NOTES ON A GROUP OF NEW MODAL SYSTEMS

A.N. PRIOR

There is a certain modal system Q which I have elsewhere (Time
and Modality, Ch. V) defined as that system consisting of all, and
only, those formulae in CN,M,L and propositional variables which
are verified by the following infinite matrix: The «values» of propo-
sitions are infinite sequences containing 1’s, 2's, 3’s or combinations
of these, and beginning with 1 or 3. The designated values are all
those not containing any 3’s. Wherever the value of a proposition
p has a 2, the value of any function of p will have a 2 also; at other
places the function sequences are as follows: Cpq (if p then q) has
1 at places where p has 3 and q has 1 or 3 and where p and q both
have 1, and 3 at places where p has 1 and q 3. Np (Not p) has 1 where
q has 3 and 3 where q has 1. Lp (Necessarily p) has 1's throughout
if and only if p has 1's throughout, otherwise has 3’s except where p
has 2, If p has 1 anywhere, Mp (Possibly p) has 1's except where p
has 2, otherwise 3’s except where p has 2.

The intuitive basis of this matrix is that the first place in a sequen-
ce gives the truth value or the given proposition in the actual world
(1 for ‘true’ and 3 for ‘false’), and the other places its truth value in
other possible worlds, apart from worlds in which there could not
be any such proposition as the one under consideration (e.g. because
of the non-existence in that world of some object which the propo-
sition is directly about), the number 2 being put in a place which
represents a world which, with the given proposition, is of this sort.
L is taken to mean ‘true in all worlds’, this being a stronger charac-
terisation than ‘false in none’ (NMN); and M, ‘true in some world’
this being a stronger characterisation than ‘not false-in-all’ (NLN), The
designation of all 3-less sequences expresses the principle that a
proposition is logically true if it is true in all circumstances in which
there is any such proposition. Distinctive features of the system are
the complete absence of theses beginning with L (though we have
+NMNg whenever we have ), and the impossibility of proving,
when the ordinary rules for quantification theory are adjoined, such
formulae as CLIIxqxIIxLgx CIIxLgxLIIxgx and CMZIZxgxIxMgex
(though we do have I CExMepxMZxgpx).

I do not know of any set of postulates for which this matrix has
been proved to be characteristic, but in 1956 E. J. Lemmon produced
a strongly supported conjecture about this which is worth recording
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(and which I have his permission to communicate). He had already
proved at this time (cf. JSL, 1956, pp. 347-9) that the following pos-
tulates of my own, subjoined to the propositional calculus, yield a
system equivalent to Lewis's S5: —

M1: + Cafi—+ CMaf, provided that every variable in f is moda-
lised (i.e. falls within the scope of some M).

M2: |- Cof—CaMp (or the axiom: - CpMp).

DfL: L = NMN.

In Q, L is not definable in terms of M, and Lemmon conjectur-
ed that if we drop DfL above, and add to M1 the further proviso
that  contain no variables that are not in o, we will have a
sufficient basis for that part of Q in which L does not occur. To
obtain the rest, he further suggested, we need only add the rule

RL: - Caf—+ CLaLlf, provided that § contains no variables not
in o, and the axioms

1. CKLpLqLKpq 2. CLpp 3. CLpLLp 4. CLNLNpMp

5. CMgMCLpq
(also allowing ‘modalisation’ in M1 to include falling within the
scope of some L),

There is now a further result, of my own, which seems to give
considerable added weight to this conjecture of Lemmon’s; namely
that these postulates, supplemented by a further definition, are demon-
strably equivalent to another set which express very directly indeed
the basic intuitions underlying the Q matrix. The peculiarity of Q
as a modal system is that it allows for propositions not being under
all circumstances ‘statable’. Suppose we write Sp for ‘It is necessarily
statable that p’, and define the Lp of Q as ‘p is necessarily stata-
ble, and cannot be false’ i.e. KSpNMNp . This direct introduction of
the idea of ‘statability’ into the formalism was suggested to me by J. L.
Mackie. Beside this definition of L in terms of it, we may lay down
for S the following two rules (reflecting the fact that a proposition
is statable when and only when all its constituent propositions are):

RS1: - CSaSp, where p is any variable in o,

RS2 : - CSpCSq... Sa, where p, q, etc are all the variables in «.

