)(KY,)... (KY,,) (KZ).

Proof. By the definition in § 3,

PX(EmY1YmZ) = E(Kxi) (K(EmYl"'YmZ))
E(KX)) (@, , 1En(KY)...(KY,,)(KZ)) by Th.7
B, 1 (KX)(KY))... (KY,)(KZ) by Df. 1.

i

THEOREM 9. Pm = [®ys s X y]Em(le)(K2x2)“.(Kmxm) (Krny)_

Proof. This is clear by definition when m =1 (also for m = 0).
Suppose it is true for a given m, then
Pps1XYiee Ym& = Px(Pyyy...ym2)
= Px(E.(Kyy) (K%5)...(K"y,,) (K"2)) (Hp. ind.)
= B, 1(K%) (K3,)...(K"+1y,,) (K™ +1z) (Th. 8)
By (C) (§2f), this completes a proof by induction on .
Tueorem 10. Let X, ..., X,,, Y be such that (3) holds, and let

the &, ..., E,, defined by (5) be such that the deduction theorem as
formulated in §3 holds for them. Then (4) holds.

Proof.
Suppose that - Exy...%,. r=12..m
Then by Rule Eq (§2d) ~ X,. r=12..m
Hence by (3) Y.
Then by Rule Eq, — K"Yx;...x,,.

Therefore, by the deduction theorem of § 3,
- Ep&ie-Em (KY)
In view of (3) and Theorem 9, this is (4), q.e.d.
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6. Relation to #, (**). It was shown in [CLg] § 10E that, if F is
taken as primitive, then there are two obs E' and E”, viz.
= [x, ¥] Fxyl,
=7
[x, y] Fxly,
either of which satisfies Rule =. Furthermore these two obs cannot

be proved equal in the system #; on the other hand if F is itself
defined in terms of E as in § 3, then

(1) E=E =&
Thus (1) holds in #,, but not in #,.

Suppose now that we consider in #; the equation
(2) [x.y.2,u]Fx(By2)u = [x,y,3,u]Fxy(Bzu).

This equation is certainly valid in #,. In fact, by the definition of
F in #, we have

Fx(Byz)u = Zx(B(Byz)u),
Fxy(Bzu) = Ex(By(Bzu));

by § 2 (4) and (), (cf. [CLg] Theorem 5D3)
B(Byz)u = By(Bzu),

and hence (2) follows by (). On the other hand if we take F as
primitive and postulate (2), then we have

1[Il

[x

[l

='xy = Fxyl (by df.),
= Fx(Bly)l (by [CLg] Th. 5D2),
= FxI(Byl) (by (2)),
= Fxly (by [CLg] Th. 5D2),
= E"xx (by df.)
Thus by (t),

!
= '

1]

If we define E, e.g., to be &', then (1) will hold; furthermore

Fxyz = Fxy(Bazl) (by [CLg] Th. 5D2),
= Fx(Byz)I (by (2)),
= Ex(Byz) (by df).

Thus postulating F as primitive with (2) as axiom and = defined
as & (or E") is equivalent to postulating = as primitive and defining
F as in §3.

This suggests that one way of formulating #, is to adjoin (2) to

¥, as additional axiom. The system so formulated we shall call
(*®) The considerations of this section are not needed for what follows, but

are inserted for their intrinsic interest. There is more dependence on [CLg]
than in the rest of the paper.
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F13. We may use superscripts etc. to distinguish different species
of it, just as we did with #,. The following are some properties
which are valid in it.

Teeorem 11. F,X,..X, Y(B*ZU) = F,X,..Xn(BYZ)U.

Proof. For m = 1, -this is true by (2). To get an induction on s,

we proceed thus:
Fm+ IX1' “Xm+ IY(Bm+1ZU)
Xy X, (FX,, . Y)(B?(BZ)U) (by df. of F,, and B,,),
X1 - Xm(B(FX,,,1Y)(BZ))U (by Hp. induction),
Xl"'Xm([v]FXnH]Y(BZ‘D))U
mX1--- Xn([0]FX,,, 1 (BYZ)2)U (by (2)),
XIXHZ(FXJIH-I(BYZ))U (by (Q))s
= F,.1X.. X X0 1 Y(BYZ)U (by df. F,)

This completes the induction.