For M, we introduce the usual M2 and the following modification
of Mi:

SM1 : - Caf<«-+-CSpCSq ... CMaff, where every variable in B is
modalised (i.e. falls within the scope of some M or S) and p, q.
etc. are all the variables in f that are not in «.

(If there are no variables in § that are not in a, the consequent of
the last rule becomes the simple CMaf ; i.e. we have Lemmon’s
modification of M1 as a special case of SM1).
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In a system where L rather than S is undefined, Sp is easily
definable as LCpp (giving it, in the Q matrix, the value 1's-all-
through if p has no 2’s, and if it has, 3's except where p has 2's);
and with this definition, Lemmon’s postulates in M and L can be
shown to yield exactly the same asserted formulae as the above set
in M and S. Here, for exemple, is the proof of SM1 from Lem-
mon’s postulates and Df.S (the key step is to prove the lemma 12):

6. CCLpqCLpKLpq (p.c.)

7. CMCLpgMCLpKLpq (6, M2, mod. M1).
8. CMgMCLpKLpq (5, 7, Syll).

9. CCLpKLpqCLpMKLpq (M2, Syll.

10. CMCLpKLpqCLpMKLpq (9, mod. M1).

11. CLpCMCLpKLpgMKLpq (10, Comm).

12. CKLpMgMKLpq (8, 11, CCqrCCpCrsCKpgs).

13. Cof3 (hypothesis; B fully modalised).

14. CKLCppKLCqq...aff (CKpgp, 13, Syll; p, q etc. all the variab-

les in § but not in a).

15. CLKpqLp (CKpqp, RL).

16. CLKpqlq ( CKpqq, RL).

17. CLKpgKLpLq (15, 16, CCpqCCprCpKqr).

18. CKLKCppKCqq...afy (14, repeated use of 17, Syll).

19. CMKLKCppKCqgq...... aff (18, mod. M1).

20. CKLKCppKCqq... .Mofi (12, 19, Syll).

21. CKLCppKLCqq... Maf (17, repeated use of 1, Syll).

22. CLCppCLCqgq...... CMaf (21, exportation).

23. CSpCsq...... CMaf (22, D£.S).

Conversely, in the M-S system we prove Lemmon’s 5 (CMqMCLpq)
by applying CCpqCCNpqq to CSpCMgMCLpq (from SM1 and
CqMCLpq, from Simp and M2) and CNSpCMgMCLpq (i.e.
CNSpCMqMCKSpNMNpq ; proved by a series of simple steps from
CNSpCSpq ). The other parts of the proof of equivalence are fairly
obvious.

In 1956 it was also shown by Lemmon that a number of interesting
extensions may be made to Q without falling into inconsistency or
completely destroying its character as a modal system, namely

(i) -Q + +CLpp, equivalent to Lewis’s S5, in which L and M

remain genuinely modal functors, but are not both needed
as primitives (Lp = NMNp, Mp = NLNp).

(i) Q + +—NLp, in which L is destroyed as a modal functor

(Lp becoming contradictory) but M is not.
(ili) Q + - CMpp, in which M is destroyed as a modal functor
(Mp = p) but not L.
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(ivy Q + - CLMpp.

(iv) is contained in both (ii) and (iii), and it (and so a fortiori (ii)
and (iii))) cannot be combined with (i) without destroying both L
and M as modal functors (Q + -LCpp + - CLMpp —  CpLp,
- CMpp). System (i) is verified by O’s matrix with every value con-
taining 2 removed; (ii) by Q’s matrix with every value not contain-
ing 2 removed; (iii) by Q’s matrix with every value which contains
both 1’s and 3’s removed; (iv) by Q’s matrix with every value which
contains both 1’s and 3's but not 2’s removed. (In each of these
cases, the application of C, N, L or M to any value in the restricted
set will not yield a value outside it).