The next theorem concerns the notion

(v i) oo (W itom) X

defined in [CLg] § 10E1. Since (2) holds, we can drop the accents.
The f,, ..., f,, are arbitrary obs.

Turorem 12. (viix) ... (VX)X = Fofi...InlX, where
X = [%)nxu] X

Proof. For m = 1 this follows by the definition ([CLg] § 10E1, (4)).
For induction on #m we have, since
[%6 o0 X 1] X = Xy,
(Vhx1) ...V fmXm) (V Fn s 1Xm 1) X
= (VHx) (V%) .. (Vims1%me1) X) (by df.),

= (Vi) (Fufae o fon o 11 (Xx1)) (Hp. induction)
= Ffil([%]Fpufo. - Fr o 11 (Xx1)) (by df.),

= Ffi(BI(Fufo...fm. X (by (2)),

= Ffi(Fufo-- fm DX (by [CLg] Th. 5D2),
= Fuo1fie-FmailX (by df. of F,,).

This completes the induction.

TueoreM 13. Let ¥ be an ob in an extension formed by xy, ..., %,
such that

(3) =V Ex) . (V Enin) X

Let ), (i = 1,2,...,m) be an ob in the extension formed by vy, ...,
¥, such that
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(4) + Fanme-- maEiYi,
where

Yi = [ye o0 Y)Y i = 1,2, .0,
Let 3 be formed by substituting 0);, Vs, .... Ve for x,...x, n X
Then
(5) (VY1) (VNaY0) 3
Proof. Let
X = Byl X
Then by (3) and Theorem 12,

6)  —FnE. EalX.
Also,

8 = X(Yyyi.¥) - (Yod1-¥n);
and hence, by (C),

Z = [Vl = O XYY,

Now @", is a stratified combinator; hence, by the stratification
theorem (**) one can deduce in the basic theory of functionality that
it has the functional character F,,,;(F,E;...E,0) (Fni..maE1) ...Fomu...
NuEm) (Fami-- ML), From this, with T = |, and (4), (6) we have

~ Fant..m,1Z.
By Theorem 2, this is the same as (4).

Remark. We could not apply directly the substitution theorem
of [CLg] Theorem 9D3, because of special assumptions made in that
theorem. The detour via the functional character of @, was nec-
essary in order to get the theorem, and might well have been used
to get the theorem in [CLg]; but there the interest was in getting
an F-deduction.

If B in [CLg] § 9D3 consisted of (4) and (6) only, then there might
be a difficulty because X is not a variable. This does not cause
trouble in functional character of @®,,.

Note. Theorem 13 is the only theorem considered here which in-
volves any axioms of #;. As given it is valid in %,,, since it used
| as an F-simple.

7. Formulation of ¥,. As a formulation of #; system %2 is not
fully satisfactory because the axiom schemas for #; are based on

(1% [CLg] Th.9D1.
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generalization with respect to univariate premises only, For bivariate
functions we get only theorems of the form

0X D fy Dy v(fxy),
whereas in F3 we may need those of the form

0X D fxy Dy yxy.
The situation is similar to the predicament we should be in if we
could evaluate double integrals over rectangles only.

Nevertheless the formulation suggests axioms to choose for a more
adequate formulation. Thus the scheme (FK) becomes in our present
notation

—ox 2.0y D .a(Kxy)
= lax D0y D .ox
This suggests the axiom scheme

(1) - oX D,fBxy D .ax,
ie.
(2) — Eaaf(BKa).

The axiom scheme (FS) becomes similarly
o D, p7 Dyy(xue). Dan o,3(vu). D az DO,y(xz(yz)).
Here, if we put fu for (3, we have
o O, puv O,y(xuo). Dytau O, fu(yu). D oz D,y(x2(y2)).
This in turn suggests the scheme
(3) ot D,.fuv O, yxuv. D au D,fu(yu). O,.03 D,yxs(ys).
This is the axiom chosen for (ES) in [ACT]. Note it can be written
(4) - Esaf(yx) D2.Ea(SPy) 2 ,Ea(S(yx)y).
A possible alternative would be the scheme

(5) oau D,.fuv. Dyuv, Oan O ,pulyu). O.az O,y3(y3),
ie.
(6) + Zsafy. D ,Za(Spy) 2 ,-Ea(Syy).

This scheme is sufficient for the purposes of this paper. It follows
from (3) by substitution of Ky for y. The converse deduction of (3)
from (5), requires substitution of yx for y and generalization with
respect to x. Whether this circumstance introduces problems later
is not yet entirely clear. Accordingly (3) is retained as the axiom
scheme [ES] for the time being; it may be possible later to replace
it by (5).

We adopt the notation
[EK] = [xy]E:%y(BKx)
[ES] = [x.y.3]Esxy(2u) D,Ex(Syv) D,E.(S(zu)v) .
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then the schemes (2), (4) are respectively
- [EK] af,
~ [ES] afy:

while the scheme (5), (6) is
- [ES] af(Ky).

8. Canonicalness. We turn to the formulation of the restric-
tions to be imposed on the obs denoted by Greek letters. To this end
we formulate a class of canonical obs, The method of doing this
is rather different from that used in the theory of functionality; for
here a canonical ob need not be, in interpretation, a category, but
may be thought of as a predicate of any number of arguments,
or, in other terms, as a concept of any degree. It might be possible
to distinguish canonicalness of different degrees; but it seems likely
that we shall get a simpler formalism by taking a single concept of
canonicalness which applies to all degrees.

The definition of canonicalness is an inductive one, and it is not
asserted that the question of whether or not an ob is canonical is
decidable. But the definition will be such that if X = Y and there
is a proof that X is canonical, then there will be a proof that Y is
also. Also any consequence of canonical premises will be canonical
if the theory is Q-consistent.

Dermnrrion 5. X is canonical just when its being so can be de-
rived by the following rules:
(a) Certain atoms #; are canonical. These are atoms of the under-
lying theory, and so are not available as adjoined indeterminates.
(b) If we define Q by
Q = [xy]E(SI(Kx))(SI(Ky)),
then
E(SIKU))(SI(KV))
is canonical for any U, V. We abbreviate this as [QUV].
(c) EUV is canonical if U and V are canonical.
(d) If U is canonical, then UV is canonical for any V.
(e} If {l is canonical and x is an adjoined indeterminate, then
[x] U is also canonical.
(f) If U is canonical and VU (%), then V is canonical.

Tueorem 14. If X is canonical and x is an adjoined indeterminate,
and X' = [Y/x]%, then X' is canonical.

('%) Here > is the strong reduction defined in [CLg] § 6F.
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Proof. We use an induction on the number of applications of
(a) — (f). We divide into cases according to the last rule applied.

(@IfX=8X=%

(b) If ¥ = [QUYB], then X'= [QU'V'],
where U’, V' are, related to UY respectively as X to X.

(c) If ¥ =EUB, then X' = EU'V’. By the hypothesis of the in-
duction, U’ and V' are canonical; hence X’ is.

(d) Let ¥ = UDB, where il is canonical. Then X’ = U'V’ and again
U’ is canonical.

(e) Let X=[u]ll. Since the case where x does not occur in ¥ is
trivial, we have u=~x. Since u is an adjoined indeterminate relative
to the extension in which Y occurs, # does not occur in Y. Supposing
that the algorithm used is (abcf), it follows by [CLg] Theorem 6D4
that

X'=[u] U.
By the hypothesis of the induction U’ is canonical, hence again X'
is.

Remark. There are typographical errors in [CLg] Theorem 6D4,
in that = and = are confused. If the algorithm is (abcf), identity
signs can appear throughout,

(f) Let ¥9), 9) canonical. Then X'>~Y’, and Y’ is canonical.

Remark. The validity is not obvious in regard to strong reduction,
unless Y is constant, because of the H-transformation at the end
of a strong reduction; but the A-prefix as used can be with regard
to variables not occuring in Y.

TueoreM 15, A mnecessary and sufficient conditionthat X be
canonical is that there exist indeterminates xy, ..., x,,, and an ob %
in the extension formed by adjoining them, such that an ob of one
of the types (a), (b), (¢) is a leading element in ¥ and

Xxy... %, —%.

Proof of sufficiency. Such an % is canonical by (d) and so [x1,
..., X,;]% is by (e). Then X is by (f).