M-S systems equivalent to these may be obtained by enlarging Q
thus: For (i) add +Sp (or define Sp as Cpp); for (ii} add — NSp (or
define Sp as NCpp); for (iii) add — CMpp (or define Mp as p); for (iv)
add - CSpCMpp. Whether or not the M-S postulates given above
successfully define Q, the addition of — Sp to these postulates defin-
itely yields Q + ~Sp, i.e. S5 (SM1 collapses by a series of detach-
ments to M1, and KSpNMNp, i.e. Lp, to NMNp, giving the postulates
of 85 very neatly). And if we equate a proposition’s being necessari-
ly statable with the necessary existence of all objects directly named
in it, the above postulates (i.e. those for Q plus  Sp) exhibit S5 as
the result of assuming that all beings are necessary beings. (ii) re-
sults similarly from the contrary assumption that none are. In (iii)
the addition (of — CMpp) makes Lp (KSpNMNp) equivalent to KSpp,
‘p is necessarily statable and actually true’, the laws of this queer
‘necessity’ being deducible from this equivalence and RS1 and 2
(SM1 being now redundant). And now we see what (iv) is — it is a
modal system which, unlike (i) and (ii), allows for both necessary
and contingent beings, but it assumes (for it is a simple matter to
deduce CSpCpLp in this system) that no proposition which is about
necessary beings only, can be contingent; all such propositions are
either necessary or impossible (though ones which are about both
necessary and contingent beings — e.g., perhaps, ‘9 is the number
of planets in this solar system’ — may be contingent.)

In System (iii) the collapse of M and transformation of L is of
such a character that the system may be characterised not only by
Lemmon’s infinite matrix but by the following finite one:
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K|1 2 3 4|N|S|L|M
111 2 3 414|111
*212 2 3 4(3(3|3]|2
3333(2)13(3]3
43 3 4(1|1|4|4

Proof that RS1-2 + Dff. LM + propositional calculus exactly fits
this matrix is easy. Read ‘p = 1’ as KSpp, ‘p = 2’ as KNSpp, ‘p = 3’
as KNSpNp, ‘p = 4’ as KSpNp, and prove the implications corres-
ponding to the use of the table (e.g. prove CKKSppKNSqqKNSKpq-
Kpq for ‘If p =1 and q = 2, Kpq = 2'). A simple equivalent set of
postulates in L (with Sp defined as LCpp and Mp as p) would be
Lemmon’'s RL,1 (CKLpLqLKpq) and 2 (CLpp), plus 3’: CLCppCpLp
(subjoined to propositional calculus). As these are all in the weaker
calculus (iv) also, it is clear that this has the same M-less fragment
as (iii). (3" is in (iv) since RL, 2, CLMpp give CLMpLp, and
CLCppCpLMp is in Q.)

The system (iii), or rather its M-less portion, has at least one inter-
esting extension. Add + CLgLCpp to RL, 1,2,3', or alternatively re-
place 3" by 3”. CLqCpLp, and RL and 1 become superfluous. The
resulting calculus (but with Mp, if used at all, for NLNp rather than
for p) is equivalent to that part of the L-modal system of Lukasie-
wicz (Aristotle’s Syllogistic, 2nd ed., ch. VII) which is expressible
without variable functors. The distinctive feature of the L-modal
is that; if we write Fp for the contradictory function NCpp and Sp
for the plain p, then (L) if and only if both  f(F) and  £(S), and
in fact on my view this L is simply a variable functor with its value
restricted to F and S. The use of 2 and 3" to derive - f(L) given
+f(F) and + £(S) may be illustrated by the following example, where
f is C'pN'Np (the apostrophe for F,S, or L):

24. CFpNFNp (from CFpq, p.c.)

25. CSpNSNp (i.e. CpNNp, p.c.)

26. ANLqCpLp (3", C = AN)

27. ANLQELpp (26,2)

28. AELqFqELpp (27, CNpEpFq)

29. AELqFqELpSp (28, Df.S)

30. AELNQFNQELpSp (29 q,/Ng)

31. AKELqFqELNgFNqELpSp (29, 30, CKAprAqrAKpqr)
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32.
33.
34.
35.
36.
37.

AKELqFQELNQFNqQELNpSNp (31 p,/Np)
AKELQFQELNqFNQKELpSpELNpSNp (31, 32)
CCpNqCKErpEsqCrNs (p.c.)
CKELpFpELNpFNpCLpNLNp (24,34)
CKELpSpELNpSNpCLpNLNp (25, 34)
CLpNLNp (35, 36, 33q,”p, CCprCCqrCApqr).

The same procedure, with slight variations, will take us from
CFNFpFNp and CSNSpSNp to CLNLpLNp (one of this system’s odder
laws): and similarly in all other cases.

(University of Manchester)
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