Proof of necessity. We proceed by the same type of induction as
in Theorem 14. In cases (a), (b), (c) we can take X=X, m=0,

(d) Let X = UV, U canonical. Let il be associated with U. If m =0
take ¥ = U V;if m > 1 take ¥ = [V/x,] 1. This will begin with an
ob of type (a), (b), or (c).

(e) Let X = [x] Ul. Let Ul be associated with U; then 1l is also as-
sociated with X, m being increased by one.
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(f) Let X>-Y and Y be associated with ). Then X is associated
with the same ).
This completes the proof.

Tueorem 16. Let X be canonical and
X= X3
then Y is also canonical,

Proof. Let x, ..., x,, be adjoined indeterminates occuring in neither
X nor Y, and let X be associated with X as in Theorem 15. By the
Church-Rosser property of strong reduction there is a 9) such that.

Xxp...x,—X—9),
Yx,...x,—9).
We show that 9) has the properties described in Theorem 15. There
are three cases (a), (b), (c) according to the type of the leading
element of ¥.

(a) X = W; i,h Ug Un Then
Q) = '8,%] %2-..%[1;
where {l,-%; ([CLg] Th. 6F5).

(b) ¥ = [QU; W]l ... H,. Then
P= [QT, Bs] B ... By,
and this is again of Type (b).
) T=EiLU...U,
where I, il, are canonical. Then
5)] == 35315!32...58,,
where {l;>—3;. By the hypothesis of an induction on the number of
applications of (a)—(f) in the construction of X, B, and B, are ca-
nonical. Then ¥) is of type (c).

Note that the number of applications of (c) in the construction of
X is mirrored exactly in the construction of %. Le., we start a con-
struction of X and at every step construct the corresponding ¥. Then
il; and i, will have preceded ¥ in the construction. Hence if we have
an induction on the number of steps in the proof that X is canonical,
this induction will be sufficient to complete the proof.

Tueorem 17. If the theory is Q-comsistent, then every step in a
proof by Rules E and Eq from canonical premises valid in the theory
will be canonical.

Proof. The proof is by deductive induction. The premises are
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canonical by hypothesis. The case of Rule Eq in the induction is taken
care of by Theorem 16.
Suppose, then, we have an inference by Rule E, viz.
—E2XY — XZ
—YZ
There are two possibilities.

1) The left premise comes under (¢). Then X and Y are both canon-
ical, and so the conclusion is.

2) The left premise comes under (b). Then by the Q-consistency,
X = Y. Hence the case comes under Rule Eq.

Just as in ¥, it is desirable to have in ¥, all instances of the reflex-
ive property of E, i.e.

- EXX
for any ob X. To include this possibility we can add to Definition
1 the case

(g) EUV is canonical if U = V. Evidently this addition will not
disturb the proofs of any of Theorems 14-17 (*).

If we adjoin clause (g) to Definition 1, and at the same time cancel
clause (b), then Theorems 14-17 remain valid. Now however it is
not necessary to postulate Q-consistency, since EXY is now canon-
ical only then either X = Y or X and Y are both canonical. Moreover
Q-consistency is a consequence of Theorem 17; (**) for since [3]zU
is never canonical, QUV is never canonical unless U = V.

This proves the following theorem: (*)

Tueorem 18. If clause (g) is added to Definition 1 with or
without clause (b), then Theorems 13-17 remain valid. Moreover the
theory is Q-consistent if all the axioms are canonical according to the
modified definition with clause (b) deleted.

A theory lacking clause (b) is of course extraordinarily weak; in
fact such an ob as

Exo,. x=yD2,,y=2>, x=3,
which expresses the transitive property of equality, is not canonical
in it. Nevertheless, in view of the fact that inconsistencies do arise

(%) We must add (g) to the types (a), (b), (c) in Theorem 15.

(%) Under the assumption, of course, that all the axioms are canonical in
the new sense.

(") The role of Rule E, viz. EX, EY - E(XY), and of axioms of the form
- EX has been ignored in the foregoing. For this we may either take E to be
one of the #; or define E as WQ, so that EX reduces to [QXX]. In either
case EX is always canonical, so that ignoring the E-rules and E-axioms causes
no disturbance.
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in what appear to be very weak systems, its Q-consistency is of some
significance. Stronger definitions of canonicalness are under con-
sideration for future study.

9. The deduction theorem. A preliminary statement of the de-
duction theorem was given in § 3. In order to give a more adequate
formulation we must first formulate certain conditions upon the
system %, and its extensions.

The axioms of #, we suppose given in at most three ways, viz.

1°) By substitution of canonical obs for certain parameters, called
the canonical parameters, in certain axiom schemes. We call these
axiom schemes, and the axioms obtained from them, regular.

2°) By substitution of arbitrary obs for certain parameters, called
free parameters, in certain axiom schemes, possibly with further
substitution of canonical obs for additional parameters which are
here also called canonical parameters. Such axiom schemes, and the
axioms obtained from them, we call special.

3°) By listing of individual axioms not containing any parameters
for which substitutions can be made. The obs asserted in such axioms
are specific obs (**) of #,. We call these axioms the fixed axioms.

In contradistinction to the fixed axioms we call the axioms of types
1° and 2° schematic. )

An axiom of #(x),, which actually contains x,, we call a proper
axiom of F,(x),; it is not an axiom of #,(x),,_,. Since the xi, ..., %,
are indeterminates, any such axiom must be schematic; and at least
one of the obs substituted for a parameter must contain x,,

This established we make the following assumptions concerning
Fs

(A) The regular axiom schemes include the following (the canon-
ical parameters being such of a, §, y as actually appear):

(A1) [EK]of,
(A2)  [2S5] ofy,

(B) The special axiom schemes include only
(B1) Eu

where u is the free parameter. With this goes the fixed axiom
(B2) - EE(WE).
This with (B1) gives the reflexiveness of E over arbitrary obs.

(*8) This is true of any axiom of %, But the point is that proper axioms
of Fg(x), for any m>>0 cannot be obtained from fixed axioms.
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(C) All axioms are canonical (**). (This is true for the axioms and
axiom schemes explicitly listed; but has to be assumed for any ad-
ditional ones there may be.)

(D) If

A
is a proper axiom of F,(x),,. then
E(Eni- X 1) ([%,,] )
is derivable in #,(E; x),,_1.
On this basis we proceed to state and prove the deduction theorem.

Tueorem 19. Let X be an ob of F,(x), such that

(1) X

is derivable by Rules E and Eq from axioms of Fy(x)m together with
(2) b Eg¥y.- X g = 1,2,...m.
Let the conditions (A) - (D) be fulfilled. Then

(3) (& x)n X

is derivable in %,

Proof. We use a double induction. The primary induction is with
respect to m; the secondary induction is a deductive induction on the
proof of (1).

The theorem is trivial for m = 0. Hence it suffices to assume
m>>0, and to suppose the theorem proved for %,(E;x),,_;. This is
the hypothesis of the primary induction.

Let ¥;, %5, .... X, (= %) be the steps in the proof of (1). Let

Xk = [xl, T xm] xk'
Then what we have to show is that
(4) b= EmEi---EmXk
holds for # = n. We do this under the assumption that (4) holds for

all #<n (if any). This will complete the secondary (deductive) in-
duction. We distinguish five cases, as follows:

Case 1. %, is an axiom of %,(E; x),, which does not contain xm;
hence an axiom of F,(E;x)m_; and so either an axiom of Fy(x)m_,
or one of the first m - 1 of the statements (2). By (A) we have in
Fo(X)m_1, if A and B are canonical obs of Fy(x),,_1,

5) Ay o, Byz o,Ay.

(%) With respect to some definition of canonicalness for which the con-
clusion of Theorem 17 is valid. If Theorem 17 requires (Q-consistency, then
Q-consistency must be added to the premises of Theorem 19.
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Here take (*) A =KX, B = K(Exp...%,,_1). Now, since AY = %,
FAY
is true in #(E x),,_ for any Y; hence we conclude from (5) and Rule
Z that
(6) - Em¥1e X _18D, %,
is valid in #(&;x),,_,. By the hypothesis of the primary induction
it follows from (6) (replacing z by x,) that
 (Ei%)m - 1-EmXy--Xm DamEn
This is the same as (4) by Definition 3 and Theorem 5.

Case 2. X, is E,%...x,,X, = E,,. In this case we use (B) to con-
clude that, in #(x),,_; and hence a fortiori in F(E;x);_1,

]“E(mel'“xm-l)(mel"'xm-l)
= Em¥i...Xm DammisesXps
Applying the hypothesis of the primary induction, and reasoning as
in the last step of Case 1, we conclude that
= Enbi---Embm
holds in #,. This is (4) for this case.

Case 3. X%, is a proper axiom of #(x),,. Here we use (D) to con-
clude that (6) holds in #(E;x)m_;. From that point we proceed as in
Case 1.

Case 4. %, is derived by Rule Eq. Then ¥,=%; for some k>n.
Hence X,=X;, and (3) follows from (4) by Rule Eq.

Case 5. X, is derived by Rule E. Let the premises be ¥; and
X;, i <n, j <n. Then for some {l, B, 3 we have

EiEEu%, %jEﬂSy IHEQ}S'

We may suppose that {1 and 8 are canonical; for ¥; is canonical by

(C) and § 8 (*'), and the case where Il = B reduces to Case 4.
Let

U = [%...x,]1, V = [x,..%,] B,
Z = [x,...x0,] 3
Then (®)
X; = O"mEUV, X; = SmUZ, X, = SmVZ
From (4) for £ = i we have
(*9) U is canonical by (C) and §8.

(3) Cf. footnote to (C). -
(2®) For definition of S(™ see [CLg] § 5E.
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= Epki-. Ep(@MEUV)
= 8,151 -Eq UV (by §4).
Hence, using the first m -1 of the postulates (2) and Theorem 4, we
have in #5(E;x),, 4
(7) FE AU Y,
where W = E,x..x,_, W = Ux..x, = [x,] U,
B = Vx..x,; = [x,] 8.
By the axiom scheme [ES] with ', I, K8’ for a, B, y, we have in
?2(’:)"1—1
FEA'UY o, EWA(SU'z) o, ZU (SV'2).
From this and (7) we conclude by Rule E that
(8) - EA (SUl'z) o ,EA' (SV'3).
holds in Fo(E;%x),,_1.
From (4) for #=j we have in %,
Emgl‘--gm(s(muz)v
Here we use the first m — 1 relations (2) and Theorem 4 to derive a
result in #,(E;x),,_,. Since
SmUZX,...x,,_, = SU'J,
this result is
- EA(SU'Y).
Then by (8) and Rule =, we have
- ZA(SB'Y)
= EpXiee X Dan B 3
This is (6) for this case. Then (4) follows as in Case 1.
This completes the proof of Theorem 19.

Remark 1. The troublesome assumption needed for the proof
is (D). This seems not to be derivable from the axiom schemes listed
under (A) and (B). A sufficient condition for its derivability may be
written as follows. Consider an axiom scheme
(8) - 2.
where 2 has the canonical parameters ay, ..., op Let ¥y, ..., ¥ be
indeterminates not appearing in 2, and let 2’ be obtained by sub-
stituting a;y...y, for a; (f =1, ..., p) in 2. Let B, ..., §, be additional
canonical parameters, and let

B = E B Bollyr-¥] A).
Under just these circumstances we shall say that B is derived from
by canonical generalization of order g. Then a sufficient condition
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for (D) is that the axiom schemes be closed with respect to canonical
generalization of order m.

That this is indeed sufficient may be seen as follows. Let an axiom
of #(x),, assert an ob 2* obtained from the 2[ of (8) by substituting
obs il;, ..., U, which may contain x,...,x,, for o, ...,a, respecti-
vely. Let ¢ = m, and identify y; with x; Let

U_.f = [xl, v xm] uj-
Then 2A* can be obtained from A’ by substituting U, ..., U, respec-
tively for ay, ..., a, in 2" and applying Eq. Let B* be obtained from
B by substituting &; for §; and U; for o; (i =1,2,...m;j=1,2,...,
p) in B. Then B* is an axiom of #,. From this and the first m—1
equations (2) we have (by Theorem 4)

= B (Eny- Zyy - 1) (%] A).

The situation is thus, in a way, analogous to that in the ordinary
predicate calculus. There we have two rules, modus ponens and gen-
eralization. To get a system with modus ponens only we need a set
of axioms closed under generalization.

Remark 2. If we postulate under (A) the scheme
— ZaE
in which @ is a canonical parameter, then I suspect we could avoid

using (D) for special axioms. However the proof is not complete, and
the question is left open.
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